Commit Graph

8137 Commits

Author SHA1 Message Date
Jianyu Zhan 2329d3751b mm/swap.c: clean up *lru_cache_add* functions
In mm/swap.c, __lru_cache_add() is exported, but actually there are no
users outside this file.

This patch unexports __lru_cache_add(), and makes it static.  It also
exports lru_cache_add_file(), as it is use by cifs and fuse, which can
loaded as modules.

Signed-off-by: Jianyu Zhan <nasa4836@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Shaohua Li <shli@kernel.org>
Cc: Bob Liu <bob.liu@oracle.com>
Cc: Seth Jennings <sjenning@linux.vnet.ibm.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Rafael Aquini <aquini@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Khalid Aziz <khalid.aziz@oracle.com>
Cc: Christoph Hellwig <hch@lst.de>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:00 -07:00
Dave Hansen 613813e898 mm: debug: make bad_range() output more usable and readable
Nobody outputs memory addresses in decimal.  PFNs are essentially
addresses, and they're gibberish in decimal.  Output them in hex.

Also, add the nid and zone name to give a little more context to the
message.

Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:00 -07:00
Vlastimil Babka c96b9e508f mm/compaction: cleanup isolate_freepages()
isolate_freepages() is currently somewhat hard to follow thanks to many
looks like it is related to the 'low_pfn' variable, but in fact it is not.

This patch renames the 'high_pfn' variable to a hopefully less confusing name,
and slightly changes its handling without a functional change. A comment made
obsolete by recent changes is also updated.

[akpm@linux-foundation.org: comment fixes, per Minchan]
[iamjoonsoo.kim@lge.com: cleanups]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Dongjun Shin <d.j.shin@samsung.com>
Cc: Sunghwan Yun <sunghwan.yun@samsung.com>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:00 -07:00
Heesub Shin 13fb44e4b0 mm/compaction: clean up unused code lines
Remove code lines currently not in use or never called.

Signed-off-by: Heesub Shin <heesub.shin@samsung.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dongjun Shin <d.j.shin@samsung.com>
Cc: Sunghwan Yun <sunghwan.yun@samsung.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Dongjun Shin <d.j.shin@samsung.com>
Cc: Sunghwan Yun <sunghwan.yun@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:00 -07:00
Vlastimil Babka 5bcc9f86ef mm/page_alloc: prevent MIGRATE_RESERVE pages from being misplaced
For the MIGRATE_RESERVE pages, it is useful when they do not get
misplaced on free_list of other migratetype, otherwise they might get
allocated prematurely and e.g.  fragment the MIGRATE_RESEVE pageblocks.
While this cannot be avoided completely when allocating new
MIGRATE_RESERVE pageblocks in min_free_kbytes sysctl handler, we should
prevent the misplacement where possible.

Currently, it is possible for the misplacement to happen when a
MIGRATE_RESERVE page is allocated on pcplist through rmqueue_bulk() as a
fallback for other desired migratetype, and then later freed back
through free_pcppages_bulk() without being actually used.  This happens
because free_pcppages_bulk() uses get_freepage_migratetype() to choose
the free_list, and rmqueue_bulk() calls set_freepage_migratetype() with
the *desired* migratetype and not the page's original MIGRATE_RESERVE
migratetype.

This patch fixes the problem by moving the call to
set_freepage_migratetype() from rmqueue_bulk() down to
__rmqueue_smallest() and __rmqueue_fallback() where the actual page's
migratetype (e.g.  from which free_list the page is taken from) is used.
Note that this migratetype might be different from the pageblock's
migratetype due to freepage stealing decisions.  This is OK, as page
stealing never uses MIGRATE_RESERVE as a fallback, and also takes care
to leave all MIGRATE_CMA pages on the correct freelist.

Therefore, as an additional benefit, the call to
get_pageblock_migratetype() from rmqueue_bulk() when CMA is enabled, can
be removed completely.  This relies on the fact that MIGRATE_CMA
pageblocks are created only during system init, and the above.  The
related is_migrate_isolate() check is also unnecessary, as memory
isolation has other ways to move pages between freelists, and drain pcp
lists containing pages that should be isolated.  The buffered_rmqueue()
can also benefit from calling get_freepage_migratetype() instead of
get_pageblock_migratetype().

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Yong-Taek Lee <ytk.lee@samsung.com>
Reported-by: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Suggested-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Suggested-by: Mel Gorman <mgorman@suse.de>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: "Wang, Yalin" <Yalin.Wang@sonymobile.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:00 -07:00
Vladimir Davydov 03afc0e25f slab: get_online_mems for kmem_cache_{create,destroy,shrink}
When we create a sl[au]b cache, we allocate kmem_cache_node structures
for each online NUMA node.  To handle nodes taken online/offline, we
register memory hotplug notifier and allocate/free kmem_cache_node
corresponding to the node that changes its state for each kmem cache.

To synchronize between the two paths we hold the slab_mutex during both
the cache creationg/destruction path and while tuning per-node parts of
kmem caches in memory hotplug handler, but that's not quite right,
because it does not guarantee that a newly created cache will have all
kmem_cache_nodes initialized in case it races with memory hotplug.  For
instance, in case of slub:

    CPU0                            CPU1
    ----                            ----
    kmem_cache_create:              online_pages:
     __kmem_cache_create:            slab_memory_callback:
                                      slab_mem_going_online_callback:
                                       lock slab_mutex
                                       for each slab_caches list entry
                                           allocate kmem_cache node
                                       unlock slab_mutex
      lock slab_mutex
      init_kmem_cache_nodes:
       for_each_node_state(node, N_NORMAL_MEMORY)
           allocate kmem_cache node
      add kmem_cache to slab_caches list
      unlock slab_mutex
                                    online_pages (continued):
                                     node_states_set_node

As a result we'll get a kmem cache with not all kmem_cache_nodes
allocated.

To avoid issues like that we should hold get/put_online_mems() during
the whole kmem cache creation/destruction/shrink paths, just like we
deal with cpu hotplug.  This patch does the trick.

Note, that after it's applied, there is no need in taking the slab_mutex
for kmem_cache_shrink any more, so it is removed from there.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Jiang Liu <liuj97@gmail.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:53:59 -07:00
Vladimir Davydov bfc8c90139 mem-hotplug: implement get/put_online_mems
kmem_cache_{create,destroy,shrink} need to get a stable value of
cpu/node online mask, because they init/destroy/access per-cpu/node
kmem_cache parts, which can be allocated or destroyed on cpu/mem
hotplug.  To protect against cpu hotplug, these functions use
{get,put}_online_cpus.  However, they do nothing to synchronize with
memory hotplug - taking the slab_mutex does not eliminate the
possibility of race as described in patch 2.

What we need there is something like get_online_cpus, but for memory.
We already have lock_memory_hotplug, which serves for the purpose, but
it's a bit of a hammer right now, because it's backed by a mutex.  As a
result, it imposes some limitations to locking order, which are not
desirable, and can't be used just like get_online_cpus.  That's why in
patch 1 I substitute it with get/put_online_mems, which work exactly
like get/put_online_cpus except they block not cpu, but memory hotplug.

[ v1 can be found at https://lkml.org/lkml/2014/4/6/68.  I NAK'ed it by
  myself, because it used an rw semaphore for get/put_online_mems,
  making them dead lock prune.  ]

This patch (of 2):

{un}lock_memory_hotplug, which is used to synchronize against memory
hotplug, is currently backed by a mutex, which makes it a bit of a
hammer - threads that only want to get a stable value of online nodes
mask won't be able to proceed concurrently.  Also, it imposes some
strong locking ordering rules on it, which narrows down the set of its
usage scenarios.

This patch introduces get/put_online_mems, which are the same as
get/put_online_cpus, but for memory hotplug, i.e.  executing a code
inside a get/put_online_mems section will guarantee a stable value of
online nodes, present pages, etc.

lock_memory_hotplug()/unlock_memory_hotplug() are removed altogether.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Jiang Liu <liuj97@gmail.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:53:59 -07:00
Vladimir Davydov e8d9df3aba memcg: un-export __memcg_kmem_get_cache
It is only used in slab and should not be used anywhere else so there is
no need in exporting it.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:53:59 -07:00
Mel Gorman 5f7a75acdb mm: page_alloc: do not cache reclaim distances
pgdat->reclaim_nodes tracks if a remote node is allowed to be reclaimed
by zone_reclaim due to its distance.  As it is expected that
zone_reclaim_mode will be rarely enabled it is unreasonable for all
machines to take a penalty.  Fortunately, the zone_reclaim_mode() path
is already slow and it is the path that takes the hit.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:53:59 -07:00
Mel Gorman 4f9b16a647 mm: disable zone_reclaim_mode by default
When it was introduced, zone_reclaim_mode made sense as NUMA distances
punished and workloads were generally partitioned to fit into a NUMA
node.  NUMA machines are now common but few of the workloads are
NUMA-aware and it's routine to see major performance degradation due to
zone_reclaim_mode being enabled but relatively few can identify the
problem.

Those that require zone_reclaim_mode are likely to be able to detect
when it needs to be enabled and tune appropriately so lets have a
sensible default for the bulk of users.

This patch (of 2):

zone_reclaim_mode causes processes to prefer reclaiming memory from
local node instead of spilling over to other nodes.  This made sense
initially when NUMA machines were almost exclusively HPC and the
workload was partitioned into nodes.  The NUMA penalties were
sufficiently high to justify reclaiming the memory.  On current machines
and workloads it is often the case that zone_reclaim_mode destroys
performance but not all users know how to detect this.  Favour the
common case and disable it by default.  Users that are sophisticated
enough to know they need zone_reclaim_mode will detect it.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:53:59 -07:00
Luiz Capitulino 944d9fec8d hugetlb: add support for gigantic page allocation at runtime
HugeTLB is limited to allocating hugepages whose size are less than
MAX_ORDER order.  This is so because HugeTLB allocates hugepages via the
buddy allocator.  Gigantic pages (that is, pages whose size is greater
than MAX_ORDER order) have to be allocated at boottime.

However, boottime allocation has at least two serious problems.  First,
it doesn't support NUMA and second, gigantic pages allocated at boottime
can't be freed.

This commit solves both issues by adding support for allocating gigantic
pages during runtime.  It works just like regular sized hugepages,
meaning that the interface in sysfs is the same, it supports NUMA, and
gigantic pages can be freed.

For example, on x86_64 gigantic pages are 1GB big. To allocate two 1G
gigantic pages on node 1, one can do:

 # echo 2 > \
   /sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages

And to free them all:

 # echo 0 > \
   /sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages

The one problem with gigantic page allocation at runtime is that it
can't be serviced by the buddy allocator.  To overcome that problem,
this commit scans all zones from a node looking for a large enough
contiguous region.  When one is found, it's allocated by using CMA, that
is, we call alloc_contig_range() to do the actual allocation.  For
example, on x86_64 we scan all zones looking for a 1GB contiguous
region.  When one is found, it's allocated by alloc_contig_range().

One expected issue with that approach is that such gigantic contiguous
regions tend to vanish as runtime goes by.  The best way to avoid this
for now is to make gigantic page allocations very early during system
boot, say from a init script.  Other possible optimization include using
compaction, which is supported by CMA but is not explicitly used by this
commit.

It's also important to note the following:

 1. Gigantic pages allocated at boottime by the hugepages= command-line
    option can be freed at runtime just fine

 2. This commit adds support for gigantic pages only to x86_64. The
    reason is that I don't have access to nor experience with other archs.
    The code is arch indepedent though, so it should be simple to add
    support to different archs

 3. I didn't add support for hugepage overcommit, that is allocating
    a gigantic page on demand when
   /proc/sys/vm/nr_overcommit_hugepages > 0. The reason is that I don't
   think it's reasonable to do the hard and long work required for
   allocating a gigantic page at fault time. But it should be simple
   to add this if wanted

[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Luiz Capitulino <lcapitulino@redhat.com>
Reviewed-by: Davidlohr Bueso <davidlohr@hp.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:53:59 -07:00
Luiz Capitulino 1cac6f2c07 hugetlb: move helpers up in the file
Next commit will add new code which will want to call
for_each_node_mask_to_alloc() macro.  Move it, its buddy
for_each_node_mask_to_free() and their dependencies up in the file so the
new code can use them.  This is just code movement, no logic change.

Signed-off-by: Luiz Capitulino <lcapitulino@redhat.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Reviewed-by: Davidlohr Bueso <davidlohr@hp.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:53:59 -07:00
Luiz Capitulino a7407a27c2 hugetlb: update_and_free_page(): don't clear PG_reserved bit
Hugepages pages never get the PG_reserved bit set, so don't clear it.

However, note that if the bit gets mistakenly set free_pages_check() will
catch it.

Signed-off-by: Luiz Capitulino <lcapitulino@redhat.com>
Reviewed-by: Davidlohr Bueso <davidlohr@hp.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:53:59 -07:00
Luiz Capitulino bae7f4ae14 hugetlb: add hstate_is_gigantic()
Signed-off-by: Luiz Capitulino <lcapitulino@redhat.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Reviewed-by: Davidlohr Bueso <davidlohr@hp.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:53:59 -07:00
Luiz Capitulino 2906dd5283 hugetlb: prep_compound_gigantic_page(): drop __init marker
The HugeTLB subsystem uses the buddy allocator to allocate hugepages
during runtime.  This means that hugepages allocation during runtime is
limited to MAX_ORDER order.  For archs supporting gigantic pages (that
is, page sizes greater than MAX_ORDER), this in turn means that those
pages can't be allocated at runtime.

HugeTLB supports gigantic page allocation during boottime, via the boot
allocator.  To this end the kernel provides the command-line options
hugepagesz= and hugepages=, which can be used to instruct the kernel to
allocate N gigantic pages during boot.

For example, x86_64 supports 2M and 1G hugepages, but only 2M hugepages
can be allocated and freed at runtime.  If one wants to allocate 1G
gigantic pages, this has to be done at boot via the hugepagesz= and
hugepages= command-line options.

Now, gigantic page allocation at boottime has two serious problems:

 1. Boottime allocation is not NUMA aware. On a NUMA machine the kernel
    evenly distributes boottime allocated hugepages among nodes.

    For example, suppose you have a four-node NUMA machine and want
    to allocate four 1G gigantic pages at boottime. The kernel will
    allocate one gigantic page per node.

    On the other hand, we do have users who want to be able to specify
    which NUMA node gigantic pages should allocated from. So that they
    can place virtual machines on a specific NUMA node.

 2. Gigantic pages allocated at boottime can't be freed

At this point it's important to observe that regular hugepages allocated
at runtime don't have those problems.  This is so because HugeTLB
interface for runtime allocation in sysfs supports NUMA and runtime
allocated pages can be freed just fine via the buddy allocator.

This series adds support for allocating gigantic pages at runtime.  It
does so by allocating gigantic pages via CMA instead of the buddy
allocator.  Releasing gigantic pages is also supported via CMA.  As this
series builds on top of the existing HugeTLB interface, it makes gigantic
page allocation and releasing just like regular sized hugepages.  This
also means that NUMA support just works.

For example, to allocate two 1G gigantic pages on node 1, one can do:

 # echo 2 > \
   /sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages

And, to release all gigantic pages on the same node:

 # echo 0 > \
   /sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages

Please, refer to patch 5/5 for full technical details.

Finally, please note that this series is a follow up for a previous series
that tried to extend the command-line options set to be NUMA aware:

 http://marc.info/?l=linux-mm&m=139593335312191&w=2

During the discussion of that series it was agreed that having runtime
allocation support for gigantic pages was a better solution.

This patch (of 5):

This function is going to be used by non-init code in a future
commit.

Signed-off-by: Luiz Capitulino <lcapitulino@redhat.com>
Reviewed-by: Davidlohr Bueso <davidlohr@hp.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Davidlohr Bueso <davidlohr@hp.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:53:58 -07:00
Duan Jiong 14bd5b458b mm/mmap.c: replace IS_ERR and PTR_ERR with PTR_ERR_OR_ZERO
Fix a coccinelle error regarding usage of IS_ERR and PTR_ERR instead of
PTR_ERR_OR_ZERO.

Signed-off-by: Duan Jiong <duanj.fnst@cn.fujitsu.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:53:58 -07:00
Vladimir Davydov cea371f4f3 slab: document kmalloc_order
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:53:58 -07:00
Johannes Weiner 3dae7fec5e mm: memcontrol: remove hierarchy restrictions for swappiness and oom_control
Per-memcg swappiness and oom killing can currently not be tweaked on a
memcg that is part of a hierarchy, but not the root of that hierarchy.
Users have complained that they can't configure this when they turned on
hierarchy mode.  In fact, with hierarchy mode becoming the default, this
restriction disables the tunables entirely.

But there is no good reason for this restriction.  The settings for
swappiness and OOM killing are taken from whatever memcg whose limit
triggered reclaim and OOM invocation, regardless of its position in the
hierarchy tree.

Allow setting swappiness on any group.  The knob on the root memcg
already reads the global VM swappiness, make it writable as well.

Allow disabling the OOM killer on any non-root memcg.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:53:58 -07:00
Sebastian Ott 8bf8fcb076 mm/mempool: warn about __GFP_ZERO usage
Memory obtained via mempool_alloc is not always zeroed even when
called with __GFP_ZERO. Add a note and VM_BUG_ON statement to make
that clear.

[akpm@linux-foundation.org: use VM_WARN_ON_ONCE]
Signed-off-by: Sebastian Ott <sebott@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:53:58 -07:00
Andrew Morton ae3a8c1c23 mm/huge_memory.c: complete conversion to pr_foo()
It was using a mix of pr_foo() and printk(KERN_ERR ...).

Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:53:58 -07:00
Kirill A. Shutemov ff9e43eb4f thp: consolidate assert checks in __split_huge_page()
It doesn't make sense to have two assert checks for each invariant: one
for printing and one for BUG().

Let's trigger BUG() if we print error message.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:53:57 -07:00
Akinobu Mita 2bfc2862c4 memblock: introduce memblock_alloc_range()
This introduces memblock_alloc_range() which allocates memblock from the
specified range of physical address.  I would like to use this function
to specify the location of CMA.

Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Don Dutile <ddutile@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:53:57 -07:00
Davidlohr Bueso 6b4ebc3a90 mm,vmacache: optimize overflow system-wide flushing
For single threaded workloads, we can avoid flushing and iterating through
the entire list of tasks, making the whole function a lot faster,
requiring only a single atomic read for the mm_users.

Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Suggested-by: Oleg Nesterov <oleg@redhat.com>
Cc: Aswin Chandramouleeswaran <aswin@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:53:57 -07:00
Davidlohr Bueso 4f115147ff mm,vmacache: add debug data
Introduce a CONFIG_DEBUG_VM_VMACACHE option to enable counting the cache
hit rate -- exported in /proc/vmstat.

Any updates to the caching scheme needs this kind of data, thus it can
save some work re-implementing the counting all the time.

Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Cc: Aswin Chandramouleeswaran <aswin@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:53:57 -07:00
Suleiman Souhlal 6f04f48dc9 mm: only force scan in reclaim when none of the LRUs are big enough.
Prior to this change, we would decide whether to force scan a LRU during
reclaim if that LRU itself was too small for the current priority.
However, this can lead to the file LRU getting force scanned even if
there are a lot of anonymous pages we can reclaim, leading to hot file
pages getting needlessly reclaimed.

To address this, we instead only force scan when none of the reclaimable
LRUs are big enough.

Gives huge improvements with zswap.  For example, when doing -j20 kernel
build in a 500MB container with zswap enabled, runtime (in seconds) is
greatly reduced:

x without this change
+ with this change
    N           Min           Max        Median           Avg        Stddev
x   5       700.997       790.076       763.928        754.05      39.59493
+   5       141.634       197.899       155.706         161.9     21.270224
Difference at 95.0% confidence
        -592.15 +/- 46.3521
        -78.5293% +/- 6.14709%
        (Student's t, pooled s = 31.7819)

Should also give some improvements in regular (non-zswap) swap cases.

Yes, hughd found significant speedup using regular swap, with several
memcgs under pressure; and it should also be effective in the non-memcg
case, whenever one or another zone LRU is forced too small.

Signed-off-by: Suleiman Souhlal <suleiman@google.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Rafael Aquini <aquini@redhat.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Yuanhan Liu <yuanhan.liu@linux.intel.com>
Cc: Seth Jennings <sjennings@variantweb.net>
Cc: Bob Liu <bob.liu@oracle.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Luigi Semenzato <semenzato@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:53:56 -07:00
Cyrill Gorcunov b43790eedd mm: softdirty: don't forget to save file map softdiry bit on unmap
pte_file_mksoft_dirty operates with argument passed by a value and
returns modified result thus we need to assign @ptfile here, otherwise
itis a no-op which may lead to loss of the softdirty bit.

Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:53:56 -07:00
Cyrill Gorcunov 0bf073315c mm: softdirty: make freshly remapped file pages being softdirty unconditionally
Hugh reported:

 | I noticed your soft_dirty work in install_file_pte(): which looked
 | good at first, until I realized that it's propagating the soft_dirty
 | of a pte it's about to zap completely, to the unrelated entry it's
 | about to insert in its place.  Which seems very odd to me.

Indeed this code ends up being nop in result -- pte_file_mksoft_dirty()
operates with pte_t argument and returns new pte_t which were never used
after.  After looking more I think what we need is to soft-dirtify all
newely remapped file pages because it should look like a new mapping for
memory tracker.

Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Reported-by: Hugh Dickins <hughd@google.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:53:56 -07:00
Vladimir Davydov 52383431b3 mm: get rid of __GFP_KMEMCG
Currently to allocate a page that should be charged to kmemcg (e.g.
threadinfo), we pass __GFP_KMEMCG flag to the page allocator.  The page
allocated is then to be freed by free_memcg_kmem_pages.  Apart from
looking asymmetrical, this also requires intrusion to the general
allocation path.  So let's introduce separate functions that will
alloc/free pages charged to kmemcg.

The new functions are called alloc_kmem_pages and free_kmem_pages.  They
should be used when the caller actually would like to use kmalloc, but
has to fall back to the page allocator for the allocation is large.
They only differ from alloc_pages and free_pages in that besides
allocating or freeing pages they also charge them to the kmem resource
counter of the current memory cgroup.

[sfr@canb.auug.org.au: export kmalloc_order() to modules]
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:53:56 -07:00
Vladimir Davydov 5dfb417509 sl[au]b: charge slabs to kmemcg explicitly
We have only a few places where we actually want to charge kmem so
instead of intruding into the general page allocation path with
__GFP_KMEMCG it's better to explictly charge kmem there.  All kmem
charges will be easier to follow that way.

This is a step towards removing __GFP_KMEMCG.  It removes __GFP_KMEMCG
from memcg caches' allocflags.  Instead it makes slab allocation path
call memcg_charge_kmem directly getting memcg to charge from the cache's
memcg params.

This also eliminates any possibility of misaccounting an allocation
going from one memcg's cache to another memcg, because now we always
charge slabs against the memcg the cache belongs to.  That's why this
patch removes the big comment to memcg_kmem_get_cache.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:53:56 -07:00
Dave Hansen 8eae149267 mm: slub: fix ALLOC_SLOWPATH stat
There used to be only one path out of __slab_alloc(), and ALLOC_SLOWPATH
got bumped in that exit path.  Now there are two, and a bunch of gotos.
ALLOC_SLOWPATH can now get set more than once during a single call to
__slab_alloc() which is pretty bogus.  Here's the sequence:

1. Enter __slab_alloc(), fall through all the way to the
   stat(s, ALLOC_SLOWPATH);
2. hit 'if (!freelist)', and bump DEACTIVATE_BYPASS, jump to
   new_slab (goto #1)
3. Hit 'if (c->partial)', bump CPU_PARTIAL_ALLOC, goto redo
   (goto #2)
4. Fall through in the same path we did before all the way to
   stat(s, ALLOC_SLOWPATH)
5. bump ALLOC_REFILL stat, then return

Doing this is obviously bogus.  It keeps us from being able to
accurately compare ALLOC_SLOWPATH vs.  ALLOC_FASTPATH.  It also means
that the total number of allocs always exceeds the total number of
frees.

This patch moves stat(s, ALLOC_SLOWPATH) to be called from the same
place that __slab_alloc() is.  This makes it much less likely that
ALLOC_SLOWPATH will get botched again in the spaghetti-code inside
__slab_alloc().

Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:53:56 -07:00
David Rientjes 9a02d69993 mm, slab: suppress out of memory warning unless debug is enabled
When the slab or slub allocators cannot allocate additional slab pages,
they emit diagnostic information to the kernel log such as current
number of slabs, number of objects, active objects, etc.  This is always
coupled with a page allocation failure warning since it is controlled by
!__GFP_NOWARN.

Suppress this out of memory warning if the allocator is configured
without debug supported.  The page allocation failure warning will
indicate it is a failed slab allocation, the order, and the gfp mask, so
this is only useful to diagnose allocator issues.

Since CONFIG_SLUB_DEBUG is already enabled by default for the slub
allocator, there is no functional change with this patch.  If debug is
disabled, however, the warnings are now suppressed.

Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:53:56 -07:00
Fabian Frederick ecc42fbe95 mm/slub.c: convert vnsprintf-static to va_format
Inspired by Joe Perches suggestion in ntfs logging clean-up.

Signed-off-by: Fabian Frederick <fabf@skynet.be>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Joe Perches <joe@perches.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:53:55 -07:00
Fabian Frederick f9f5828594 mm/slub.c: convert printk to pr_foo()
All printk(KERN_foo converted to pr_foo()

Default printk converted to pr_warn()

Coalesce format fragments

Signed-off-by: Fabian Frederick <fabf@skynet.be>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Joe Perches <joe@perches.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:53:55 -07:00
Mel Gorman c46a7c817e x86: define _PAGE_NUMA by reusing software bits on the PMD and PTE levels
_PAGE_NUMA is currently an alias of _PROT_PROTNONE to trap NUMA hinting
faults on x86.  Care is taken such that _PAGE_NUMA is used only in
situations where the VMA flags distinguish between NUMA hinting faults
and prot_none faults.  This decision was x86-specific and conceptually
it is difficult requiring special casing to distinguish between PROTNONE
and NUMA ptes based on context.

Fundamentally, we only need the _PAGE_NUMA bit to tell the difference
between an entry that is really unmapped and a page that is protected
for NUMA hinting faults as if the PTE is not present then a fault will
be trapped.

Swap PTEs on x86-64 use the bits after _PAGE_GLOBAL for the offset.
This patch shrinks the maximum possible swap size and uses the bit to
uniquely distinguish between NUMA hinting ptes and swap ptes.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Anvin <hpa@zytor.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Steven Noonan <steven@uplinklabs.net>
Cc: Rik van Riel <riel@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:53:55 -07:00
Naoya Horiguchi c177c81e09 hugetlb: restrict hugepage_migration_support() to x86_64
Currently hugepage migration is available for all archs which support
pmd-level hugepage, but testing is done only for x86_64 and there're
bugs for other archs.  So to avoid breaking such archs, this patch
limits the availability strictly to x86_64 until developers of other
archs get interested in enabling this feature.

Simply disabling hugepage migration on non-x86_64 archs is not enough to
fix the reported problem where sys_move_pages() hits the BUG_ON() in
follow_page(FOLL_GET), so let's fix this by checking if hugepage
migration is supported in vma_migratable().

Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reported-by: Michael Ellerman <mpe@ellerman.id.au>
Tested-by: Michael Ellerman <mpe@ellerman.id.au>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: David Miller <davem@davemloft.net>
Cc: <stable@vger.kernel.org>	[3.12+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:53:51 -07:00
Hugh Dickins 7f39dda9d8 mm: fix sleeping function warning from __put_anon_vma
Trinity reports BUG:

  sleeping function called from invalid context at kernel/locking/rwsem.c:47
  in_atomic(): 0, irqs_disabled(): 0, pid: 5787, name: trinity-c27

__might_sleep < down_write < __put_anon_vma < page_get_anon_vma <
migrate_pages < compact_zone < compact_zone_order < try_to_compact_pages ..

Right, since conversion to mutex then rwsem, we should not put_anon_vma()
from inside an rcu_read_lock()ed section: fix the two places that did so.
And add might_sleep() to anon_vma_free(), as suggested by Peter Zijlstra.

Fixes: 88c22088bf ("mm: optimize page_lock_anon_vma() fast-path")
Reported-by: Dave Jones <davej@redhat.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:53:51 -07:00
Linus Torvalds 1aacb90eaa Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial into next
Pull trivial tree changes from Jiri Kosina:
 "Usual pile of patches from trivial tree that make the world go round"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (23 commits)
  staging: go7007: remove reference to CONFIG_KMOD
  aic7xxx: Remove obsolete preprocessor define
  of: dma: doc fixes
  doc: fix incorrect formula to calculate CommitLimit value
  doc: Note need of bc in the kernel build from 3.10 onwards
  mm: Fix printk typo in dmapool.c
  modpost: Fix comment typo "Modules.symvers"
  Kconfig.debug: Grammar s/addition/additional/
  wimax: Spelling s/than/that/, wording s/destinatary/recipient/
  aic7xxx: Spelling s/termnation/termination/
  arm64: mm: Remove superfluous "the" in comment
  of: Spelling s/anonymouns/anonymous/
  dma: imx-sdma: Spelling s/determnine/determine/
  ath10k: Improve grammar in comments
  ath6kl: Spelling s/determnine/determine/
  of: Improve grammar for of_alias_get_id() documentation
  drm/exynos: Spelling s/contro/control/
  radio-bcm2048.c: fix wrong overflow check
  doc: printk-formats: do not mention casts for u64/s64
  doc: spelling error changes
  ...
2014-06-04 08:50:34 -07:00
Linus Torvalds c84a1e32ee Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip into next
Pull scheduler updates from Ingo Molnar:
 "The main scheduling related changes in this cycle were:

   - various sched/numa updates, for better performance

   - tree wide cleanup of open coded nice levels

   - nohz fix related to rq->nr_running use

   - cpuidle changes and continued consolidation to improve the
     kernel/sched/idle.c high level idle scheduling logic.  As part of
     this effort I pulled cpuidle driver changes from Rafael as well.

   - standardized idle polling amongst architectures

   - continued work on preparing better power/energy aware scheduling

   - sched/rt updates

   - misc fixlets and cleanups"

* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (49 commits)
  sched/numa: Decay ->wakee_flips instead of zeroing
  sched/numa: Update migrate_improves/degrades_locality()
  sched/numa: Allow task switch if load imbalance improves
  sched/rt: Fix 'struct sched_dl_entity' and dl_task_time() comments, to match the current upstream code
  sched: Consolidate open coded implementations of nice level frobbing into nice_to_rlimit() and rlimit_to_nice()
  sched: Initialize rq->age_stamp on processor start
  sched, nohz: Change rq->nr_running to always use wrappers
  sched: Fix the rq->next_balance logic in rebalance_domains() and idle_balance()
  sched: Use clamp() and clamp_val() to make sys_nice() more readable
  sched: Do not zero sg->cpumask and sg->sgp->power in build_sched_groups()
  sched/numa: Fix initialization of sched_domain_topology for NUMA
  sched: Call select_idle_sibling() when not affine_sd
  sched: Simplify return logic in sched_read_attr()
  sched: Simplify return logic in sched_copy_attr()
  sched: Fix exec_start/task_hot on migrated tasks
  arm64: Remove TIF_POLLING_NRFLAG
  metag: Remove TIF_POLLING_NRFLAG
  sched/idle: Make cpuidle_idle_call() void
  sched/idle: Reflow cpuidle_idle_call()
  sched/idle: Delay clearing the polling bit
  ...
2014-06-03 14:00:15 -07:00
Linus Torvalds 776edb5931 Merge branch 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip into next
Pull core locking updates from Ingo Molnar:
 "The main changes in this cycle were:

   - reduced/streamlined smp_mb__*() interface that allows more usecases
     and makes the existing ones less buggy, especially in rarer
     architectures

   - add rwsem implementation comments

   - bump up lockdep limits"

* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (33 commits)
  rwsem: Add comments to explain the meaning of the rwsem's count field
  lockdep: Increase static allocations
  arch: Mass conversion of smp_mb__*()
  arch,doc: Convert smp_mb__*()
  arch,xtensa: Convert smp_mb__*()
  arch,x86: Convert smp_mb__*()
  arch,tile: Convert smp_mb__*()
  arch,sparc: Convert smp_mb__*()
  arch,sh: Convert smp_mb__*()
  arch,score: Convert smp_mb__*()
  arch,s390: Convert smp_mb__*()
  arch,powerpc: Convert smp_mb__*()
  arch,parisc: Convert smp_mb__*()
  arch,openrisc: Convert smp_mb__*()
  arch,mn10300: Convert smp_mb__*()
  arch,mips: Convert smp_mb__*()
  arch,metag: Convert smp_mb__*()
  arch,m68k: Convert smp_mb__*()
  arch,m32r: Convert smp_mb__*()
  arch,ia64: Convert smp_mb__*()
  ...
2014-06-03 12:57:53 -07:00
Linus Torvalds 8f5759aeb8 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux into next
Pull first set of s390 updates from Martin Schwidefsky:
 "The biggest change in this patchset is conversion from the bootmem
  bitmaps to the memblock code.  This conversion requires two common
  code patches to introduce the 'physmem' memblock list.

  We experimented with ticket spinlocks but in the end decided against
  them as they perform poorly on virtualized systems.  But the spinlock
  cleanup and some small improvements are included.

  The uaccess code got another optimization, the get_user/put_user calls
  are now inline again for kernel compiles targeted at z10 or newer
  machines.  This makes the text segment shorter and the code gets a
  little bit faster.

  And as always some bug fixes"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux: (31 commits)
  s390/lowcore: replace lowcore irb array with a per-cpu variable
  s390/lowcore: reserve 96 bytes for IRB in lowcore
  s390/facilities: remove extract-cpu-time facility check
  s390: require mvcos facility for z10 and newer machines
  s390/boot: fix boot of compressed kernel built with gcc 4.9
  s390/cio: remove weird assignment during argument evaluation
  s390/time: cast tv_nsec to u64 prior to shift in update_vsyscall
  s390/oprofile: make return of 0 explicit
  s390/spinlock: refactor arch_spin_lock_wait[_flags]
  s390/rwlock: add missing local_irq_restore calls
  s390/spinlock,rwlock: always to a load-and-test first
  s390/cio: fix multiple structure definitions
  s390/spinlock: fix system hang with spin_retry <= 0
  s390/appldata: add slab.h for kzalloc/kfree
  s390/uaccess: provide inline variants of get_user/put_user
  s390/pci: add some new arch specific pci attributes
  s390/pci: use pdev->dev.groups for attribute creation
  s390/pci: use macro for attribute creation
  s390/pci: improve state check when processing hotplug events
  s390: split TIF bits into CIF, PIF and TIF bits
  ...
2014-06-03 10:26:41 -07:00
Linus Torvalds 681a289548 Merge branch 'for-3.16/core' of git://git.kernel.dk/linux-block into next
Pull block core updates from Jens Axboe:
 "It's a big(ish) round this time, lots of development effort has gone
  into blk-mq in the last 3 months.  Generally we're heading to where
  3.16 will be a feature complete and performant blk-mq.  scsi-mq is
  progressing nicely and will hopefully be in 3.17.  A nvme port is in
  progress, and the Micron pci-e flash driver, mtip32xx, is converted
  and will be sent in with the driver pull request for 3.16.

  This pull request contains:

   - Lots of prep and support patches for scsi-mq have been integrated.
     All from Christoph.

   - API and code cleanups for blk-mq from Christoph.

   - Lots of good corner case and error handling cleanup fixes for
     blk-mq from Ming Lei.

   - A flew of blk-mq updates from me:

     * Provide strict mappings so that the driver can rely on the CPU
       to queue mapping.  This enables optimizations in the driver.

     * Provided a bitmap tagging instead of percpu_ida, which never
       really worked well for blk-mq.  percpu_ida relies on the fact
       that we have a lot more tags available than we really need, it
       fails miserably for cases where we exhaust (or are close to
       exhausting) the tag space.

     * Provide sane support for shared tag maps, as utilized by scsi-mq

     * Various fixes for IO timeouts.

     * API cleanups, and lots of perf tweaks and optimizations.

   - Remove 'buffer' from struct request.  This is ancient code, from
     when requests were always virtually mapped.  Kill it, to reclaim
     some space in struct request.  From me.

   - Remove 'magic' from blk_plug.  Since we store these on the stack
     and since we've never caught any actual bugs with this, lets just
     get rid of it.  From me.

   - Only call part_in_flight() once for IO completion, as includes two
     atomic reads.  Hopefully we'll get a better implementation soon, as
     the part IO stats are now one of the more expensive parts of doing
     IO on blk-mq.  From me.

   - File migration of block code from {mm,fs}/ to block/.  This
     includes bio.c, bio-integrity.c, bounce.c, and ioprio.c.  From me,
     from a discussion on lkml.

  That should describe the meat of the pull request.  Also has various
  little fixes and cleanups from Dave Jones, Shaohua Li, Duan Jiong,
  Fengguang Wu, Fabian Frederick, Randy Dunlap, Robert Elliott, and Sam
  Bradshaw"

* 'for-3.16/core' of git://git.kernel.dk/linux-block: (100 commits)
  blk-mq: push IPI or local end_io decision to __blk_mq_complete_request()
  blk-mq: remember to start timeout handler for direct queue
  block: ensure that the timer is always added
  blk-mq: blk_mq_unregister_hctx() can be static
  blk-mq: make the sysfs mq/ layout reflect current mappings
  blk-mq: blk_mq_tag_to_rq should handle flush request
  block: remove dead code in scsi_ioctl:blk_verify_command
  blk-mq: request initialization optimizations
  block: add queue flag for disabling SG merging
  block: remove 'magic' from struct blk_plug
  blk-mq: remove alloc_hctx and free_hctx methods
  blk-mq: add file comments and update copyright notices
  blk-mq: remove blk_mq_alloc_request_pinned
  blk-mq: do not use blk_mq_alloc_request_pinned in blk_mq_map_request
  blk-mq: remove blk_mq_wait_for_tags
  blk-mq: initialize request in __blk_mq_alloc_request
  blk-mq: merge blk_mq_alloc_reserved_request into blk_mq_alloc_request
  blk-mq: add helper to insert requests from irq context
  blk-mq: remove stale comment for blk_mq_complete_request()
  blk-mq: allow non-softirq completions
  ...
2014-06-02 09:29:34 -07:00
Naoya Horiguchi 3e030ecc0f mm/memory-failure.c: fix memory leak by race between poison and unpoison
When a memory error happens on an in-use page or (free and in-use)
hugepage, the victim page is isolated with its refcount set to one.

When you try to unpoison it later, unpoison_memory() calls put_page()
for it twice in order to bring the page back to free page pool (buddy or
free hugepage list).  However, if another memory error occurs on the
page which we are unpoisoning, memory_failure() returns without
releasing the refcount which was incremented in the same call at first,
which results in memory leak and unconsistent num_poisoned_pages
statistics.  This patch fixes it.

Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: <stable@vger.kernel.org>    [2.6.32+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-05-23 09:37:30 -07:00
Michal Hocko 6f6acb0051 memcg: fix swapcache charge from kernel thread context
Commit 284f39afea ("mm: memcg: push !mm handling out to page cache
charge function") explicitly checks for page cache charges without any
mm context (from kernel thread context[1]).

This seemed to be the only possible case where memory could be charged
without mm context so commit 03583f1a63 ("memcg: remove unnecessary
!mm check from try_get_mem_cgroup_from_mm()") removed the mm check from
get_mem_cgroup_from_mm().  This however caused another NULL ptr
dereference during early boot when loopback kernel thread splices to
tmpfs as reported by Stephan Kulow:

  BUG: unable to handle kernel NULL pointer dereference at 0000000000000360
  IP: get_mem_cgroup_from_mm.isra.42+0x2b/0x60
  Oops: 0000 [#1] SMP
  Modules linked in: btrfs dm_multipath dm_mod scsi_dh multipath raid10 raid456 async_raid6_recov async_memcpy async_pq raid6_pq async_xor xor async_tx raid1 raid0 md_mod parport_pc parport nls_utf8 isofs usb_storage iscsi_ibft iscsi_boot_sysfs arc4 ecb fan thermal nfs lockd fscache nls_iso8859_1 nls_cp437 sg st hid_generic usbhid af_packet sunrpc sr_mod cdrom ata_generic uhci_hcd virtio_net virtio_blk ehci_hcd usbcore ata_piix floppy processor button usb_common virtio_pci virtio_ring virtio edd squashfs loop ppa]
  CPU: 0 PID: 97 Comm: loop1 Not tainted 3.15.0-rc5-5-default #1
  Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011
  Call Trace:
    __mem_cgroup_try_charge_swapin+0x40/0xe0
    mem_cgroup_charge_file+0x8b/0xd0
    shmem_getpage_gfp+0x66b/0x7b0
    shmem_file_splice_read+0x18f/0x430
    splice_direct_to_actor+0xa2/0x1c0
    do_lo_receive+0x5a/0x60 [loop]
    loop_thread+0x298/0x720 [loop]
    kthread+0xc6/0xe0
    ret_from_fork+0x7c/0xb0

Also Branimir Maksimovic reported the following oops which is tiggered
for the swapcache charge path from the accounting code for kernel threads:

  CPU: 1 PID: 160 Comm: kworker/u8:5 Tainted: P           OE 3.15.0-rc5-core2-custom #159
  Hardware name: System manufacturer System Product Name/MAXIMUSV GENE, BIOS 1903 08/19/2013
  task: ffff880404e349b0 ti: ffff88040486a000 task.ti: ffff88040486a000
  RIP: get_mem_cgroup_from_mm.isra.42+0x2b/0x60
  Call Trace:
    __mem_cgroup_try_charge_swapin+0x45/0xf0
    mem_cgroup_charge_file+0x9c/0xe0
    shmem_getpage_gfp+0x62c/0x770
    shmem_write_begin+0x38/0x40
    generic_perform_write+0xc5/0x1c0
    __generic_file_aio_write+0x1d1/0x3f0
    generic_file_aio_write+0x4f/0xc0
    do_sync_write+0x5a/0x90
    do_acct_process+0x4b1/0x550
    acct_process+0x6d/0xa0
    do_exit+0x827/0xa70
    kthread+0xc3/0xf0

This patch fixes the issue by reintroducing mm check into
get_mem_cgroup_from_mm.  We could do the same trick in
__mem_cgroup_try_charge_swapin as we do for the regular page cache path
but it is not worth troubles.  The check is not that expensive and it is
better to have get_mem_cgroup_from_mm more robust.

[1] - http://marc.info/?l=linux-mm&m=139463617808941&w=2

Fixes: 03583f1a63 ("memcg: remove unnecessary !mm check from try_get_mem_cgroup_from_mm()")
Reported-and-tested-by: Stephan Kulow <coolo@suse.com>
Reported-by: Branimir Maksimovic <branimir.maksimovic@gmail.com>
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-05-23 09:37:29 -07:00
Johannes Weiner 55231e5c89 mm: madvise: fix MADV_WILLNEED on shmem swapouts
MADV_WILLNEED currently does not read swapped out shmem pages back in.

Commit 0cd6144aad ("mm + fs: prepare for non-page entries in page
cache radix trees") made find_get_page() filter exceptional radix tree
entries but failed to convert all find_get_page() callers that WANT
exceptional entries over to find_get_entry().  One of them is shmem swap
readahead in madvise, which now skips over any swap-out records.

Convert it to find_get_entry().

Fixes: 0cd6144aad ("mm + fs: prepare for non-page entries in page cache radix trees")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-05-23 09:37:29 -07:00
Jens Axboe 7fcbbaf183 mm/filemap.c: avoid always dirtying mapping->flags on O_DIRECT
In some testing I ran today (some fio jobs that spread over two nodes),
we end up spending 40% of the time in filemap_check_errors().  That
smells fishy.  Looking further, this is basically what happens:

blkdev_aio_read()
    generic_file_aio_read()
        filemap_write_and_wait_range()
            if (!mapping->nr_pages)
                filemap_check_errors()

and filemap_check_errors() always attempts two test_and_clear_bit() on
the mapping flags, thus dirtying it for every single invocation.  The
patch below tests each of these bits before clearing them, avoiding this
issue.  In my test case (4-socket box), performance went from 1.7M IOPS
to 4.0M IOPS.

Signed-off-by: Jens Axboe <axboe@fb.com>
Acked-by: Jeff Moyer <jmoyer@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-05-23 09:37:29 -07:00
Chen Yucong b985194c8c hwpoison, hugetlb: lock_page/unlock_page does not match for handling a free hugepage
For handling a free hugepage in memory failure, the race will happen if
another thread hwpoisoned this hugepage concurrently.  So we need to
check PageHWPoison instead of !PageHWPoison.

If hwpoison_filter(p) returns true or a race happens, then we need to
unlock_page(hpage).

Signed-off-by: Chen Yucong <slaoub@gmail.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Tested-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Cc: <stable@vger.kernel.org>	[2.6.36+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-05-23 09:37:29 -07:00
Ingo Molnar 65c2ce7004 Linux 3.15-rc6
-----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQEcBAABAgAGBQJTfR2zAAoJEHm+PkMAQRiG3noH/2s+KUge3qO2M+AmxttUo74B
 +npAMdbqYR3MdEiwxYZfsHcMu4Ye/IKLcrh4pydB5hI2mdjtGkH1bnmia0f1ve/c
 Z/a0256+W8gWp7mcUBqSNztqLPAWa7wKOqNdLjj5idr1BSj6u8im+fQ9FBh2woki
 1fyYAuq/60lq4CMOKJvkA95V1Ome/jO+8tS4PguOgsCETQxCVFGurZcBbG3Mx5Y3
 v+ioCqeRc6GvxPFR6YngnTZCrsLxSRT3tnO2Qy5zX7dxjIQkCEbvIckpBQv01Y3R
 wNUaX+2Jae207igxrEv8CjmCFnmZFuUI15aWWCy6fOS/j8bjuk6ThYJO8N4ZBM0=
 =2ShG
 -----END PGP SIGNATURE-----

Merge tag 'v3.15-rc6' into sched/core, to pick up the latest fixes

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-05-22 10:28:56 +02:00
Philipp Hachtmann 70210ed950 mm/memblock: add physical memory list
Add the physmem list to the memblock structure. This list only exists
if HAVE_MEMBLOCK_PHYS_MAP is selected and contains the unmodified
list of physically available memory. It differs from the memblock
memory list as it always contains all memory ranges even if the
memory has been restricted, e.g. by use of the mem= kernel parameter.

Signed-off-by: Philipp Hachtmann <phacht@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2014-05-20 08:58:39 +02:00
Philipp Hachtmann f1af9d3af3 mm/memblock: Do some refactoring, enhance API
Refactor the memblock code and extend the memblock API to make it
more flexible. With the extended API it is simple to define and
work with additional memory lists.

The static functions memblock_add_region and __memblock_remove are
renamed to memblock_add_range and meblock_remove_range and added to
the memblock API.

The __next_free_mem_range and __next_free_mem_range_rev functions
are replaced with calls to the more generic list walkers
__next_mem_range and __next_mem_range_rev.

To walk an arbitrary memory list two new macros for_each_mem_range
and for_each_mem_range_rev are added. These new macros are used
to define for_each_free_mem_range and for_each_free_mem_range_reverse.

Signed-off-by: Philipp Hachtmann <phacht@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2014-05-20 08:58:39 +02:00
Linus Torvalds 41abc90228 Metag architecture and related fixes for v3.15
Mostly fixes for metag and parisc relating to upgrowing stacks.
 
 * Fix missing compiler barriers in metag memory barriers.
 * Fix BUG_ON on metag when RLIMIT_STACK hard limit is increased beyond
   safe value.
 * Make maximum stack size configurable. This reduces the default user
   stack size back to 80MB (especially on parisc after their removal of
   _STK_LIM_MAX override). This only affects metag and parisc.
 * Remove metag _STK_LIM_MAX override to match other arches and follow
   parisc, now that it is safe to do so (due to the BUG_ON fix mentioned
   above).
 * Finally now that both metag and parisc _STK_LIM_MAX overrides have
   been removed, it makes sense to remove _STK_LIM_MAX altogether.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQIcBAABAgAGBQJTdAc3AAoJEGwLaZPeOHZ6L2QP/ihJag44CyWKKpeu/5FUkjP6
 62wX4cYKCFR9pTkOZDViWs7c+xrmW6OtORfQKuXu1g68L3v2cwb0HmcvybQ75pIQ
 CbaN+d5OnGPjHGYCSVqQBKlJ0qbcgQfoNUuCVOZx9kZgnCYQhJlh4HYRwHdUv9WY
 1FA3wor/JTTAiKvPBv+/t4NzTpTafpSIhYLahjxZbtuU1WjEfmj8QgWQpzTEJSeZ
 AyNE/nDlcYcdq4lDxMz2pcQfmJ2MpE56wvXJ7IdXadLaLp4yzc+WTAvFzNJ1XnAN
 2IcyNBpgF/vMXCbErA9QQegYwKd9jpF0w3oQmNLkgr27Kv27iL2sLIEWVn3FAXCu
 p+I0ypMlkD/gSdofCUaWTiGGOQiKMqAWJMfjky8RjA7Qz5TdLCldpjjuZEMKl8hM
 SLjkmgZHMG2/rJ8MosOL+ARAXl88v25gfM6rNIPTtMzH72qevrHgjFPj6pWHejhE
 0E43yDS+zt215HrFCXYBhVbFY1NM7JeBS8NFd9Y/8LKTWc8QSi2h8Q1ZaobKJi4O
 0zlKxRRR4QmmtF7S5wL/qOQ0U95HBvYSx+Ssp3C0eh/PEkZYWm0jiXtaKBCYtnDx
 33wRutv+R9sSkKaiiURBh9/VPWFLQ1ak5z+ejqrv32+oBzt/zmxb7LgwsxdAbAms
 9r/8XaY3V+JBPw7UxfQN
 =aveq
 -----END PGP SIGNATURE-----

Merge tag 'metag-for-v3.15-2' of git://git.kernel.org/pub/scm/linux/kernel/git/jhogan/metag

Pull Metag architecture and related fixes from James Hogan:
 "Mostly fixes for metag and parisc relating to upgrowing stacks.

   - Fix missing compiler barriers in metag memory barriers.
   - Fix BUG_ON on metag when RLIMIT_STACK hard limit is increased
     beyond safe value.
   - Make maximum stack size configurable.  This reduces the default
     user stack size back to 80MB (especially on parisc after their
     removal of _STK_LIM_MAX override).  This only affects metag and
     parisc.
   - Remove metag _STK_LIM_MAX override to match other arches and follow
     parisc, now that it is safe to do so (due to the BUG_ON fix
     mentioned above).
   - Finally now that both metag and parisc _STK_LIM_MAX overrides have
     been removed, it makes sense to remove _STK_LIM_MAX altogether"

* tag 'metag-for-v3.15-2' of git://git.kernel.org/pub/scm/linux/kernel/git/jhogan/metag:
  asm-generic: remove _STK_LIM_MAX
  metag: Remove _STK_LIM_MAX override
  parisc,metag: Do not hardcode maximum userspace stack size
  metag: Reduce maximum stack size to 256MB
  metag: fix memory barriers
2014-05-20 14:30:34 +09:00