Commit Graph

16611 Commits

Author SHA1 Message Date
Rik van Riel 5e1576ed0e sched/numa: Stay on the same node if CLONE_VM
A newly spawned thread inside a process should stay on the same
NUMA node as its parent. This prevents processes from being "torn"
across multiple NUMA nodes every time they spawn a new thread.

Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-49-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-09 14:47:57 +02:00
Peter Zijlstra 6688cc0547 mm: numa: Do not group on RO pages
And here's a little something to make sure not the whole world ends up
in a single group.

As while we don't migrate shared executable pages, we do scan/fault on
them. And since everybody links to libc, everybody ends up in the same
group.

Suggested-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1381141781-10992-47-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-09 14:47:53 +02:00
Mel Gorman e29cf08b05 sched/numa: Report a NUMA task group ID
It is desirable to model from userspace how the scheduler groups tasks
over time. This patch adds an ID to the numa_group and reports it via
/proc/PID/status.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-45-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-09 14:47:49 +02:00
Peter Zijlstra 8c8a743c50 sched/numa: Use {cpu, pid} to create task groups for shared faults
While parallel applications tend to align their data on the cache
boundary, they tend not to align on the page or THP boundary.
Consequently tasks that partition their data can still "false-share"
pages presenting a problem for optimal NUMA placement.

This patch uses NUMA hinting faults to chain tasks together into
numa_groups. As well as storing the NID a task was running on when
accessing a page a truncated representation of the faulting PID is
stored. If subsequent faults are from different PIDs it is reasonable
to assume that those two tasks share a page and are candidates for
being grouped together. Note that this patch makes no scheduling
decisions based on the grouping information.

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1381141781-10992-44-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-09 14:47:47 +02:00
Peter Zijlstra 90572890d2 mm: numa: Change page last {nid,pid} into {cpu,pid}
Change the per page last fault tracking to use cpu,pid instead of
nid,pid. This will allow us to try and lookup the alternate task more
easily. Note that even though it is the cpu that is store in the page
flags that the mpol_misplaced decision is still based on the node.

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1381141781-10992-43-git-send-email-mgorman@suse.de
[ Fixed build failure on 32-bit systems. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-09 14:47:45 +02:00
Rik van Riel e1dda8a797 sched/numa: Fix placement of workloads spread across multiple nodes
The load balancer will spread workloads across multiple NUMA nodes,
in order to balance the load on the system. This means that sometimes
a task's preferred node has available capacity, but moving the task
there will not succeed, because that would create too large an imbalance.

In that case, other NUMA nodes need to be considered.

Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-42-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-09 14:47:43 +02:00
Mel Gorman 2c8a50aa87 sched/numa: Favor placing a task on the preferred node
A tasks preferred node is selected based on the number of faults
recorded for a node but the actual task_numa_migate() conducts a global
search regardless of the preferred nid. This patch checks if the
preferred nid has capacity and if so, searches for a CPU within that
node. This avoids a global search when the preferred node is not
overloaded.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-41-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-09 14:47:41 +02:00
Mel Gorman fb13c7ee0e sched/numa: Use a system-wide search to find swap/migration candidates
This patch implements a system-wide search for swap/migration candidates
based on total NUMA hinting faults. It has a balance limit, however it
doesn't properly consider total node balance.

In the old scheme a task selected a preferred node based on the highest
number of private faults recorded on the node. In this scheme, the preferred
node is based on the total number of faults. If the preferred node for a
task changes then task_numa_migrate will search the whole system looking
for tasks to swap with that would improve both the overall compute
balance and minimise the expected number of remote NUMA hinting faults.

Not there is no guarantee that the node the source task is placed
on by task_numa_migrate() has any relationship to the newly selected
task->numa_preferred_nid due to compute overloading.

Signed-off-by: Mel Gorman <mgorman@suse.de>
[ Do not swap with tasks that cannot run on source cpu]
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
[ Fixed compiler warning on UP. ]
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-40-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-09 14:47:25 +02:00
Peter Zijlstra ac66f54772 sched/numa: Introduce migrate_swap()
Use the new stop_two_cpus() to implement migrate_swap(), a function that
flips two tasks between their respective cpus.

I'm fairly sure there's a less crude way than employing the stop_two_cpus()
method, but everything I tried either got horribly fragile and/or complex. So
keep it simple for now.

The notable detail is how we 'migrate' tasks that aren't runnable
anymore. We'll make it appear like we migrated them before they went to
sleep. The sole difference is the previous cpu in the wakeup path, so we
override this.

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Link: http://lkml.kernel.org/r/1381141781-10992-39-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-09 12:40:46 +02:00
Peter Zijlstra 1be0bd77c5 stop_machine: Introduce stop_two_cpus()
Introduce stop_two_cpus() in order to allow controlled swapping of two
tasks. It repurposes the stop_machine() state machine but only stops
the two cpus which we can do with on-stack structures and avoid
machine wide synchronization issues.

The ordering of CPUs is important to avoid deadlocks. If unordered then
two cpus calling stop_two_cpus on each other simultaneously would attempt
to queue in the opposite order on each CPU causing an AB-BA style deadlock.
By always having the lowest number CPU doing the queueing of works, we can
guarantee that works are always queued in the same order, and deadlocks
are avoided.

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
[ Implemented deadlock avoidance. ]
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Link: http://lkml.kernel.org/r/1381141781-10992-38-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-09 12:40:45 +02:00
Mel Gorman 4591ce4f2d sched/numa: Do not trap hinting faults for shared libraries
NUMA hinting faults will not migrate a shared executable page mapped by
multiple processes on the grounds that the data is probably in the CPU
cache already and the page may just bounce between tasks running on multipl
nodes. Even if the migration is avoided, there is still the overhead of
trapping the fault, updating the statistics, making scheduler placement
decisions based on the information etc. If we are never going to migrate
the page, it is overhead for no gain and worse a process may be placed on
a sub-optimal node for shared executable pages. This patch avoids trapping
faults for shared libraries entirely.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-36-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-09 12:40:42 +02:00
Rik van Riel 06ea5e035b sched/numa: Increment numa_migrate_seq when task runs in correct location
When a task is already running on its preferred node, increment
numa_migrate_seq to indicate that the task is settled if migration is
temporarily disabled, and memory should migrate towards it.

Signed-off-by: Rik van Riel <riel@redhat.com>
[ Only increment migrate_seq if migration temporarily disabled. ]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-35-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-09 12:40:41 +02:00
Mel Gorman 6b9a7460b6 sched/numa: Retry migration of tasks to CPU on a preferred node
When a preferred node is selected for a tasks there is an attempt to migrate
the task to a CPU there. This may fail in which case the task will only
migrate if the active load balancer takes action. This may never happen if
the conditions are not right. This patch will check at NUMA hinting fault
time if another attempt should be made to migrate the task. It will only
make an attempt once every five seconds.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-34-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-09 12:40:40 +02:00
Mel Gorman 58d081b508 sched/numa: Avoid overloading CPUs on a preferred NUMA node
This patch replaces find_idlest_cpu_node with task_numa_find_cpu.
find_idlest_cpu_node has two critical limitations. It does not take the
scheduling class into account when calculating the load and it is unsuitable
for using when comparing loads between NUMA nodes.

task_numa_find_cpu uses similar load calculations to wake_affine() when
selecting the least loaded CPU within a scheduling domain common to the
source and destimation nodes. It avoids causing CPU load imbalances in
the machine by refusing to migrate if the relative load on the target
CPU is higher than the source CPU.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-33-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-09 12:40:39 +02:00
Mel Gorman fc3147245d mm: numa: Limit NUMA scanning to migrate-on-fault VMAs
There is a 90% regression observed with a large Oracle performance test
on a 4 node system. Profiles indicated that the overhead was due to
contention on sp_lock when looking up shared memory policies. These
policies do not have the appropriate flags to allow them to be
automatically balanced so trapping faults on them is pointless. This
patch skips VMAs that do not have MPOL_F_MOF set.

[riel@redhat.com: Initial patch]

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reported-and-tested-by: Joe Mario <jmario@redhat.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-32-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-09 12:40:38 +02:00
Rik van Riel 6fe6b2d6da sched/numa: Do not migrate memory immediately after switching node
The load balancer can move tasks between nodes and does not take NUMA
locality into account. With automatic NUMA balancing this may result in the
tasks working set being migrated to the new node. However, as the fault
buffer will still store faults from the old node the schduler may decide to
reset the preferred node and migrate the task back resulting in more
migrations.

The ideal would be that the scheduler did not migrate tasks with a heavy
memory footprint but this may result nodes being overloaded. We could
also discard the fault information on task migration but this would still
cause all the tasks working set to be migrated. This patch simply avoids
migrating the memory for a short time after a task is migrated.

Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-31-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-09 12:40:36 +02:00
Mel Gorman b795854b1f sched/numa: Set preferred NUMA node based on number of private faults
Ideally it would be possible to distinguish between NUMA hinting faults that
are private to a task and those that are shared. If treated identically
there is a risk that shared pages bounce between nodes depending on
the order they are referenced by tasks. Ultimately what is desirable is
that task private pages remain local to the task while shared pages are
interleaved between sharing tasks running on different nodes to give good
average performance. This is further complicated by THP as even
applications that partition their data may not be partitioning on a huge
page boundary.

To start with, this patch assumes that multi-threaded or multi-process
applications partition their data and that in general the private accesses
are more important for cpu->memory locality in the general case. Also,
no new infrastructure is required to treat private pages properly but
interleaving for shared pages requires additional infrastructure.

To detect private accesses the pid of the last accessing task is required
but the storage requirements are a high. This patch borrows heavily from
Ingo Molnar's patch "numa, mm, sched: Implement last-CPU+PID hash tracking"
to encode some bits from the last accessing task in the page flags as
well as the node information. Collisions will occur but it is better than
just depending on the node information. Node information is then used to
determine if a page needs to migrate. The PID information is used to detect
private/shared accesses. The preferred NUMA node is selected based on where
the maximum number of approximately private faults were measured. Shared
faults are not taken into consideration for a few reasons.

First, if there are many tasks sharing the page then they'll all move
towards the same node. The node will be compute overloaded and then
scheduled away later only to bounce back again. Alternatively the shared
tasks would just bounce around nodes because the fault information is
effectively noise. Either way accounting for shared faults the same as
private faults can result in lower performance overall.

The second reason is based on a hypothetical workload that has a small
number of very important, heavily accessed private pages but a large shared
array. The shared array would dominate the number of faults and be selected
as a preferred node even though it's the wrong decision.

The third reason is that multiple threads in a process will race each
other to fault the shared page making the fault information unreliable.

Signed-off-by: Mel Gorman <mgorman@suse.de>
[ Fix complication error when !NUMA_BALANCING. ]
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-30-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-09 12:40:35 +02:00
Mel Gorman 073b5beea7 sched/numa: Remove check that skips small VMAs
task_numa_work skips small VMAs. At the time the logic was to reduce the
scanning overhead which was considerable. It is a dubious hack at best.
It would make much more sense to cache where faults have been observed
and only rescan those regions during subsequent PTE scans. Remove this
hack as motivation to do it properly in the future.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-29-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-09 12:40:33 +02:00
Mel Gorman 9ff1d9ff3c sched/numa: Check current->mm before allocating NUMA faults
task_numa_placement checks current->mm but after buffers for faults
have already been uselessly allocated. Move the check earlier.

[peterz@infradead.org: Identified the problem]

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-27-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-09 12:40:31 +02:00
Mel Gorman ac8e895bd2 sched/numa: Add infrastructure for split shared/private accounting of NUMA hinting faults
Ideally it would be possible to distinguish between NUMA hinting faults
that are private to a task and those that are shared.  This patch prepares
infrastructure for separately accounting shared and private faults by
allocating the necessary buffers and passing in relevant information. For
now, all faults are treated as private and detection will be introduced
later.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-26-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-09 12:40:30 +02:00
Mel Gorman e6628d5b0a sched/numa: Reschedule task on preferred NUMA node once selected
A preferred node is selected based on the node the most NUMA hinting
faults was incurred on. There is no guarantee that the task is running
on that node at the time so this patch rescheules the task to run on
the most idle CPU of the selected node when selected. This avoids
waiting for the balancer to make a decision.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-25-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-09 12:40:28 +02:00
Mel Gorman 7a0f308337 sched/numa: Resist moving tasks towards nodes with fewer hinting faults
Just as "sched: Favour moving tasks towards the preferred node" favours
moving tasks towards nodes with a higher number of recorded NUMA hinting
faults, this patch resists moving tasks towards nodes with lower faults.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-24-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-09 12:40:27 +02:00
Mel Gorman 3a7053b322 sched/numa: Favour moving tasks towards the preferred node
This patch favours moving tasks towards NUMA node that recorded a higher
number of NUMA faults during active load balancing.  Ideally this is
self-reinforcing as the longer the task runs on that node, the more faults
it should incur causing task_numa_placement to keep the task running on that
node. In reality a big weakness is that the nodes CPUs can be overloaded
and it would be more efficient to queue tasks on an idle node and migrate
to the new node. This would require additional smarts in the balancer so
for now the balancer will simply prefer to place the task on the preferred
node for a PTE scans which is controlled by the numa_balancing_settle_count
sysctl. Once the settle_count number of scans has complete the schedule
is free to place the task on an alternative node if the load is imbalanced.

[srikar@linux.vnet.ibm.com: Fixed statistics]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
[ Tunable and use higher faults instead of preferred. ]
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-23-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-09 12:40:26 +02:00
Mel Gorman 745d61476d sched/numa: Update NUMA hinting faults once per scan
NUMA hinting fault counts and placement decisions are both recorded in the
same array which distorts the samples in an unpredictable fashion. The values
linearly accumulate during the scan and then decay creating a sawtooth-like
pattern in the per-node counts. It also means that placement decisions are
time sensitive. At best it means that it is very difficult to state that
the buffer holds a decaying average of past faulting behaviour. At worst,
it can confuse the load balancer if it sees one node with an artifically high
count due to very recent faulting activity and may create a bouncing effect.

This patch adds a second array. numa_faults stores the historical data
which is used for placement decisions. numa_faults_buffer holds the
fault activity during the current scan window. When the scan completes,
numa_faults decays and the values from numa_faults_buffer are copied
across.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-22-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-09 12:40:25 +02:00
Mel Gorman 688b7585d1 sched/numa: Select a preferred node with the most numa hinting faults
This patch selects a preferred node for a task to run on based on the
NUMA hinting faults. This information is later used to migrate tasks
towards the node during balancing.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-21-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-09 12:40:23 +02:00
Mel Gorman f809ca9a55 sched/numa: Track NUMA hinting faults on per-node basis
This patch tracks what nodes numa hinting faults were incurred on.
This information is later used to schedule a task on the node storing
the pages most frequently faulted by the task.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-20-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-09 12:40:22 +02:00
Mel Gorman f307cd1a32 sched/numa: Slow scan rate if no NUMA hinting faults are being recorded
NUMA PTE scanning slows if a NUMA hinting fault was trapped and no page
was migrated. For long-lived but idle processes there may be no faults
but the scan rate will be high and just waste CPU. This patch will slow
the scan rate for processes that are not trapping faults.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-19-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-09 12:40:21 +02:00
Mel Gorman 598f0ec0bc sched/numa: Set the scan rate proportional to the memory usage of the task being scanned
The NUMA PTE scan rate is controlled with a combination of the
numa_balancing_scan_period_min, numa_balancing_scan_period_max and
numa_balancing_scan_size. This scan rate is independent of the size
of the task and as an aside it is further complicated by the fact that
numa_balancing_scan_size controls how many pages are marked pte_numa and
not how much virtual memory is scanned.

In combination, it is almost impossible to meaningfully tune the min and
max scan periods and reasoning about performance is complex when the time
to complete a full scan is is partially a function of the tasks memory
size. This patch alters the semantic of the min and max tunables to be
about tuning the length time it takes to complete a scan of a tasks occupied
virtual address space. Conceptually this is a lot easier to understand. There
is a "sanity" check to ensure the scan rate is never extremely fast based on
the amount of virtual memory that should be scanned in a second. The default
of 2.5G seems arbitrary but it is to have the maximum scan rate after the
patch roughly match the maximum scan rate before the patch was applied.

On a similar note, numa_scan_period is in milliseconds and not
jiffies. Properly placed pages slow the scanning rate but adding 10 jiffies
to numa_scan_period means that the rate scanning slows depends on HZ which
is confusing. Get rid of the jiffies_to_msec conversion and treat it as ms.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-18-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-09 12:40:20 +02:00
Mel Gorman 7e8d16b6cb sched/numa: Initialise numa_next_scan properly
Scan delay logic and resets are currently initialised to start scanning
immediately instead of delaying properly. Initialise them properly at
fork time and catch when a new mm has been allocated.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-17-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-09 12:40:19 +02:00
Mel Gorman b726b7dfb4 Revert "mm: sched: numa: Delay PTE scanning until a task is scheduled on a new node"
PTE scanning and NUMA hinting fault handling is expensive so commit
5bca2303 ("mm: sched: numa: Delay PTE scanning until a task is scheduled
on a new node") deferred the PTE scan until a task had been scheduled on
another node. The problem is that in the purely shared memory case that
this may never happen and no NUMA hinting fault information will be
captured. We are not ruling out the possibility that something better
can be done here but for now, this patch needs to be reverted and depend
entirely on the scan_delay to avoid punishing short-lived processes.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-16-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-09 12:40:17 +02:00
Peter Zijlstra 9e645ab6d0 sched/numa: Continue PTE scanning even if migrate rate limited
Avoiding marking PTEs pte_numa because a particular NUMA node is migrate rate
limited sees like a bad idea. Even if this node can't migrate anymore other
nodes might and we want up-to-date information to do balance decisions.
We already rate limit the actual migrations, this should leave enough
bandwidth to allow the non-migrating scanning. I think its important we
keep up-to-date information if we're going to do placement based on it.

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1381141781-10992-15-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-09 12:40:09 +02:00
Peter Zijlstra 19a78d110d sched/numa: Mitigate chance that same task always updates PTEs
With a trace_printk("working\n"); right after the cmpxchg in
task_numa_work() we can see that of a 4 thread process, its always the
same task winning the race and doing the protection change.

This is a problem since the task doing the protection change has a
penalty for taking faults -- it is busy when marking the PTEs. If its
always the same task the ->numa_faults[] get severely skewed.

Avoid this by delaying the task doing the protection change such that
it is unlikely to win the privilege again.

Before:

root@interlagos:~# grep "thread 0/.*working" /debug/tracing/trace | tail -15
      thread 0/0-3232  [022] ....   212.787402: task_numa_work: working
      thread 0/0-3232  [022] ....   212.888473: task_numa_work: working
      thread 0/0-3232  [022] ....   212.989538: task_numa_work: working
      thread 0/0-3232  [022] ....   213.090602: task_numa_work: working
      thread 0/0-3232  [022] ....   213.191667: task_numa_work: working
      thread 0/0-3232  [022] ....   213.292734: task_numa_work: working
      thread 0/0-3232  [022] ....   213.393804: task_numa_work: working
      thread 0/0-3232  [022] ....   213.494869: task_numa_work: working
      thread 0/0-3232  [022] ....   213.596937: task_numa_work: working
      thread 0/0-3232  [022] ....   213.699000: task_numa_work: working
      thread 0/0-3232  [022] ....   213.801067: task_numa_work: working
      thread 0/0-3232  [022] ....   213.903155: task_numa_work: working
      thread 0/0-3232  [022] ....   214.005201: task_numa_work: working
      thread 0/0-3232  [022] ....   214.107266: task_numa_work: working
      thread 0/0-3232  [022] ....   214.209342: task_numa_work: working

After:

root@interlagos:~# grep "thread 0/.*working" /debug/tracing/trace | tail -15
      thread 0/0-3253  [005] ....   136.865051: task_numa_work: working
      thread 0/2-3255  [026] ....   136.965134: task_numa_work: working
      thread 0/3-3256  [024] ....   137.065217: task_numa_work: working
      thread 0/3-3256  [024] ....   137.165302: task_numa_work: working
      thread 0/3-3256  [024] ....   137.265382: task_numa_work: working
      thread 0/0-3253  [004] ....   137.366465: task_numa_work: working
      thread 0/2-3255  [026] ....   137.466549: task_numa_work: working
      thread 0/0-3253  [004] ....   137.566629: task_numa_work: working
      thread 0/0-3253  [004] ....   137.666711: task_numa_work: working
      thread 0/1-3254  [028] ....   137.766799: task_numa_work: working
      thread 0/0-3253  [004] ....   137.866876: task_numa_work: working
      thread 0/2-3255  [026] ....   137.966960: task_numa_work: working
      thread 0/1-3254  [028] ....   138.067041: task_numa_work: working
      thread 0/2-3255  [026] ....   138.167123: task_numa_work: working
      thread 0/3-3256  [024] ....   138.267207: task_numa_work: working

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1381141781-10992-14-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-09 12:39:56 +02:00
Peter Zijlstra c69307d533 sched/numa: Fix comments
Fix a 80 column violation and a PTE vs PMD reference.

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1381141781-10992-4-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-09 12:39:30 +02:00
Ingo Molnar 37bf06375c Linux 3.12-rc4
-----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1.4.14 (GNU/Linux)
 
 iQEcBAABAgAGBQJSUc9zAAoJEHm+PkMAQRiG9DMH/AtpuAF6LlMRPjrCeuJQ1pyh
 T0IUO+CsLKO6qtM5IyweP8V6zaasNjIuW1+B6IwVIl8aOrM+M7CwRiKvpey26ldM
 I8G2ron7hqSOSQqSQs20jN2yGAqQGpYIbTmpdGLAjQ350NNNvEKthbP5SZR5PAmE
 UuIx5OGEkaOyZXvCZJXU9AZkCxbihlMSt2zFVxybq2pwnGezRUYgCigE81aeyE0I
 QLwzzMVdkCxtZEpkdJMpLILAz22jN4RoVDbXRa2XC7dA9I2PEEXI9CcLzqCsx2Ii
 8eYS+no2K5N2rrpER7JFUB2B/2X8FaVDE+aJBCkfbtwaYTV9UYLq3a/sKVpo1Cs=
 =xSFJ
 -----END PGP SIGNATURE-----

Merge tag 'v3.12-rc4' into sched/core

Merge Linux v3.12-rc4 to fix a conflict and also to refresh the tree
before applying more scheduler patches.

Conflicts:
	arch/avr32/include/asm/Kbuild

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-09 12:36:13 +02:00
Shawn Bohrer 6bfa687c19 sched/rt: Remove redundant nr_cpus_allowed test
In 76854c7e8f ("sched: Use
rt.nr_cpus_allowed to recover select_task_rq() cycles") an
optimization was added to select_task_rq_rt() that immediately
returns when p->nr_cpus_allowed == 1 at the beginning of the
function.

This makes the latter p->nr_cpus_allowed > 1 check redundant,
which can now be removed.

Signed-off-by: Shawn Bohrer <sbohrer@rgmadvisors.com>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Mike Galbraith <mgalbraith@suse.de>
Cc: tomk@rgmadvisors.com
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1380914693-24634-1-git-send-email-shawn.bohrer@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-06 11:28:40 +02:00
Linus Torvalds 7dee8dff47 ACPI and power management fixes for 3.12-rc4
1) The resume part of user space driven hibernation (s2disk) is now
     broken after the change that moved the creation of memory bitmaps
     to after the freezing of tasks, because I forgot that the resume
     utility loaded the image before freezing tasks and needed the
     bitmaps for that.  The fix adds special handling for that case.
 
  2) One of recent commits changed the export of acpi_bus_get_device()
     to EXPORT_SYMBOL_GPL(), which was technically correct but broke
     existing binary modules using that function including one in
     particularly widespread use.  Change it back to EXPORT_SYMBOL().
 
  3) The intel_pstate driver sometimes fails to disable turbo if its
     no_turbo sysfs attribute is set.  Fix from Srinivas Pandruvada.
 
  4) One of recent cpufreq fixes forgot to update a check in cpufreq-cpu0
     which still (incorrectly) treats non-NULL as non-error.  Fix from
     Philipp Zabel.
 
  5) The SPEAr cpufreq driver uses a wrong variable type in one place
     preventing it from catching errors returned by one of the functions
     called by it.  Fix from Sachin Kamat.
 
 /
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.19 (GNU/Linux)
 
 iQIcBAABCAAGBQJSTvXfAAoJEKhOf7ml8uNslkkP+QGoghnGR9hScYq/0Mcnzr4b
 kwkiRx54NggjzzN8Q+ejZmxNZ7UZt3q05PmHPtJk3A8gzqIMsb83jnXsZNiDiQs6
 m+KBYrV5dhPZkp08X2tHJp5ijZNRULpp9QA49ulnLfVT/A+rkr5xBCK0W3ln/zL3
 tJSlGJ3N7yYUXe3nMRCCNnnnAzWA+Tk8yRaMx5MnFqlQWWnyx1SGKjD/kVv0/3RA
 6rlDPQEIuoCTqLKotnGIqVN2hTFPFJKc9yTrRGZ15pMjdUGHMwnHy6KMAdXy4Rdh
 R1DOdf+bvPkkFiGE1D1vKOt7pdOG/cTtNkppvWZRuoGg2AMJGm5KWlrdLhlvunyt
 IQXmdt/eWecNr+WzN8FiDp4LEQcI6VjEDaJ3qbjXHLH/FOupBKXYoNWpejj4bGSE
 PtPmJYjNpD2vF3cdtt80ZAYSxhLutwPQksoAwyJ40++l53Ygi81BO31LWZQnDk/8
 HPWOXFThmWJtT03b0sG25GpboiCpYtHEmbwQe+y+pRx7L12HBfE4StT3hmv5Z9J4
 RXXB3yNq4ApXtFq1mitpiPmSVfYe+zu590m7ZUr457BpXi7MH17tzDn9nUJ2eTZl
 kXwUNWiRKGjPmKYxV/ml/apClozsGMFP+XoZkYotFd0W5+SVLuhdXdtClIt4NAbD
 dUkYVMm/BBBALpmH+yKw
 =P4mh
 -----END PGP SIGNATURE-----

Merge tag 'pm+acpi-3.12-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm

Pull ACPI and power management fixes from Rafael Wysocki:

 - The resume part of user space driven hibernation (s2disk) is now
   broken after the change that moved the creation of memory bitmaps to
   after the freezing of tasks, because I forgot that the resume utility
   loaded the image before freezing tasks and needed the bitmaps for
   that.  The fix adds special handling for that case.

 - One of recent commits changed the export of acpi_bus_get_device() to
   EXPORT_SYMBOL_GPL(), which was technically correct but broke existing
   binary modules using that function including one in particularly
   widespread use.  Change it back to EXPORT_SYMBOL().

 - The intel_pstate driver sometimes fails to disable turbo if its
   no_turbo sysfs attribute is set.  Fix from Srinivas Pandruvada.

 - One of recent cpufreq fixes forgot to update a check in cpufreq-cpu0
   which still (incorrectly) treats non-NULL as non-error.  Fix from
   Philipp Zabel.

 - The SPEAr cpufreq driver uses a wrong variable type in one place
   preventing it from catching errors returned by one of the functions
   called by it.  Fix from Sachin Kamat.

* tag 'pm+acpi-3.12-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm:
  ACPI: Use EXPORT_SYMBOL() for acpi_bus_get_device()
  intel_pstate: fix no_turbo
  cpufreq: cpufreq-cpu0: NULL is a valid regulator, part 2
  cpufreq: SPEAr: Fix incorrect variable type
  PM / hibernate: Fix user space driven resume regression
2013-10-04 15:03:42 -07:00
Ingo Molnar 0d119fb576 Merge branch 'irq/urgent-v2' of git://git.kernel.org/pub/scm/linux/kernel/git/frederic/linux-dynticks into irq/urgent
Pull a hardirq-nesting fix from Frederic Weisbecker.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-02 07:53:01 +02:00
Frederic Weisbecker ded7975475 irq: Force hardirq exit's softirq processing on its own stack
The commit facd8b80c6
("irq: Sanitize invoke_softirq") converted irq exit
calls of do_softirq() to __do_softirq() on all architectures,
assuming it was only used there for its irq disablement
properties.

But as a side effect, the softirqs processed in the end
of the hardirq are always called on the inline current
stack that is used by irq_exit() instead of the softirq
stack provided by the archs that override do_softirq().

The result is mostly safe if the architecture runs irq_exit()
on a separate irq stack because then softirqs are processed
on that same stack that is near empty at this stage (assuming
hardirq aren't nesting).

Otherwise irq_exit() runs in the task stack and so does the softirq
too. The interrupted call stack can be randomly deep already and
the softirq can dig through it even further. To add insult to the
injury, this softirq can be interrupted by a new hardirq, maximizing
the chances for a stack overrun as reported in powerpc for example:

	do_IRQ: stack overflow: 1920
	CPU: 0 PID: 1602 Comm: qemu-system-ppc Not tainted 3.10.4-300.1.fc19.ppc64p7 #1
	Call Trace:
	[c0000000050a8740] .show_stack+0x130/0x200 (unreliable)
	[c0000000050a8810] .dump_stack+0x28/0x3c
	[c0000000050a8880] .do_IRQ+0x2b8/0x2c0
	[c0000000050a8930] hardware_interrupt_common+0x154/0x180
	--- Exception: 501 at .cp_start_xmit+0x3a4/0x820 [8139cp]
		LR = .cp_start_xmit+0x390/0x820 [8139cp]
	[c0000000050a8d40] .dev_hard_start_xmit+0x394/0x640
	[c0000000050a8e00] .sch_direct_xmit+0x110/0x260
	[c0000000050a8ea0] .dev_queue_xmit+0x260/0x630
	[c0000000050a8f40] .br_dev_queue_push_xmit+0xc4/0x130 [bridge]
	[c0000000050a8fc0] .br_dev_xmit+0x198/0x270 [bridge]
	[c0000000050a9070] .dev_hard_start_xmit+0x394/0x640
	[c0000000050a9130] .dev_queue_xmit+0x428/0x630
	[c0000000050a91d0] .ip_finish_output+0x2a4/0x550
	[c0000000050a9290] .ip_local_out+0x50/0x70
	[c0000000050a9310] .ip_queue_xmit+0x148/0x420
	[c0000000050a93b0] .tcp_transmit_skb+0x4e4/0xaf0
	[c0000000050a94a0] .__tcp_ack_snd_check+0x7c/0xf0
	[c0000000050a9520] .tcp_rcv_established+0x1e8/0x930
	[c0000000050a95f0] .tcp_v4_do_rcv+0x21c/0x570
	[c0000000050a96c0] .tcp_v4_rcv+0x734/0x930
	[c0000000050a97a0] .ip_local_deliver_finish+0x184/0x360
	[c0000000050a9840] .ip_rcv_finish+0x148/0x400
	[c0000000050a98d0] .__netif_receive_skb_core+0x4f8/0xb00
	[c0000000050a99d0] .netif_receive_skb+0x44/0x110
	[c0000000050a9a70] .br_handle_frame_finish+0x2bc/0x3f0 [bridge]
	[c0000000050a9b20] .br_nf_pre_routing_finish+0x2ac/0x420 [bridge]
	[c0000000050a9bd0] .br_nf_pre_routing+0x4dc/0x7d0 [bridge]
	[c0000000050a9c70] .nf_iterate+0x114/0x130
	[c0000000050a9d30] .nf_hook_slow+0xb4/0x1e0
	[c0000000050a9e00] .br_handle_frame+0x290/0x330 [bridge]
	[c0000000050a9ea0] .__netif_receive_skb_core+0x34c/0xb00
	[c0000000050a9fa0] .netif_receive_skb+0x44/0x110
	[c0000000050aa040] .napi_gro_receive+0xe8/0x120
	[c0000000050aa0c0] .cp_rx_poll+0x31c/0x590 [8139cp]
	[c0000000050aa1d0] .net_rx_action+0x1dc/0x310
	[c0000000050aa2b0] .__do_softirq+0x158/0x330
	[c0000000050aa3b0] .irq_exit+0xc8/0x110
	[c0000000050aa430] .do_IRQ+0xdc/0x2c0
	[c0000000050aa4e0] hardware_interrupt_common+0x154/0x180
	 --- Exception: 501 at .bad_range+0x1c/0x110
		 LR = .get_page_from_freelist+0x908/0xbb0
	[c0000000050aa7d0] .list_del+0x18/0x50 (unreliable)
	[c0000000050aa850] .get_page_from_freelist+0x908/0xbb0
	[c0000000050aa9e0] .__alloc_pages_nodemask+0x21c/0xae0
	[c0000000050aaba0] .alloc_pages_vma+0xd0/0x210
	[c0000000050aac60] .handle_pte_fault+0x814/0xb70
	[c0000000050aad50] .__get_user_pages+0x1a4/0x640
	[c0000000050aae60] .get_user_pages_fast+0xec/0x160
	[c0000000050aaf10] .__gfn_to_pfn_memslot+0x3b0/0x430 [kvm]
	[c0000000050aafd0] .kvmppc_gfn_to_pfn+0x64/0x130 [kvm]
	[c0000000050ab070] .kvmppc_mmu_map_page+0x94/0x530 [kvm]
	[c0000000050ab190] .kvmppc_handle_pagefault+0x174/0x610 [kvm]
	[c0000000050ab270] .kvmppc_handle_exit_pr+0x464/0x9b0 [kvm]
	[c0000000050ab320]  kvm_start_lightweight+0x1ec/0x1fc [kvm]
	[c0000000050ab4f0] .kvmppc_vcpu_run_pr+0x168/0x3b0 [kvm]
	[c0000000050ab9c0] .kvmppc_vcpu_run+0xc8/0xf0 [kvm]
	[c0000000050aba50] .kvm_arch_vcpu_ioctl_run+0x5c/0x1a0 [kvm]
	[c0000000050abae0] .kvm_vcpu_ioctl+0x478/0x730 [kvm]
	[c0000000050abc90] .do_vfs_ioctl+0x4ec/0x7c0
	[c0000000050abd80] .SyS_ioctl+0xd4/0xf0
	[c0000000050abe30] syscall_exit+0x0/0x98

Since this is a regression, this patch proposes a minimalistic
and low-risk solution by blindly forcing the hardirq exit processing of
softirqs on the softirq stack. This way we should reduce significantly
the opportunities for task stack overflow dug by softirqs.

Longer term solutions may involve extending the hardirq stack coverage to
irq_exit(), etc...

Reported-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: #3.9.. <stable@vger.kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@au1.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@au1.ibm.com>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: James E.J. Bottomley <jejb@parisc-linux.org>
Cc: Helge Deller <deller@gmx.de>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Andrew Morton <akpm@linux-foundation.org>
2013-10-01 12:39:08 +02:00
Oleg Nesterov 314a8ad0f1 pidns: fix free_pid() to handle the first fork failure
"case 0" in free_pid() assumes that disable_pid_allocation() should
clear PIDNS_HASH_ADDING before the last pid goes away.

However this doesn't happen if the first fork() fails to create the
child reaper which should call disable_pid_allocation().

Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-30 14:31:03 -07:00
Tetsuo Handa 4c1c7be95c kernel/kmod.c: check for NULL in call_usermodehelper_exec()
If /proc/sys/kernel/core_pattern contains only "|", a NULL pointer
dereference happens upon core dump because argv_split("") returns
argv[0] == NULL.

This bug was once fixed by commit 264b83c07a ("usermodehelper: check
subprocess_info->path != NULL") but was by error reintroduced by commit
7f57cfa4e2 ("usermodehelper: kill the sub_info->path[0] check").

This bug seems to exist since 2.6.19 (the version which core dump to
pipe was added).  Depending on kernel version and config, some side
effect might happen immediately after this oops (e.g.  kernel panic with
2.6.32-358.18.1.el6).

Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-30 14:31:02 -07:00
Rafael J. Wysocki aab1728915 PM / hibernate: Fix user space driven resume regression
Recent commit 8fd37a4 (PM / hibernate: Create memory bitmaps after
freezing user space) broke the resume part of the user space driven
hibernation (s2disk), because I forgot that the resume utility
loaded the image into memory without freezing user space (it still
freezes tasks after loading the image).  This means that during user
space driven resume we need to create the memory bitmaps at the
"device open" time rather than at the "freeze tasks" time, so make
that happen (that's a special case anyway, so it needs to be treated
in a special way).

Reported-and-tested-by: Ronald <ronald645@gmail.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-09-30 19:40:56 +02:00
Linus Torvalds 669fc2f0c7 Merge branches 'sched-urgent-for-linus', 'timers-urgent-for-linus' and 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler, timer and x86 fixes from Ingo Molnar:
 - A context tracking ARM build and functional fix
 - A handful of ARM clocksource/clockevent driver fixes
 - An AMD microcode patch level sysfs reporting fixlet

* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  arm: Fix build error with context tracking calls

* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  clocksource: em_sti: Set cpu_possible_mask to fix SMP broadcast
  clocksource: of: Respect device tree node status
  clocksource: exynos_mct: Set IRQ affinity when the CPU goes online
  arm: clocksource: mvebu: Use the main timer as clock source from DT

* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/microcode/AMD: Fix patch level reporting for family 15h
2013-09-28 14:22:17 -07:00
Jean Delvare 3a126f85e0 kernel/params: fix handling of signed integer types
Commit 6072ddc852 ("kernel: replace strict_strto*() with kstrto*()")
broke the handling of signed integer types, fix it.

Signed-off-by: Jean Delvare <khali@linux-fr.org>
Reported-by: Christian Kujau <lists@nerdbynature.de>
Tested-by: Christian Kujau <lists@nerdbynature.de>
Cc: Jingoo Han <jg1.han@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-28 12:35:52 -07:00
Ingo Molnar 62d08aec6a Merge branch 'context_tracking/fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/frederic/linux-dynticks into sched/urgent
Pull context tracking ARM fix from Frederic Weisbecker.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-09-28 08:50:09 +02:00
Frederic Weisbecker 0c06a5d4b1 arm: Fix build error with context tracking calls
ad65782fba (context_tracking: Optimize main APIs off case
with static key) converted context tracking main APIs to inline
function and left ARM asm callers behind.

This can be easily fixed by making ARM calling the post static
keys context tracking function. We just need to replicate the
static key checks there. We'll remove these later when ARM will
support the context tracking static keys.

Reported-by: Guenter Roeck <linux@roeck-us.net>
Reported-by: Russell King <linux@arm.linux.org.uk>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Tested-by: Kevin Hilman <khilman@linaro.org>
Cc: Nicolas Pitre <nicolas.pitre@linaro.org>
Cc: Anil Kumar <anilk4.v@gmail.com>
Cc: Tony Lindgren <tony@atomide.com>
Cc: Benoit Cousson <b-cousson@ti.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Kevin Hilman <khilman@linaro.org>
2013-09-27 17:59:47 +02:00
Linus Torvalds 82dfaa58a7 Merge branch 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fixes from Ingo Molnar:
 "Three small fixes"

* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  sched/balancing: Fix cfs_rq->task_h_load calculation
  sched/balancing: Fix 'local->avg_load > busiest->avg_load' case in fix_small_imbalance()
  sched/balancing: Fix 'local->avg_load > sds->avg_load' case in calculate_imbalance()
2013-09-25 13:28:45 -07:00
Linus Torvalds bdc5663fa1 Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf fixes from Ingo Molnar:
 "Assorted standalone fixes"

* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  perf/x86/intel: Add model number for Avoton Silvermont
  perf: Fix capabilities bitfield compatibility in 'struct perf_event_mmap_page'
  perf/x86/intel/uncore: Don't use smp_processor_id() in validate_group()
  perf: Update ABI comment
  tools lib lk: Uninclude linux/magic.h in debugfs.c
  perf tools: Fix old GCC build error in trace-event-parse.c:parse_proc_kallsyms()
  perf probe: Fix finder to find lines of given function
  perf session: Check for SIGINT in more loops
  perf tools: Fix compile with libelf without get_phdrnum
  perf tools: Fix buildid cache handling of kallsyms with kcore
  perf annotate: Fix objdump line parsing offset validation
  perf tools: Fill in new definitions for madvise()/mmap() flags
  perf tools: Sharpen the libaudit dependencies test
2013-09-25 13:28:08 -07:00
Peter Zijlstra a233f1120c sched: Prepare for per-cpu preempt_count
When using per-cpu preempt_count variables we need to save/restore the
preempt_count on context switch (into per task storage; for instance
the old thread_info::preempt_count variable) because of
PREEMPT_ACTIVE.

However, this means that on fork() the preempt_count value of the last
context switch gets copied and if we had a PREEMPT_ACTIVE switch right
before cloning a child task the child task will now too have
PREEMPT_ACTIVE set and start its life with an extra PREEMPT_ACTIVE
count.

Therefore we need to make init_task_preempt_count() unconditional;
this resets whatever preempt_count we inherited from our parent
process.

Doing so for !per-cpu implementations is harmless.

For !PREEMPT_COUNT kernels we need to be careful not to start life
with an increased preempt_count.

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-4k0b7oy1rcdyzochwiixuwi9@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-09-25 14:07:55 +02:00
Peter Zijlstra bdb4380658 sched: Extract the basic add/sub preempt_count modifiers
Rewrite the preempt_count macros in order to extract the 3 basic
preempt_count value modifiers:

  __preempt_count_add()
  __preempt_count_sub()

and the new:

  __preempt_count_dec_and_test()

And since we're at it anyway, replace the unconventional
$op_preempt_count names with the more conventional preempt_count_$op.

Since these basic operators are equivalent to the previous _notrace()
variants, do away with the _notrace() versions.

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-ewbpdbupy9xpsjhg960zwbv8@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-09-25 14:07:54 +02:00
Peter Zijlstra 0102874755 sched: Create more preempt_count accessors
We need a few special preempt_count accessors:
 - task_preempt_count() for when we're interested in the preemption
   count of another (non-running) task.
 - init_task_preempt_count() for properly initializing the preemption
   count.
 - init_idle_preempt_count() a special case of the above for the idle
   threads.

With these no generic code ever touches thread_info::preempt_count
anymore and architectures could choose to remove it.

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-jf5swrio8l78j37d06fzmo4r@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-09-25 14:07:52 +02:00