Commit Graph

350 Commits

Author SHA1 Message Date
Jason Gunthorpe
299ee123e1 sctp: Fixup v4mapped behaviour to comply with Sock API
The SCTP socket extensions API document describes the v4mapping option as
follows:

8.1.15.  Set/Clear IPv4 Mapped Addresses (SCTP_I_WANT_MAPPED_V4_ADDR)

   This socket option is a Boolean flag which turns on or off the
   mapping of IPv4 addresses.  If this option is turned on, then IPv4
   addresses will be mapped to V6 representation.  If this option is
   turned off, then no mapping will be done of V4 addresses and a user
   will receive both PF_INET6 and PF_INET type addresses on the socket.
   See [RFC3542] for more details on mapped V6 addresses.

This description isn't really in line with what the code does though.

Introduce addr_to_user (renamed addr_v4map), which should be called
before any sockaddr is passed back to user space. The new function
places the sockaddr into the correct format depending on the
SCTP_I_WANT_MAPPED_V4_ADDR option.

Audit all places that touched v4mapped and either sanely construct
a v4 or v6 address then call addr_to_user, or drop the
unnecessary v4mapped check entirely.

Audit all places that call addr_to_user and verify they are on a sycall
return path.

Add a custom getname that formats the address properly.

Several bugs are addressed:
 - SCTP_I_WANT_MAPPED_V4_ADDR=0 often returned garbage for
   addresses to user space
 - The addr_len returned from recvmsg was not correct when
   returning AF_INET on a v6 socket
 - flowlabel and scope_id were not zerod when promoting
   a v4 to v6
 - Some syscalls like bind and connect behaved differently
   depending on v4mapped

Tested bind, getpeername, getsockname, connect, and recvmsg for proper
behaviour in v4mapped = 1 and 0 cases.

Signed-off-by: Neil Horman <nhorman@tuxdriver.com>
Tested-by: Jason Gunthorpe <jgunthorpe@obsidianresearch.com>
Signed-off-by: Jason Gunthorpe <jgunthorpe@obsidianresearch.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-31 21:49:06 -07:00
David Laight
526cbef778 net: sctp: Rename SCTP_XMIT_NAGLE_DELAY to SCTP_XMIT_DELAY
MSG_MORE and 'corking' a socket would require that the transmit of
a data chunk be delayed.
Rename the return value to be less specific.

Signed-off-by: David Laight <david.laight@aculab.com>
Acked-by: Vlad Yasevich <vyasevich@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-22 13:32:11 -07:00
Geir Ola Vaagland
2347c80ff1 net: sctp: implement rfc6458, 5.3.6. SCTP_NXTINFO cmsg support
This patch implements section 5.3.6. of RFC6458, that is, support
for 'SCTP Next Receive Information Structure' (SCTP_NXTINFO) which
is placed into ancillary data cmsghdr structure for each recvmsg()
call, if this information is already available when delivering the
current message.

This option can be enabled/disabled via setsockopt(2) on SOL_SCTP
level by setting an int value with 1/0 for SCTP_RECVNXTINFO in
user space applications as per RFC6458, section 8.1.30.

The sctp_nxtinfo structure is defined as per RFC as below ...

  struct sctp_nxtinfo {
    uint16_t nxt_sid;
    uint16_t nxt_flags;
    uint32_t nxt_ppid;
    uint32_t nxt_length;
    sctp_assoc_t nxt_assoc_id;
  };

... and provided under cmsg_level IPPROTO_SCTP, cmsg_type
SCTP_NXTINFO, while cmsg_data[] contains struct sctp_nxtinfo.

Joint work with Daniel Borkmann.

Signed-off-by: Geir Ola Vaagland <geirola@gmail.com>
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-16 14:40:03 -07:00
Geir Ola Vaagland
0d3a421d28 net: sctp: implement rfc6458, 5.3.5. SCTP_RCVINFO cmsg support
This patch implements section 5.3.5. of RFC6458, that is, support
for 'SCTP Receive Information Structure' (SCTP_RCVINFO) which is
placed into ancillary data cmsghdr structure for each recvmsg()
call.

This option can be enabled/disabled via setsockopt(2) on SOL_SCTP
level by setting an int value with 1/0 for SCTP_RECVRCVINFO in user
space applications as per RFC6458, section 8.1.29.

The sctp_rcvinfo structure is defined as per RFC as below ...

  struct sctp_rcvinfo {
    uint16_t rcv_sid;
    uint16_t rcv_ssn;
    uint16_t rcv_flags;
    <-- 2 bytes hole  -->
    uint32_t rcv_ppid;
    uint32_t rcv_tsn;
    uint32_t rcv_cumtsn;
    uint32_t rcv_context;
    sctp_assoc_t rcv_assoc_id;
  };

... and provided under cmsg_level IPPROTO_SCTP, cmsg_type
SCTP_RCVINFO, while cmsg_data[] contains struct sctp_rcvinfo.
An sctp_rcvinfo item always corresponds to the data in msg_iov.

Joint work with Daniel Borkmann.

Signed-off-by: Geir Ola Vaagland <geirola@gmail.com>
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-16 14:40:03 -07:00
Geir Ola Vaagland
63b949382c net: sctp: implement rfc6458, 5.3.4. SCTP_SNDINFO cmsg support
This patch implements section 5.3.4. of RFC6458, that is, support
for 'SCTP Send Information Structure' (SCTP_SNDINFO) which can be
placed into ancillary data cmsghdr structure for sendmsg() calls.

The sctp_sndinfo structure is defined as per RFC as below ...

  struct sctp_sndinfo {
    uint16_t snd_sid;
    uint16_t snd_flags;
    uint32_t snd_ppid;
    uint32_t snd_context;
    sctp_assoc_t snd_assoc_id;
  };

... and supplied under cmsg_level IPPROTO_SCTP, cmsg_type
SCTP_SNDINFO, while cmsg_data[] contains struct sctp_sndinfo.
An sctp_sndinfo item always corresponds to the data in msg_iov.

Joint work with Daniel Borkmann.

Signed-off-by: Geir Ola Vaagland <geirola@gmail.com>
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-16 14:40:03 -07:00
David Laight
d1a3fe26e9 net: sctp: Use pointers (not array indexes) to access sctp_cmd_seq_t.cmds[].
Using pointers into sctp_cmd_seq_t.cmds[] lets the compiler generate much
better code.
Use the last entry first to optimise the overflow check.

Signed-off-by: David Laight <david.laight@aculab.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-08 14:39:00 -07:00
David Laight
b9420e1c87 net: sctp: Optimise the way 'sctp_arg_t' values are initialised.
Even if memset() is inlined (as on x86) using it to zero the union
generates a memory word write of zero, followed by a write of the
smaller field, and then a read of the word.
As well as being a lot of instructions the sequence is unlikely to
be optimised by the store-load forward hardware so will be slow.

Instead allocate a field of the union that is the same size as the
entire union and write a zero value to it. The compiler will then
generate the required value in a register.

Zeroing the union shouldn't be necessary, but this patch series isn't
intended to have a behavioural change.

Signed-off-by: David Laight <david.laight@aculab.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-08 14:39:00 -07:00
David Laight
be1f4f48ce net: sctp: Inline the functions from command.c
sctp_init_cmd_seq() and sctp_next_cmd() are only called from one place.
The call sequence for sctp_add_cmd_sf() is likely to be longer than
the inlined code.
With sctp_add_cmd_sf() inlined the compiler can optimise repeated calls.

Signed-off-by: David Laight <david.laight@aculab.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-08 14:38:48 -07:00
Daniel Borkmann
8f61059a96 net: sctp: improve timer slack calculation for transport HBs
RFC4960, section 8.3 says:

  On an idle destination address that is allowed to heartbeat,
  it is recommended that a HEARTBEAT chunk is sent once per RTO
  of that destination address plus the protocol parameter
  'HB.interval', with jittering of +/- 50% of the RTO value,
  and exponential backoff of the RTO if the previous HEARTBEAT
  is unanswered.

Currently, we calculate jitter via sctp_jitter() function first,
and then add its result to the current RTO for the new timeout:

  TMO = RTO + (RAND() % RTO) - (RTO / 2)
              `------------------------^-=> sctp_jitter()

Instead, we can just simplify all this by directly calculating:

  TMO = (RTO / 2) + (RAND() % RTO)

With the help of prandom_u32_max(), we don't need to open code
our own global PRNG, but can instead just make use of the per
CPU implementation of prandom with better quality numbers. Also,
we can now spare us the conditional for divide by zero check
since no div or mod operation needs to be used. Note that
prandom_u32_max() won't emit the same result as a mod operation,
but we really don't care here as we only want to have a random
number scaled into RTO interval.

Note, exponential RTO backoff is handeled elsewhere, namely in
sctp_do_8_2_transport_strike().

Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-02 18:44:07 -07:00
Daniel Borkmann
e575235fc6 net: sctp: migrate most recently used transport to ktime
Be more precise in transport path selection and use ktime
helpers instead of jiffies to compare and pick the better
primary and secondary recently used transports. This also
avoids any side-effects during a possible roll-over, and
could lead to better path decision-making.

Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-06-11 12:23:17 -07:00
Vlad Yasevich
b14878ccb7 net: sctp: cache auth_enable per endpoint
Currently, it is possible to create an SCTP socket, then switch
auth_enable via sysctl setting to 1 and crash the system on connect:

Oops[#1]:
CPU: 0 PID: 0 Comm: swapper Not tainted 3.14.1-mipsgit-20140415 #1
task: ffffffff8056ce80 ti: ffffffff8055c000 task.ti: ffffffff8055c000
[...]
Call Trace:
[<ffffffff8043c4e8>] sctp_auth_asoc_set_default_hmac+0x68/0x80
[<ffffffff8042b300>] sctp_process_init+0x5e0/0x8a4
[<ffffffff8042188c>] sctp_sf_do_5_1B_init+0x234/0x34c
[<ffffffff804228c8>] sctp_do_sm+0xb4/0x1e8
[<ffffffff80425a08>] sctp_endpoint_bh_rcv+0x1c4/0x214
[<ffffffff8043af68>] sctp_rcv+0x588/0x630
[<ffffffff8043e8e8>] sctp6_rcv+0x10/0x24
[<ffffffff803acb50>] ip6_input+0x2c0/0x440
[<ffffffff8030fc00>] __netif_receive_skb_core+0x4a8/0x564
[<ffffffff80310650>] process_backlog+0xb4/0x18c
[<ffffffff80313cbc>] net_rx_action+0x12c/0x210
[<ffffffff80034254>] __do_softirq+0x17c/0x2ac
[<ffffffff800345e0>] irq_exit+0x54/0xb0
[<ffffffff800075a4>] ret_from_irq+0x0/0x4
[<ffffffff800090ec>] rm7k_wait_irqoff+0x24/0x48
[<ffffffff8005e388>] cpu_startup_entry+0xc0/0x148
[<ffffffff805a88b0>] start_kernel+0x37c/0x398
Code: dd0900b8  000330f8  0126302d <dcc60000> 50c0fff1  0047182a  a48306a0
03e00008  00000000
---[ end trace b530b0551467f2fd ]---
Kernel panic - not syncing: Fatal exception in interrupt

What happens while auth_enable=0 in that case is, that
ep->auth_hmacs is initialized to NULL in sctp_auth_init_hmacs()
when endpoint is being created.

After that point, if an admin switches over to auth_enable=1,
the machine can crash due to NULL pointer dereference during
reception of an INIT chunk. When we enter sctp_process_init()
via sctp_sf_do_5_1B_init() in order to respond to an INIT chunk,
the INIT verification succeeds and while we walk and process
all INIT params via sctp_process_param() we find that
net->sctp.auth_enable is set, therefore do not fall through,
but invoke sctp_auth_asoc_set_default_hmac() instead, and thus,
dereference what we have set to NULL during endpoint
initialization phase.

The fix is to make auth_enable immutable by caching its value
during endpoint initialization, so that its original value is
being carried along until destruction. The bug seems to originate
from the very first days.

Fix in joint work with Daniel Borkmann.

Reported-by: Joshua Kinard <kumba@gentoo.org>
Signed-off-by: Vlad Yasevich <vyasevic@redhat.com>
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Tested-by: Joshua Kinard <kumba@gentoo.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-04-18 18:32:00 -04:00
Daniel Borkmann
362d52040c Revert "net: sctp: Fix a_rwnd/rwnd management to reflect real state of the receiver's buffer"
This reverts commit ef2820a735 ("net: sctp: Fix a_rwnd/rwnd management
to reflect real state of the receiver's buffer") as it introduced a
serious performance regression on SCTP over IPv4 and IPv6, though a not
as dramatic on the latter. Measurements are on 10Gbit/s with ixgbe NICs.

Current state:

[root@Lab200slot2 ~]# iperf3 --sctp -4 -c 192.168.241.3 -V -l 1452 -t 60
iperf version 3.0.1 (10 January 2014)
Linux Lab200slot2 3.14.0 #1 SMP Thu Apr 3 23:18:29 EDT 2014 x86_64
Time: Fri, 11 Apr 2014 17:56:21 GMT
Connecting to host 192.168.241.3, port 5201
      Cookie: Lab200slot2.1397238981.812898.548918
[  4] local 192.168.241.2 port 38616 connected to 192.168.241.3 port 5201
Starting Test: protocol: SCTP, 1 streams, 1452 byte blocks, omitting 0 seconds, 60 second test
[ ID] Interval           Transfer     Bandwidth
[  4]   0.00-1.09   sec  20.8 MBytes   161 Mbits/sec
[  4]   1.09-2.13   sec  10.8 MBytes  86.8 Mbits/sec
[  4]   2.13-3.15   sec  3.57 MBytes  29.5 Mbits/sec
[  4]   3.15-4.16   sec  4.33 MBytes  35.7 Mbits/sec
[  4]   4.16-6.21   sec  10.4 MBytes  42.7 Mbits/sec
[  4]   6.21-6.21   sec  0.00 Bytes    0.00 bits/sec
[  4]   6.21-7.35   sec  34.6 MBytes   253 Mbits/sec
[  4]   7.35-11.45  sec  22.0 MBytes  45.0 Mbits/sec
[  4]  11.45-11.45  sec  0.00 Bytes    0.00 bits/sec
[  4]  11.45-11.45  sec  0.00 Bytes    0.00 bits/sec
[  4]  11.45-11.45  sec  0.00 Bytes    0.00 bits/sec
[  4]  11.45-12.51  sec  16.0 MBytes   126 Mbits/sec
[  4]  12.51-13.59  sec  20.3 MBytes   158 Mbits/sec
[  4]  13.59-14.65  sec  13.4 MBytes   107 Mbits/sec
[  4]  14.65-16.79  sec  33.3 MBytes   130 Mbits/sec
[  4]  16.79-16.79  sec  0.00 Bytes    0.00 bits/sec
[  4]  16.79-17.82  sec  5.94 MBytes  48.7 Mbits/sec
(etc)

[root@Lab200slot2 ~]#  iperf3 --sctp -6 -c 2001:db8:0:f101::1 -V -l 1400 -t 60
iperf version 3.0.1 (10 January 2014)
Linux Lab200slot2 3.14.0 #1 SMP Thu Apr 3 23:18:29 EDT 2014 x86_64
Time: Fri, 11 Apr 2014 19:08:41 GMT
Connecting to host 2001:db8:0:f101::1, port 5201
      Cookie: Lab200slot2.1397243321.714295.2b3f7c
[  4] local 2001:db8:0:f101::2 port 55804 connected to 2001:db8:0:f101::1 port 5201
Starting Test: protocol: SCTP, 1 streams, 1400 byte blocks, omitting 0 seconds, 60 second test
[ ID] Interval           Transfer     Bandwidth
[  4]   0.00-1.00   sec   169 MBytes  1.42 Gbits/sec
[  4]   1.00-2.00   sec   201 MBytes  1.69 Gbits/sec
[  4]   2.00-3.00   sec   188 MBytes  1.58 Gbits/sec
[  4]   3.00-4.00   sec   174 MBytes  1.46 Gbits/sec
[  4]   4.00-5.00   sec   165 MBytes  1.39 Gbits/sec
[  4]   5.00-6.00   sec   199 MBytes  1.67 Gbits/sec
[  4]   6.00-7.00   sec   163 MBytes  1.36 Gbits/sec
[  4]   7.00-8.00   sec   174 MBytes  1.46 Gbits/sec
[  4]   8.00-9.00   sec   193 MBytes  1.62 Gbits/sec
[  4]   9.00-10.00  sec   196 MBytes  1.65 Gbits/sec
[  4]  10.00-11.00  sec   157 MBytes  1.31 Gbits/sec
[  4]  11.00-12.00  sec   175 MBytes  1.47 Gbits/sec
[  4]  12.00-13.00  sec   192 MBytes  1.61 Gbits/sec
[  4]  13.00-14.00  sec   199 MBytes  1.67 Gbits/sec
(etc)

After patch:

[root@Lab200slot2 ~]#  iperf3 --sctp -4 -c 192.168.240.3 -V -l 1452 -t 60
iperf version 3.0.1 (10 January 2014)
Linux Lab200slot2 3.14.0+ #1 SMP Mon Apr 14 12:06:40 EDT 2014 x86_64
Time: Mon, 14 Apr 2014 16:40:48 GMT
Connecting to host 192.168.240.3, port 5201
      Cookie: Lab200slot2.1397493648.413274.65e131
[  4] local 192.168.240.2 port 50548 connected to 192.168.240.3 port 5201
Starting Test: protocol: SCTP, 1 streams, 1452 byte blocks, omitting 0 seconds, 60 second test
[ ID] Interval           Transfer     Bandwidth
[  4]   0.00-1.00   sec   240 MBytes  2.02 Gbits/sec
[  4]   1.00-2.00   sec   239 MBytes  2.01 Gbits/sec
[  4]   2.00-3.00   sec   240 MBytes  2.01 Gbits/sec
[  4]   3.00-4.00   sec   239 MBytes  2.00 Gbits/sec
[  4]   4.00-5.00   sec   245 MBytes  2.05 Gbits/sec
[  4]   5.00-6.00   sec   240 MBytes  2.01 Gbits/sec
[  4]   6.00-7.00   sec   240 MBytes  2.02 Gbits/sec
[  4]   7.00-8.00   sec   239 MBytes  2.01 Gbits/sec

With the reverted patch applied, the SCTP/IPv4 performance is back
to normal on latest upstream for IPv4 and IPv6 and has same throughput
as 3.4.2 test kernel, steady and interval reports are smooth again.

Fixes: ef2820a735 ("net: sctp: Fix a_rwnd/rwnd management to reflect real state of the receiver's buffer")
Reported-by: Peter Butler <pbutler@sonusnet.com>
Reported-by: Dongsheng Song <dongsheng.song@gmail.com>
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Tested-by: Peter Butler <pbutler@sonusnet.com>
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Cc: Matija Glavinic Pecotic <matija.glavinic-pecotic.ext@nsn.com>
Cc: Alexander Sverdlin <alexander.sverdlin@nsn.com>
Cc: Vlad Yasevich <vyasevich@gmail.com>
Acked-by: Vlad Yasevich <vyasevich@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-04-14 16:26:48 -04:00
David S. Miller
676d23690f net: Fix use after free by removing length arg from sk_data_ready callbacks.
Several spots in the kernel perform a sequence like:

	skb_queue_tail(&sk->s_receive_queue, skb);
	sk->sk_data_ready(sk, skb->len);

But at the moment we place the SKB onto the socket receive queue it
can be consumed and freed up.  So this skb->len access is potentially
to freed up memory.

Furthermore, the skb->len can be modified by the consumer so it is
possible that the value isn't accurate.

And finally, no actual implementation of this callback actually uses
the length argument.  And since nobody actually cared about it's
value, lots of call sites pass arbitrary values in such as '0' and
even '1'.

So just remove the length argument from the callback, that way there
is no confusion whatsoever and all of these use-after-free cases get
fixed as a side effect.

Based upon a patch by Eric Dumazet and his suggestion to audit this
issue tree-wide.

Signed-off-by: David S. Miller <davem@davemloft.net>
2014-04-11 16:15:36 -04:00
Matija Glavinic Pecotic
ef2820a735 net: sctp: Fix a_rwnd/rwnd management to reflect real state of the receiver's buffer
Implementation of (a)rwnd calculation might lead to severe performance issues
and associations completely stalling. These problems are described and solution
is proposed which improves lksctp's robustness in congestion state.

1) Sudden drop of a_rwnd and incomplete window recovery afterwards

Data accounted in sctp_assoc_rwnd_decrease takes only payload size (sctp data),
but size of sk_buff, which is blamed against receiver buffer, is not accounted
in rwnd. Theoretically, this should not be the problem as actual size of buffer
is double the amount requested on the socket (SO_RECVBUF). Problem here is
that this will have bad scaling for data which is less then sizeof sk_buff.
E.g. in 4G (LTE) networks, link interfacing radio side will have a large portion
of traffic of this size (less then 100B).

An example of sudden drop and incomplete window recovery is given below. Node B
exhibits problematic behavior. Node A initiates association and B is configured
to advertise rwnd of 10000. A sends messages of size 43B (size of typical sctp
message in 4G (LTE) network). On B data is left in buffer by not reading socket
in userspace.

Lets examine when we will hit pressure state and declare rwnd to be 0 for
scenario with above stated parameters (rwnd == 10000, chunk size == 43, each
chunk is sent in separate sctp packet)

Logic is implemented in sctp_assoc_rwnd_decrease:

socket_buffer (see below) is maximum size which can be held in socket buffer
(sk_rcvbuf). current_alloced is amount of data currently allocated (rx_count)

A simple expression is given for which it will be examined after how many
packets for above stated parameters we enter pressure state:

We start by condition which has to be met in order to enter pressure state:

	socket_buffer < currently_alloced;

currently_alloced is represented as size of sctp packets received so far and not
yet delivered to userspace. x is the number of chunks/packets (since there is no
bundling, and each chunk is delivered in separate packet, we can observe each
chunk also as sctp packet, and what is important here, having its own sk_buff):

	socket_buffer < x*each_sctp_packet;

each_sctp_packet is sctp chunk size + sizeof(struct sk_buff). socket_buffer is
twice the amount of initially requested size of socket buffer, which is in case
of sctp, twice the a_rwnd requested:

	2*rwnd < x*(payload+sizeof(struc sk_buff));

sizeof(struct sk_buff) is 190 (3.13.0-rc4+). Above is stated that rwnd is 10000
and each payload size is 43

	20000 < x(43+190);

	x > 20000/233;

	x ~> 84;

After ~84 messages, pressure state is entered and 0 rwnd is advertised while
received 84*43B ~= 3612B sctp data. This is why external observer notices sudden
drop from 6474 to 0, as it will be now shown in example:

IP A.34340 > B.12345: sctp (1) [INIT] [init tag: 1875509148] [rwnd: 81920] [OS: 10] [MIS: 65535] [init TSN: 1096057017]
IP B.12345 > A.34340: sctp (1) [INIT ACK] [init tag: 3198966556] [rwnd: 10000] [OS: 10] [MIS: 10] [init TSN: 902132839]
IP A.34340 > B.12345: sctp (1) [COOKIE ECHO]
IP B.12345 > A.34340: sctp (1) [COOKIE ACK]
IP A.34340 > B.12345: sctp (1) [DATA] (B)(E) [TSN: 1096057017] [SID: 0] [SSEQ 0] [PPID 0x18]
IP B.12345 > A.34340: sctp (1) [SACK] [cum ack 1096057017] [a_rwnd 9957] [#gap acks 0] [#dup tsns 0]
IP A.34340 > B.12345: sctp (1) [DATA] (B)(E) [TSN: 1096057018] [SID: 0] [SSEQ 1] [PPID 0x18]
IP B.12345 > A.34340: sctp (1) [SACK] [cum ack 1096057018] [a_rwnd 9957] [#gap acks 0] [#dup tsns 0]
IP A.34340 > B.12345: sctp (1) [DATA] (B)(E) [TSN: 1096057019] [SID: 0] [SSEQ 2] [PPID 0x18]
IP B.12345 > A.34340: sctp (1) [SACK] [cum ack 1096057019] [a_rwnd 9914] [#gap acks 0] [#dup tsns 0]
<...>
IP A.34340 > B.12345: sctp (1) [DATA] (B)(E) [TSN: 1096057098] [SID: 0] [SSEQ 81] [PPID 0x18]
IP B.12345 > A.34340: sctp (1) [SACK] [cum ack 1096057098] [a_rwnd 6517] [#gap acks 0] [#dup tsns 0]
IP A.34340 > B.12345: sctp (1) [DATA] (B)(E) [TSN: 1096057099] [SID: 0] [SSEQ 82] [PPID 0x18]
IP B.12345 > A.34340: sctp (1) [SACK] [cum ack 1096057099] [a_rwnd 6474] [#gap acks 0] [#dup tsns 0]
IP A.34340 > B.12345: sctp (1) [DATA] (B)(E) [TSN: 1096057100] [SID: 0] [SSEQ 83] [PPID 0x18]

--> Sudden drop

IP B.12345 > A.34340: sctp (1) [SACK] [cum ack 1096057100] [a_rwnd 0] [#gap acks 0] [#dup tsns 0]

At this point, rwnd_press stores current rwnd value so it can be later restored
in sctp_assoc_rwnd_increase. This however doesn't happen as condition to start
slowly increasing rwnd until rwnd_press is returned to rwnd is never met. This
condition is not met since rwnd, after it hit 0, must first reach rwnd_press by
adding amount which is read from userspace. Let us observe values in above
example. Initial a_rwnd is 10000, pressure was hit when rwnd was ~6500 and the
amount of actual sctp data currently waiting to be delivered to userspace
is ~3500. When userspace starts to read, sctp_assoc_rwnd_increase will be blamed
only for sctp data, which is ~3500. Condition is never met, and when userspace
reads all data, rwnd stays on 3569.

IP B.12345 > A.34340: sctp (1) [SACK] [cum ack 1096057100] [a_rwnd 1505] [#gap acks 0] [#dup tsns 0]
IP B.12345 > A.34340: sctp (1) [SACK] [cum ack 1096057100] [a_rwnd 3010] [#gap acks 0] [#dup tsns 0]
IP A.34340 > B.12345: sctp (1) [DATA] (B)(E) [TSN: 1096057101] [SID: 0] [SSEQ 84] [PPID 0x18]
IP B.12345 > A.34340: sctp (1) [SACK] [cum ack 1096057101] [a_rwnd 3569] [#gap acks 0] [#dup tsns 0]

--> At this point userspace read everything, rwnd recovered only to 3569

IP A.34340 > B.12345: sctp (1) [DATA] (B)(E) [TSN: 1096057102] [SID: 0] [SSEQ 85] [PPID 0x18]
IP B.12345 > A.34340: sctp (1) [SACK] [cum ack 1096057102] [a_rwnd 3569] [#gap acks 0] [#dup tsns 0]

Reproduction is straight forward, it is enough for sender to send packets of
size less then sizeof(struct sk_buff) and receiver keeping them in its buffers.

2) Minute size window for associations sharing the same socket buffer

In case multiple associations share the same socket, and same socket buffer
(sctp.rcvbuf_policy == 0), different scenarios exist in which congestion on one
of the associations can permanently drop rwnd of other association(s).

Situation will be typically observed as one association suddenly having rwnd
dropped to size of last packet received and never recovering beyond that point.
Different scenarios will lead to it, but all have in common that one of the
associations (let it be association from 1)) nearly depleted socket buffer, and
the other association blames socket buffer just for the amount enough to start
the pressure. This association will enter pressure state, set rwnd_press and
announce 0 rwnd.
When data is read by userspace, similar situation as in 1) will occur, rwnd will
increase just for the size read by userspace but rwnd_press will be high enough
so that association doesn't have enough credit to reach rwnd_press and restore
to previous state. This case is special case of 1), being worse as there is, in
the worst case, only one packet in buffer for which size rwnd will be increased.
Consequence is association which has very low maximum rwnd ('minute size', in
our case down to 43B - size of packet which caused pressure) and as such
unusable.

Scenario happened in the field and labs frequently after congestion state (link
breaks, different probabilities of packet drop, packet reordering) and with
scenario 1) preceding. Here is given a deterministic scenario for reproduction:

>From node A establish two associations on the same socket, with rcvbuf_policy
being set to share one common buffer (sctp.rcvbuf_policy == 0). On association 1
repeat scenario from 1), that is, bring it down to 0 and restore up. Observe
scenario 1). Use small payload size (here we use 43). Once rwnd is 'recovered',
bring it down close to 0, as in just one more packet would close it. This has as
a consequence that association number 2 is able to receive (at least) one more
packet which will bring it in pressure state. E.g. if association 2 had rwnd of
10000, packet received was 43, and we enter at this point into pressure,
rwnd_press will have 9957. Once payload is delivered to userspace, rwnd will
increase for 43, but conditions to restore rwnd to original state, just as in
1), will never be satisfied.

--> Association 1, between A.y and B.12345

IP A.55915 > B.12345: sctp (1) [INIT] [init tag: 836880897] [rwnd: 10000] [OS: 10] [MIS: 65535] [init TSN: 4032536569]
IP B.12345 > A.55915: sctp (1) [INIT ACK] [init tag: 2873310749] [rwnd: 81920] [OS: 10] [MIS: 10] [init TSN: 3799315613]
IP A.55915 > B.12345: sctp (1) [COOKIE ECHO]
IP B.12345 > A.55915: sctp (1) [COOKIE ACK]

--> Association 2, between A.z and B.12346

IP A.55915 > B.12346: sctp (1) [INIT] [init tag: 534798321] [rwnd: 10000] [OS: 10] [MIS: 65535] [init TSN: 2099285173]
IP B.12346 > A.55915: sctp (1) [INIT ACK] [init tag: 516668823] [rwnd: 81920] [OS: 10] [MIS: 10] [init TSN: 3676403240]
IP A.55915 > B.12346: sctp (1) [COOKIE ECHO]
IP B.12346 > A.55915: sctp (1) [COOKIE ACK]

--> Deplete socket buffer by sending messages of size 43B over association 1

IP B.12345 > A.55915: sctp (1) [DATA] (B)(E) [TSN: 3799315613] [SID: 0] [SSEQ 0] [PPID 0x18]
IP A.55915 > B.12345: sctp (1) [SACK] [cum ack 3799315613] [a_rwnd 9957] [#gap acks 0] [#dup tsns 0]

<...>

IP A.55915 > B.12345: sctp (1) [SACK] [cum ack 3799315696] [a_rwnd 6388] [#gap acks 0] [#dup tsns 0]
IP B.12345 > A.55915: sctp (1) [DATA] (B)(E) [TSN: 3799315697] [SID: 0] [SSEQ 84] [PPID 0x18]
IP A.55915 > B.12345: sctp (1) [SACK] [cum ack 3799315697] [a_rwnd 6345] [#gap acks 0] [#dup tsns 0]

--> Sudden drop on 1

IP B.12345 > A.55915: sctp (1) [DATA] (B)(E) [TSN: 3799315698] [SID: 0] [SSEQ 85] [PPID 0x18]
IP A.55915 > B.12345: sctp (1) [SACK] [cum ack 3799315698] [a_rwnd 0] [#gap acks 0] [#dup tsns 0]

--> Here userspace read, rwnd 'recovered' to 3698, now deplete again using
    association 1 so there is place in buffer for only one more packet

IP B.12345 > A.55915: sctp (1) [DATA] (B)(E) [TSN: 3799315799] [SID: 0] [SSEQ 186] [PPID 0x18]
IP A.55915 > B.12345: sctp (1) [SACK] [cum ack 3799315799] [a_rwnd 86] [#gap acks 0] [#dup tsns 0]
IP B.12345 > A.55915: sctp (1) [DATA] (B)(E) [TSN: 3799315800] [SID: 0] [SSEQ 187] [PPID 0x18]
IP A.55915 > B.12345: sctp (1) [SACK] [cum ack 3799315800] [a_rwnd 43] [#gap acks 0] [#dup tsns 0]

--> Socket buffer is almost depleted, but there is space for one more packet,
    send them over association 2, size 43B

IP B.12346 > A.55915: sctp (1) [DATA] (B)(E) [TSN: 3676403240] [SID: 0] [SSEQ 0] [PPID 0x18]
IP A.55915 > B.12346: sctp (1) [SACK] [cum ack 3676403240] [a_rwnd 0] [#gap acks 0] [#dup tsns 0]

--> Immediate drop

IP A.60995 > B.12346: sctp (1) [SACK] [cum ack 387491510] [a_rwnd 0] [#gap acks 0] [#dup tsns 0]

--> Read everything from the socket, both association recover up to maximum rwnd
    they are capable of reaching, note that association 1 recovered up to 3698,
    and association 2 recovered only to 43

IP A.55915 > B.12345: sctp (1) [SACK] [cum ack 3799315800] [a_rwnd 1548] [#gap acks 0] [#dup tsns 0]
IP A.55915 > B.12345: sctp (1) [SACK] [cum ack 3799315800] [a_rwnd 3053] [#gap acks 0] [#dup tsns 0]
IP B.12345 > A.55915: sctp (1) [DATA] (B)(E) [TSN: 3799315801] [SID: 0] [SSEQ 188] [PPID 0x18]
IP A.55915 > B.12345: sctp (1) [SACK] [cum ack 3799315801] [a_rwnd 3698] [#gap acks 0] [#dup tsns 0]
IP B.12346 > A.55915: sctp (1) [DATA] (B)(E) [TSN: 3676403241] [SID: 0] [SSEQ 1] [PPID 0x18]
IP A.55915 > B.12346: sctp (1) [SACK] [cum ack 3676403241] [a_rwnd 43] [#gap acks 0] [#dup tsns 0]

A careful reader might wonder why it is necessary to reproduce 1) prior
reproduction of 2). It is simply easier to observe when to send packet over
association 2 which will push association into the pressure state.

Proposed solution:

Both problems share the same root cause, and that is improper scaling of socket
buffer with rwnd. Solution in which sizeof(sk_buff) is taken into concern while
calculating rwnd is not possible due to fact that there is no linear
relationship between amount of data blamed in increase/decrease with IP packet
in which payload arrived. Even in case such solution would be followed,
complexity of the code would increase. Due to nature of current rwnd handling,
slow increase (in sctp_assoc_rwnd_increase) of rwnd after pressure state is
entered is rationale, but it gives false representation to the sender of current
buffer space. Furthermore, it implements additional congestion control mechanism
which is defined on implementation, and not on standard basis.

Proposed solution simplifies whole algorithm having on mind definition from rfc:

o  Receiver Window (rwnd): This gives the sender an indication of the space
   available in the receiver's inbound buffer.

Core of the proposed solution is given with these lines:

sctp_assoc_rwnd_update:
	if ((asoc->base.sk->sk_rcvbuf - rx_count) > 0)
		asoc->rwnd = (asoc->base.sk->sk_rcvbuf - rx_count) >> 1;
	else
		asoc->rwnd = 0;

We advertise to sender (half of) actual space we have. Half is in the braces
depending whether you would like to observe size of socket buffer as SO_RECVBUF
or twice the amount, i.e. size is the one visible from userspace, that is,
from kernelspace.
In this way sender is given with good approximation of our buffer space,
regardless of the buffer policy - we always advertise what we have. Proposed
solution fixes described problems and removes necessity for rwnd restoration
algorithm. Finally, as proposed solution is simplification, some lines of code,
along with some bytes in struct sctp_association are saved.

Version 2 of the patch addressed comments from Vlad. Name of the function is set
to be more descriptive, and two parts of code are changed, in one removing the
superfluous call to sctp_assoc_rwnd_update since call would not result in update
of rwnd, and the other being reordering of the code in a way that call to
sctp_assoc_rwnd_update updates rwnd. Version 3 corrected change introduced in v2
in a way that existing function is not reordered/copied in line, but it is
correctly called. Thanks Vlad for suggesting.

Signed-off-by: Matija Glavinic Pecotic <matija.glavinic-pecotic.ext@nsn.com>
Reviewed-by: Alexander Sverdlin <alexander.sverdlin@nsn.com>
Acked-by: Vlad Yasevich <vyasevich@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-02-17 00:16:56 -05:00
wangweidong
5bc1d1b4a2 sctp: remove macros sctp_bh_[un]lock_sock
Redefined bh_[un]lock_sock to sctp_bh[un]lock_sock for user
space friendly code which we haven't use in years, so removing them.

Signed-off-by: Wang Weidong <wangweidong1@huawei.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-01-21 18:41:36 -08:00
wangweidong
048ed4b626 sctp: remove macros sctp_{lock|release}_sock
Redefined {lock|release}_sock to sctp_{lock|release}_sock for user space friendly
code which we haven't use in years, so removing them.

Signed-off-by: Wang Weidong <wangweidong1@huawei.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-01-21 18:41:36 -08:00
wangweidong
1b0de194f1 sctp: remove macros sctp_read_[un]lock
Redefined read_[un]lock to sctp_read_[un]lock for user space
friendly code which we haven't use in years, and the macros
we never used, so removing them.

Signed-off-by: Wang Weidong <wangweidong1@huawei.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-01-21 18:40:41 -08:00
wangweidong
387602dfdc sctp: remove macros sctp_write_[un]_lock
Redefined write_[un]lock to sctp_write_[un]lock for user space
friendly code which we haven't use in years, so removing them.

Signed-off-by: Wang Weidong <wangweidong1@huawei.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-01-21 18:40:41 -08:00
wangweidong
3c8e43ba9f sctp: remove macros sctp_spin_[un]lock
Redefined spin_[un]lock to sctp_spin_[un]lock for user space friendly
code which we haven't use in years, so removing them.

Signed-off-by: Wang Weidong <wangweidong1@huawei.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-01-21 18:40:41 -08:00
wangweidong
79b91130a2 sctp: remove macros sctp_local_bh_{disable|enable}
Redefined local_bh_{disable|enable} to sctp_local_bh_{disable|enable}
for user space friendly code which we haven't use in years, so removing them.

Signed-off-by: Wang Weidong <wangweidong1@huawei.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-01-21 18:40:40 -08:00
wangweidong
940287ee10 sctp: remove macros sctp_spin_[un]lock_irqrestore
Redefined spin_[un]lock_irqstore to sctp_spin_[un]lock_irqrestore for user
space friendly code which we haven't use in years, so removing them.

Signed-off-by: Wang Weidong <wangweidong1@huawei.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-01-21 18:40:40 -08:00
stephen hemminger
6daaf0de2f sctp: make sctp_addto_chunk_fixed local
Signed-off-by: Stephen Hemminger <stephen@networkplumber.org>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-01-13 14:42:30 -08:00
David S. Miller
56a4342dfe Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
Conflicts:
	drivers/net/ethernet/qlogic/qlcnic/qlcnic_sriov_pf.c
	net/ipv6/ip6_tunnel.c
	net/ipv6/ip6_vti.c

ipv6 tunnel statistic bug fixes conflicting with consolidation into
generic sw per-cpu net stats.

qlogic conflict between queue counting bug fix and the addition
of multiple MAC address support.

Signed-off-by: David S. Miller <davem@davemloft.net>
2014-01-06 17:37:45 -05:00
Vlad Yasevich
619a60ee04 sctp: Remove outqueue empty state
The SCTP outqueue structure maintains a data chunks
that are pending transmission, the list of chunks that
are pending a retransmission and a length of data in
flight.  It also tries to keep the emtpy state so that
it can performe shutdown sequence or notify user.

The problem is that the empy state is inconsistently
tracked.  It is possible to completely drain the queue
without sending anything when using PR-SCTP.  In this
case, the empty state will not be correctly state as
report by Jamal Hadi Salim <jhs@mojatatu.com>.  This
can cause an association to be perminantly stuck in the
SHUTDOWN_PENDING state.

Additionally, SCTP is incredibly inefficient when setting
the empty state.  Even though all the data is availaible
in the outqueue structure, we ignore it and walk a list
of trasnports.

In the end, we can completely remove the extra empty
state and figure out if the queue is empty by looking
at 3 things:  length of pending data, length of in-flight
data, and exisiting of retransmit data.  All of these
are already in the strucutre.

Reported-by: Jamal Hadi Salim <jhs@mojatatu.com>
Signed-off-by: Vlad Yasevich <vyasevich@gmail.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Tested-by: Jamal Hadi Salim <jhs@mojatatu.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-01-02 17:22:48 -05:00
David S. Miller
143c905494 Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
Conflicts:
	drivers/net/ethernet/intel/i40e/i40e_main.c
	drivers/net/macvtap.c

Both minor merge hassles, simple overlapping changes.

Signed-off-by: David S. Miller <davem@davemloft.net>
2013-12-18 16:42:06 -05:00
wangweidong
be78cfcb25 sctp: Reorder 'struc association' members to reduce its size
Members of 'struct association' are not in appropriate order to
reuse compiler added padding on 64bit architectures. In this patch
we reorder those struct members and help reduce the size of the
structure from 2776 bytes to 2720 bytes on 64 bit architectures.

Signed-off-by: Wang Weidong <wangweidong1@huawei.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-12-17 14:32:43 -05:00
Neil Horman
9f70f46bd4 sctp: properly latch and use autoclose value from sock to association
Currently, sctp associations latch a sockets autoclose value to an association
at association init time, subject to capping constraints from the max_autoclose
sysctl value.  This leads to an odd situation where an application may set a
socket level autoclose timeout, but sliently sctp will limit the autoclose
timeout to something less than that.

Fix this by modifying the autoclose setsockopt function to check the limit, cap
it and warn the user via syslog that the timeout is capped.  This will allow
getsockopt to return valid autoclose timeout values that reflect what subsequent
associations actually use.

While were at it, also elimintate the assoc->autoclose variable, it duplicates
whats in the timeout array, which leads to multiple sources for the same
information, that may differ (as the former isn't subject to any capping).  This
gives us the timeout information in a canonical place and saves some space in
the association structure as well.

Signed-off-by: Neil Horman <nhorman@tuxdriver.com>
Acked-by: Vlad Yasevich <vyasevich@gmail.com>
CC: Wang Weidong <wangweidong1@huawei.com>
CC: David Miller <davem@davemloft.net>
CC: Vlad Yasevich <vyasevich@gmail.com>
CC: netdev@vger.kernel.org
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-12-10 22:41:26 -05:00
Jeff Kirsher
a6227e26d9 include/net/: Fix FSF address in file headers
Several files refer to an old address for the Free Software Foundation
in the file header comment.  Resolve by replacing the address with
the URL <http://www.gnu.org/licenses/> so that we do not have to keep
updating the header comments anytime the address changes.

Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-12-06 12:37:56 -05:00
Jeff Kirsher
4b2f13a251 sctp: Fix FSF address in file headers
Several files refer to an old address for the Free Software Foundation
in the file header comment.  Resolve by replacing the address with
the URL <http://www.gnu.org/licenses/> so that we do not have to keep
updating the header comments anytime the address changes.

CC: Vlad Yasevich <vyasevich@gmail.com>
CC: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-12-06 12:37:56 -05:00
Xufeng Zhang
6eabca54d6 sctp: Restore 'resent' bit to avoid retransmitted chunks for RTT measurements
Currently retransmitted DATA chunks could also be used for
RTT measurements since there are no flag to identify whether
the transmitted DATA chunk is a new one or a retransmitted one.
This problem is introduced by commit ae19c5486 ("sctp: remove
'resent' bit from the chunk") which inappropriately removed the
'resent' bit completely, instead of doing this, we should set
the resent bit only for the retransmitted DATA chunks.

Signed-off-by: Xufeng Zhang <xufeng.zhang@windriver.com>
Acked-by: Vlad Yasevich <vyasevich@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-11-28 18:29:58 -05:00
Daniel Borkmann
e6d8b64b34 net: sctp: fix and consolidate SCTP checksumming code
This fixes an outstanding bug found through IPVS, where SCTP packets
with skb->data_len > 0 (non-linearized) and empty frag_list, but data
accumulated in frags[] member, are forwarded with incorrect checksum
letting SCTP initial handshake fail on some systems. Linearizing each
SCTP skb in IPVS to prevent that would not be a good solution as
this leads to an additional and unnecessary performance penalty on
the load-balancer itself for no good reason (as we actually only want
to update the checksum, and can do that in a different/better way
presented here).

The actual problem is elsewhere, namely, that SCTP's checksumming
in sctp_compute_cksum() does not take frags[] into account like
skb_checksum() does. So while we are fixing this up, we better reuse
the existing code that we have anyway in __skb_checksum() and use it
for walking through the data doing checksumming. This will not only
fix this issue, but also consolidates some SCTP code with core
sk_buff code, bringing it closer together and removing respectively
avoiding reimplementation of skb_checksum() for no good reason.

As crc32c() can use hardware implementation within the crypto layer,
we leave that intact (it wraps around / falls back to e.g. slice-by-8
algorithm in __crc32c_le() otherwise); plus use the __crc32c_le_combine()
combinator for crc32c blocks.

Also, we remove all other SCTP checksumming code, so that we only
have to use sctp_compute_cksum() from now on; for doing that, we need
to transform SCTP checkumming in output path slightly, and can leave
the rest intact.

Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-11-03 23:04:57 -05:00
Joe Perches
7b58446068 sctp: Remove extern from function prototypes
There are a mix of function prototypes with and without extern
in the kernel sources.  Standardize on not using extern for
function prototypes.

Function prototypes don't need to be written with extern.
extern is assumed by the compiler.  Its use is as unnecessary as
using auto to declare automatic/local variables in a block.

Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: Vlad Yasevich <vyasevich@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-09-23 16:29:42 -04:00
Daniel Borkmann
76bfd89844 net: sctp: reorder sctp_globals to reduce cacheline usage
Reduce cacheline usage from 2 to 1 cacheline for sctp_globals structure. By
reordering elements, we can close gaps and simply achieve the following:

Current situation:
  /* size: 80, cachelines: 2, members: 10 */
  /* sum members: 57, holes: 4, sum holes: 16 */
  /* padding: 7 */
  /* last cacheline: 16 bytes */

Afterwards:
  /* size: 64, cachelines: 1, members: 10 */
  /* padding: 7 */

Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-29 14:55:54 -04:00
David S. Miller
71acc0ddd4 Revert "net: sctp: convert sctp_checksum_disable module param into sctp sysctl"
This reverts commit cda5f98e36.

As per Vlad's request.

Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-09 13:09:41 -07:00
Daniel Borkmann
477143e3fe net: sctp: trivial: update bug report in header comment
With the restructuring of the lksctp.org site, we only allow bug
reports through the SCTP mailing list linux-sctp@vger.kernel.org,
not via SF, as SF is only used for web hosting and nothing more.
While at it, also remove the obvious statement that bugs will be
fixed and incooperated into the kernel.

Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Acked-by: Vlad Yasevich <vyasevich@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-09 11:33:02 -07:00
Daniel Borkmann
cda5f98e36 net: sctp: convert sctp_checksum_disable module param into sctp sysctl
Get rid of the last module parameter for SCTP and make this
configurable via sysctl for SCTP like all the rest of SCTP's
configuration knobs.

Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-09 11:33:02 -07:00
fan.du
5a139296f8 sctp: Pack dst_cookie into 1st cacheline hole for 64bit host
As dst_cookie is used in fast path sctp_transport_dst_check.

Before:
struct sctp_transport {
	struct list_head           transports;           /*     0    16 */
	atomic_t                   refcnt;               /*    16     4 */
	__u32                      dead:1;               /*    20:31  4 */
	__u32                      rto_pending:1;        /*    20:30  4 */
	__u32                      hb_sent:1;            /*    20:29  4 */
	__u32                      pmtu_pending:1;       /*    20:28  4 */

	/* XXX 28 bits hole, try to pack */

	__u32                      sack_generation;      /*    24     4 */

	/* XXX 4 bytes hole, try to pack */

	struct flowi               fl;                   /*    32    64 */
	/* --- cacheline 1 boundary (64 bytes) was 32 bytes ago --- */
	union sctp_addr            ipaddr;               /*    96    28 */

After:
struct sctp_transport {
	struct list_head           transports;           /*     0    16 */
	atomic_t                   refcnt;               /*    16     4 */
	__u32                      dead:1;               /*    20:31  4 */
	__u32                      rto_pending:1;        /*    20:30  4 */
	__u32                      hb_sent:1;            /*    20:29  4 */
	__u32                      pmtu_pending:1;       /*    20:28  4 */

	/* XXX 28 bits hole, try to pack */

	__u32                      sack_generation;      /*    24     4 */
	u32                        dst_cookie;           /*    28     4 */
	struct flowi               fl;                   /*    32    64 */
	/* --- cacheline 1 boundary (64 bytes) was 32 bytes ago --- */
	union sctp_addr            ipaddr;               /*    96    28 */

Signed-off-by: Fan Du <fan.du@windriver.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-05 12:20:51 -07:00
fan.du
d27fc78208 sctp: Don't lookup dst if transport dst is still valid
When sctp sits on IPv6, sctp_transport_dst_check pass cookie as ZERO,
as a result ip6_dst_check always fail out. This behaviour makes
transport->dst useless, because every sctp_packet_transmit must look
for valid dst.

Add a dst_cookie into sctp_transport, and set the cookie whenever we
get new dst for sctp_transport. So dst validness could be checked
against it.

Since I have split genid for IPv4 and IPv6, also delete/add IPv6 address
will also bump IPv6 genid. So issues we discussed in:
http://marc.info/?l=linux-netdev&m=137404469219410&w=4
have all been sloved for this patch.

Signed-off-by: Fan Du <fan.du@windriver.com>
Acked-by: Vlad Yasevich <vyasevich@gmail.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-02 12:36:00 -07:00
Joe Stringer
024ec3deac net/sctp: Refactor SCTP skb checksum computation
This patch consolidates the SCTP checksum calculation code from various
places to a single new function, sctp_compute_cksum(skb, offset).

Signed-off-by: Joe Stringer <joe@wand.net.nz>
Reviewed-by: Julian Anastasov <ja@ssi.bg>
Acked-by: Simon Horman <horms@verge.net.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-07-27 20:07:15 -07:00
Daniel Borkmann
91705c61b5 net: sctp: trivial: update mailing list address
The SCTP mailing list address to send patches or questions
to is linux-sctp@vger.kernel.org and not
lksctp-developers@lists.sourceforge.net anymore. Therefore,
update all occurences.

Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Acked-by: Vlad Yasevich <vyasevich@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-07-24 17:53:38 -07:00
Daniel Borkmann
a05b1019cf net: sctp: prevent checksum.h from double inclusion
The header file checksum.h is missing proper defines that prevents
it from double inclusion.

Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-07-02 00:23:57 -07:00
Daniel Borkmann
bb33381d0c net: sctp: rework debugging framework to use pr_debug and friends
We should get rid of all own SCTP debug printk macros and use the ones
that the kernel offers anyway instead. This makes the code more readable
and conform to the kernel code, and offers all the features of dynamic
debbuging that pr_debug() et al has, such as only turning on/off portions
of debug messages at runtime through debugfs. The runtime cost of having
CONFIG_DYNAMIC_DEBUG enabled, but none of the debug statements printing,
is negligible [1]. If kernel debugging is completly turned off, then these
statements will also compile into "empty" functions.

While we're at it, we also need to change the Kconfig option as it /now/
only refers to the ifdef'ed code portions in outqueue.c that enable further
debugging/tracing of SCTP transaction fields. Also, since SCTP_ASSERT code
was enabled with this Kconfig option and has now been removed, we
transform those code parts into WARNs resp. where appropriate BUG_ONs so
that those bugs can be more easily detected as probably not many people
have SCTP debugging permanently turned on.

To turn on all SCTP debugging, the following steps are needed:

 # mount -t debugfs none /sys/kernel/debug
 # echo -n 'module sctp +p' > /sys/kernel/debug/dynamic_debug/control

This can be done more fine-grained on a per file, per line basis and others
as described in [2].

 [1] https://www.kernel.org/doc/ols/2009/ols2009-pages-39-46.pdf
 [2] Documentation/dynamic-debug-howto.txt

Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-07-01 23:22:13 -07:00
Daniel Borkmann
52db882f3f net: sctp: migrate cookie life from timeval to ktime
Currently, SCTP code defines its own timeval functions (since timeval
is rarely used inside the kernel by others), namely tv_lt() and
TIMEVAL_ADD() macros, that operate on SCTP cookie expiration.

We might as well remove all those, and operate directly on ktime
structures for a couple of reasons: ktime is available on all archs;
complexity of ktime calculations depending on the arch is less than
(reduces to a simple arithmetic operations on archs with
BITS_PER_LONG == 64 or CONFIG_KTIME_SCALAR) or equal to timeval
functions (other archs); code becomes more readable; macros can be
thrown out.

Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Acked-by: Vlad Yasevich <vyasevich@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-06-25 16:33:04 -07:00
Daniel Borkmann
f072d7aba7 net: sctp: remove TEST_FRAME ifdef
We do neither ship a test_frame.h, nor will this be compatible with
the 2.5 out-of-tree lksctp kernel test suite anyway. So remove this
artefact.

Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Acked-by: Vlad Yasevich <vyasevich@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-06-25 16:33:04 -07:00
Daniel Borkmann
dda9192851 net: sctp: remove SCTP_STATIC macro
SCTP_STATIC is just another define for the static keyword. It's use
is inconsistent in the SCTP code anyway and it was introduced in the
initial implementation of SCTP in 2.5. We have a regression suite in
lksctp-tools, but this is for user space only, so noone makes use of
this macro anymore. The kernel test suite for 2.5 is incompatible with
the current SCTP code anyway.

So simply Remove it, to be more consistent with the rest of the kernel
code.

Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Acked-by: Vlad Yasevich <vyasevich@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-06-17 17:08:05 -07:00
Daniel Borkmann
939cfa75a0 net: sctp: get rid of t_new macro for kzalloc
t_new rather obfuscates things where everyone else is using actual
function names instead of that macro, so replace it with kzalloc,
which is the function t_new wraps.

Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Acked-by: Vlad Yasevich <vyasevich@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-06-17 17:08:04 -07:00
Linus Torvalds
73287a43cc Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
Pull networking updates from David Miller:
 "Highlights (1721 non-merge commits, this has to be a record of some
  sort):

   1) Add 'random' mode to team driver, from Jiri Pirko and Eric
      Dumazet.

   2) Make it so that any driver that supports configuration of multiple
      MAC addresses can provide the forwarding database add and del
      calls by providing a default implementation and hooking that up if
      the driver doesn't have an explicit set of handlers.  From Vlad
      Yasevich.

   3) Support GSO segmentation over tunnels and other encapsulating
      devices such as VXLAN, from Pravin B Shelar.

   4) Support L2 GRE tunnels in the flow dissector, from Michael Dalton.

   5) Implement Tail Loss Probe (TLP) detection in TCP, from Nandita
      Dukkipati.

   6) In the PHY layer, allow supporting wake-on-lan in situations where
      the PHY registers have to be written for it to be configured.

      Use it to support wake-on-lan in mv643xx_eth.

      From Michael Stapelberg.

   7) Significantly improve firewire IPV6 support, from YOSHIFUJI
      Hideaki.

   8) Allow multiple packets to be sent in a single transmission using
      network coding in batman-adv, from Martin Hundebøll.

   9) Add support for T5 cxgb4 chips, from Santosh Rastapur.

  10) Generalize the VXLAN forwarding tables so that there is more
      flexibility in configurating various aspects of the endpoints.
      From David Stevens.

  11) Support RSS and TSO in hardware over GRE tunnels in bxn2x driver,
      from Dmitry Kravkov.

  12) Zero copy support in nfnelink_queue, from Eric Dumazet and Pablo
      Neira Ayuso.

  13) Start adding networking selftests.

  14) In situations of overload on the same AF_PACKET fanout socket, or
      per-cpu packet receive queue, minimize drop by distributing the
      load to other cpus/fanouts.  From Willem de Bruijn and Eric
      Dumazet.

  15) Add support for new payload offset BPF instruction, from Daniel
      Borkmann.

  16) Convert several drivers over to mdoule_platform_driver(), from
      Sachin Kamat.

  17) Provide a minimal BPF JIT image disassembler userspace tool, from
      Daniel Borkmann.

  18) Rewrite F-RTO implementation in TCP to match the final
      specification of it in RFC4138 and RFC5682.  From Yuchung Cheng.

  19) Provide netlink socket diag of netlink sockets ("Yo dawg, I hear
      you like netlink, so I implemented netlink dumping of netlink
      sockets.") From Andrey Vagin.

  20) Remove ugly passing of rtnetlink attributes into rtnl_doit
      functions, from Thomas Graf.

  21) Allow userspace to be able to see if a configuration change occurs
      in the middle of an address or device list dump, from Nicolas
      Dichtel.

  22) Support RFC3168 ECN protection for ipv6 fragments, from Hannes
      Frederic Sowa.

  23) Increase accuracy of packet length used by packet scheduler, from
      Jason Wang.

  24) Beginning set of changes to make ipv4/ipv6 fragment handling more
      scalable and less susceptible to overload and locking contention,
      from Jesper Dangaard Brouer.

  25) Get rid of using non-type-safe NLMSG_* macros and use nlmsg_*()
      instead.  From Hong Zhiguo.

  26) Optimize route usage in IPVS by avoiding reference counting where
      possible, from Julian Anastasov.

  27) Convert IPVS schedulers to RCU, also from Julian Anastasov.

  28) Support cpu fanouts in xt_NFQUEUE netfilter target, from Holger
      Eitzenberger.

  29) Network namespace support for nf_log, ebt_log, xt_LOG, ipt_ULOG,
      nfnetlink_log, and nfnetlink_queue.  From Gao feng.

  30) Implement RFC3168 ECN protection, from Hannes Frederic Sowa.

  31) Support several new r8169 chips, from Hayes Wang.

  32) Support tokenized interface identifiers in ipv6, from Daniel
      Borkmann.

  33) Use usbnet_link_change() helper in USB net driver, from Ming Lei.

  34) Add 802.1ad vlan offload support, from Patrick McHardy.

  35) Support mmap() based netlink communication, also from Patrick
      McHardy.

  36) Support HW timestamping in mlx4 driver, from Amir Vadai.

  37) Rationalize AF_PACKET packet timestamping when transmitting, from
      Willem de Bruijn and Daniel Borkmann.

  38) Bring parity to what's provided by /proc/net/packet socket dumping
      and the info provided by netlink socket dumping of AF_PACKET
      sockets.  From Nicolas Dichtel.

  39) Fix peeking beyond zero sized SKBs in AF_UNIX, from Benjamin
      Poirier"

* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1722 commits)
  filter: fix va_list build error
  af_unix: fix a fatal race with bit fields
  bnx2x: Prevent memory leak when cnic is absent
  bnx2x: correct reading of speed capabilities
  net: sctp: attribute printl with __printf for gcc fmt checks
  netlink: kconfig: move mmap i/o into netlink kconfig
  netpoll: convert mutex into a semaphore
  netlink: Fix skb ref counting.
  net_sched: act_ipt forward compat with xtables
  mlx4_en: fix a build error on 32bit arches
  Revert "bnx2x: allow nvram test to run when device is down"
  bridge: avoid OOPS if root port not found
  drivers: net: cpsw: fix kernel warn on cpsw irq enable
  sh_eth: use random MAC address if no valid one supplied
  3c509.c: call SET_NETDEV_DEV for all device types (ISA/ISAPnP/EISA)
  tg3: fix to append hardware time stamping flags
  unix/stream: fix peeking with an offset larger than data in queue
  unix/dgram: fix peeking with an offset larger than data in queue
  unix/dgram: peek beyond 0-sized skbs
  openvswitch: Remove unneeded ovs_netdev_get_ifindex()
  ...
2013-05-01 14:08:52 -07:00
Simon Horman
eee1d5a147 sctp: Correct type and usage of sctp_end_cksum()
Change the type of the crc32 parameter of sctp_end_cksum()
from __be32 to __u32 to reflect that fact that it is passed
to cpu_to_le32().

There are five in-tree users of sctp_end_cksum().
The following four had warnings flagged by sparse which are
no longer present with this change.

net/netfilter/ipvs/ip_vs_proto_sctp.c:sctp_nat_csum()
net/netfilter/ipvs/ip_vs_proto_sctp.c:sctp_csum_check()
net/sctp/input.c:sctp_rcv_checksum()
net/sctp/output.c:sctp_packet_transmit()

The fifth user is net/netfilter/nf_nat_proto_sctp.c:sctp_manip_pkt().
It has been updated to pass a __u32 instead of a __be32,
the value in question was already calculated in cpu byte-order.

net/netfilter/nf_nat_proto_sctp.c:sctp_manip_pkt() has also
been updated to assign the return value of sctp_end_cksum()
directly to a variable of type __le32, matching the
type of the return value. Previously the return value
was assigned to a variable of type __be32 and then that variable
was finally assigned to another variable of type __le32.

Problems flagged by sparse.
Compile and sparse tested only.

Signed-off-by: Simon Horman <horms@verge.net.au>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2013-04-29 20:09:08 +02:00
Daniel Borkmann
3e3251b3f2 net: sctp: minor: remove dead code from sctp_packet
struct sctp_packet is currently embedded into sctp_transport or
sits on the stack as 'singleton' in sctp_outq_flush(). Therefore,
its member 'malloced' is always 0, thus a kfree() is never called.
Because of that, we can just remove this code.

Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-22 16:25:21 -04:00
Daniel Borkmann
c1db7a26ac net: sctp: sctp_ulpq: remove 'malloced' struct member
The structure sctp_ulpq is embedded into sctp_association and never
separately allocated, also ulpq->malloced is always 0, so that
kfree() is never called. Therefore, remove this code.

Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-17 14:13:02 -04:00