Commit Graph

21 Commits

Author SHA1 Message Date
Alexander Graf d9e1397783 KVM: arm/arm64: Support arch timers with a userspace gic
If you're running with a userspace gic or other interrupt controller
(that is no vgic in the kernel), then you have so far not been able to
use the architected timers, because the output of the architected
timers, which are driven inside the kernel, was a kernel-only construct
between the arch timer code and the vgic.

This patch implements the new KVM_CAP_ARM_USER_IRQ feature, where we use a
side channel on the kvm_run structure, run->s.regs.device_irq_level, to
always notify userspace of the timer output levels when using a userspace
irqchip.

This works by ensuring that before we enter the guest, if the timer
output level has changed compared to what we last told userspace, we
don't enter the guest, but instead return to userspace to notify it of
the new level.  If we are exiting, because of an MMIO for example, and
the level changed at the same time, the value is also updated and
userspace can sample the line as it needs.  This is nicely achieved
simply always updating the timer_irq_level field after the main run
loop.

Note that the kvm_timer_update_irq trace event is changed to show the
host IRQ number for the timer instead of the guest IRQ number, because
the kernel no longer know which IRQ userspace wires up the timer signal
to.

Also note that this patch implements all required functionality but does
not yet advertise the capability.

Reviewed-by: Alexander Graf <agraf@suse.de>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2017-04-09 07:49:38 -07:00
Jintack Lim 7b6b46311a KVM: arm/arm64: Emulate the EL1 phys timer registers
Emulate read and write operations to CNTP_TVAL, CNTP_CVAL and CNTP_CTL.
Now VMs are able to use the EL1 physical timer.

Signed-off-by: Jintack Lim <jintack@cs.columbia.edu>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2017-02-08 15:13:37 +00:00
Jintack Lim a91d18551e KVM: arm/arm64: Initialize the emulated EL1 physical timer
Initialize the emulated EL1 physical timer with the default irq number.

Signed-off-by: Jintack Lim <jintack@cs.columbia.edu>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2017-02-08 15:13:34 +00:00
Jintack Lim 009a5701bb KVM: arm/arm64: Add the EL1 physical timer context
Add the EL1 physical timer context.

Signed-off-by: Jintack Lim <jintack@cs.columbia.edu>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2017-02-08 15:13:34 +00:00
Jintack Lim 9171fa2e09 KVM: arm/arm64: Decouple kvm timer functions from virtual timer
Now that we have a separate structure for timer context, make functions
generic so that they can work with any timer context, not just the
virtual timer context.  This does not change the virtual timer
functionality.

Signed-off-by: Jintack Lim <jintack@cs.columbia.edu>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2017-02-08 15:13:33 +00:00
Jintack Lim 90de943a43 KVM: arm/arm64: Move cntvoff to each timer context
Make cntvoff per each timer context. This is helpful to abstract kvm
timer functions to work with timer context without considering timer
types (e.g. physical timer or virtual timer).

This also would pave the way for ever doing adjustments of the cntvoff
on a per-CPU basis if that should ever make sense.

Signed-off-by: Jintack Lim <jintack@cs.columbia.edu>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2017-02-08 15:13:33 +00:00
Jintack Lim fbb4aeec5f KVM: arm/arm64: Abstract virtual timer context into separate structure
Abstract virtual timer context into a separate structure and change all
callers referring to timer registers, irq state and so on. No change in
functionality.

This is about to become very handy when adding the EL1 physical timer.

Signed-off-by: Jintack Lim <jintack@cs.columbia.edu>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2017-02-08 15:13:32 +00:00
Jintack Lim 488f94d721 KVM: arm64: Access CNTHCTL_EL2 bit fields correctly on VHE systems
Current KVM world switch code is unintentionally setting wrong bits to
CNTHCTL_EL2 when E2H == 1, which may allow guest OS to access physical
timer.  Bit positions of CNTHCTL_EL2 are changing depending on
HCR_EL2.E2H bit.  EL1PCEN and EL1PCTEN are 1st and 0th bits when E2H is
not set, but they are 11th and 10th bits respectively when E2H is set.

In fact, on VHE we only need to set those bits once, not for every world
switch. This is because the host kernel runs in EL2 with HCR_EL2.TGE ==
1, which makes those bits have no effect for the host kernel execution.
So we just set those bits once for guests, and that's it.

Signed-off-by: Jintack Lim <jintack@cs.columbia.edu>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2017-01-13 11:19:25 +00:00
Thomas Gleixner a5a1d1c291 clocksource: Use a plain u64 instead of cycle_t
There is no point in having an extra type for extra confusion. u64 is
unambiguous.

Conversion was done with the following coccinelle script:

@rem@
@@
-typedef u64 cycle_t;

@fix@
typedef cycle_t;
@@
-cycle_t
+u64

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: John Stultz <john.stultz@linaro.org>
2016-12-25 11:04:12 +01:00
Christoffer Dall 41a54482c0 KVM: arm/arm64: Move timer IRQ map to latest possible time
We are about to modify the VGIC to allocate all data structures
dynamically and store mapped IRQ information on a per-IRQ struct, which
is indeed allocated dynamically at init time.

Therefore, we cannot record the mapped IRQ info from the timer at timer
reset time like it's done now, because VCPU reset happens before timer
init.

A possible later time to do this is on the first run of a per VCPU, it
just requires us to move the enable state to be a per-VCPU state and do
the lookup of the physical IRQ number when we are about to run the VCPU.

Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
2016-05-20 15:39:41 +02:00
Andre Przywara a7e33ad9b2 KVM: arm/arm64: arch_timer: Remove irq_phys_map
Now that the interface between the arch timer and the VGIC does not
require passing the irq_phys_map entry pointer anymore, let's remove
it from the virtual arch timer and use the virtual IRQ number instead
directly.
The remaining pointer returned by kvm_vgic_map_phys_irq() will be
removed in the following patch.

Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Eric Auger <eric.auger@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
2016-05-20 15:39:39 +02:00
Marc Zyngier 9b4a300443 KVM: arm/arm64: timer: Add active state caching
Programming the active state in the (re)distributor can be an
expensive operation so it makes some sense to try and reduce
the number of accesses as much as possible. So far, we
program the active state on each VM entry, but there is some
opportunity to do less.

An obvious solution is to cache the active state in memory,
and only program it in the HW when conditions change. But
because the HW can also change things under our feet (the active
state can transition from 1 to 0 when the guest does an EOI),
some precautions have to be taken, which amount to only caching
an "inactive" state, and always programing it otherwise.

With this in place, we observe a reduction of around 700 cycles
on a 2GHz GICv2 platform for a NULL hypercall.

Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-02-29 18:34:22 +00:00
Christoffer Dall 4b4b4512da arm/arm64: KVM: Rework the arch timer to use level-triggered semantics
The arch timer currently uses edge-triggered semantics in the sense that
the line is never sampled by the vgic and lowering the line from the
timer to the vgic doesn't have any effect on the pending state of
virtual interrupts in the vgic.  This means that we do not support a
guest with the otherwise valid behavior of (1) disable interrupts (2)
enable the timer (3) disable the timer (4) enable interrupts.  Such a
guest would validly not expect to see any interrupts on real hardware,
but will see interrupts on KVM.

This patch fixes this shortcoming through the following series of
changes.

First, we change the flow of the timer/vgic sync/flush operations.  Now
the timer is always flushed/synced before the vgic, because the vgic
samples the state of the timer output.  This has the implication that we
move the timer operations in to non-preempible sections, but that is
fine after the previous commit getting rid of hrtimer schedules on every
entry/exit.

Second, we change the internal behavior of the timer, letting the timer
keep track of its previous output state, and only lower/raise the line
to the vgic when the state changes.  Note that in theory this could have
been accomplished more simply by signalling the vgic every time the
state *potentially* changed, but we don't want to be hitting the vgic
more often than necessary.

Third, we get rid of the use of the map->active field in the vgic and
instead simply set the interrupt as active on the physical distributor
whenever the input to the GIC is asserted and conversely clear the
physical active state when the input to the GIC is deasserted.

Fourth, and finally, we now initialize the timer PPIs (and all the other
unused PPIs for now), to be level-triggered, and modify the sync code to
sample the line state on HW sync and re-inject a new interrupt if it is
still pending at that time.

Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2015-10-22 23:01:44 +02:00
Christoffer Dall d35268da66 arm/arm64: KVM: arch_timer: Only schedule soft timer on vcpu_block
We currently schedule a soft timer every time we exit the guest if the
timer did not expire while running the guest.  This is really not
necessary, because the only work we do in the timer work function is to
kick the vcpu.

Kicking the vcpu does two things:
(1) If the vpcu thread is on a waitqueue, make it runnable and remove it
from the waitqueue.
(2) If the vcpu is running on a different physical CPU from the one
doing the kick, it sends a reschedule IPI.

The second case cannot happen, because the soft timer is only ever
scheduled when the vcpu is not running.  The first case is only relevant
when the vcpu thread is on a waitqueue, which is only the case when the
vcpu thread has called kvm_vcpu_block().

Therefore, we only need to make sure a timer is scheduled for
kvm_vcpu_block(), which we do by encapsulating all calls to
kvm_vcpu_block() with kvm_timer_{un}schedule calls.

Additionally, we only schedule a soft timer if the timer is enabled and
unmasked, since it is useless otherwise.

Note that theoretically userspace can use the SET_ONE_REG interface to
change registers that should cause the timer to fire, even if the vcpu
is blocked without a scheduled timer, but this case was not supported
before this patch and we leave it for future work for now.

Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2015-10-22 23:01:42 +02:00
Marc Zyngier f120cd6533 KVM: arm/arm64: timer: Allow the timer to control the active state
In order to remove the crude hack where we sneak the masked bit
into the timer's control register, make use of the phys_irq_map
API control the active state of the interrupt.

This causes some limited changes to allow for potential error
propagation.

Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2015-08-12 11:28:26 +01:00
Christoffer Dall 1a74847885 arm/arm64: KVM: Fix migration race in the arch timer
When a VCPU is no longer running, we currently check to see if it has a
timer scheduled in the future, and if it does, we schedule a host
hrtimer to notify is in case the timer expires while the VCPU is still
not running.  When the hrtimer fires, we mask the guest's timer and
inject the timer IRQ (still relying on the guest unmasking the time when
it receives the IRQ).

This is all good and fine, but when migration a VM (checkpoint/restore)
this introduces a race.  It is unlikely, but possible, for the following
sequence of events to happen:

 1. Userspace stops the VM
 2. Hrtimer for VCPU is scheduled
 3. Userspace checkpoints the VGIC state (no pending timer interrupts)
 4. The hrtimer fires, schedules work in a workqueue
 5. Workqueue function runs, masks the timer and injects timer interrupt
 6. Userspace checkpoints the timer state (timer masked)

At restore time, you end up with a masked timer without any timer
interrupts and your guest halts never receiving timer interrupts.

Fix this by only kicking the VCPU in the workqueue function, and sample
the expired state of the timer when entering the guest again and inject
the interrupt and mask the timer only then.

Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2015-03-14 13:48:00 +01:00
Christoffer Dall 662d971584 arm/arm64: KVM: Kill CONFIG_KVM_ARM_{VGIC,TIMER}
We can definitely decide at run-time whether to use the GIC and timers
or not, and the extra code and data structures that we allocate space
for is really negligable with this config option, so I don't think it's
worth the extra complexity of always having to define stub static
inlines.  The !CONFIG_KVM_ARM_VGIC/TIMER case is pretty much an untested
code path anyway, so we're better off just getting rid of it.

Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
2015-03-12 15:15:27 +01:00
Christoffer Dall 05971120fc arm/arm64: KVM: Require in-kernel vgic for the arch timers
It is curently possible to run a VM with architected timers support
without creating an in-kernel VGIC, which will result in interrupts from
the virtual timer going nowhere.

To address this issue, move the architected timers initialization to the
time when we run a VCPU for the first time, and then only initialize
(and enable) the architected timers if we have a properly created and
initialized in-kernel VGIC.

When injecting interrupts from the virtual timer to the vgic, the
current setup should ensure that this never calls an on-demand init of
the VGIC, which is the only call path that could return an error from
kvm_vgic_inject_irq(), so capture the return value and raise a warning
if there's an error there.

We also change the kvm_timer_init() function from returning an int to be
a void function, since the function always succeeds.

Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2014-12-15 11:50:42 +01:00
Alex Bennée 1df08ba0aa arm64: KVM: allow export and import of generic timer regs
For correct guest suspend/resume behaviour we need to ensure we include
the generic timer registers for 64 bit guests. As CONFIG_KVM_ARM_TIMER is
always set for arm64 we don't need to worry about null implementations.
However I have re-jigged the kvm_arm_timer_set/get_reg declarations to
be in the common include/kvm/arm_arch_timer.h headers.

Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2014-07-11 04:46:55 -07:00
Anup Patel 5ae7f87a56 ARM: KVM: Allow host virt timer irq to be different from guest timer virt irq
The arch_timer irq numbers (or PPI numbers) are implementation dependent,
so the host virtual timer irq number can be different from guest virtual
timer irq number.

This patch ensures that host virtual timer irq number is read from DTB and
guest virtual timer irq is determined based on vcpu target type.

Signed-off-by: Anup Patel <anup.patel@linaro.org>
Signed-off-by: Pranavkumar Sawargaonkar <pranavkumar@linaro.org>
Signed-off-by: Christoffer Dall <cdall@cs.columbia.edu>
2013-06-26 10:50:02 -07:00
Marc Zyngier 7275acdfe2 ARM: KVM: move GIC/timer code to a common location
As KVM/arm64 is looming on the horizon, it makes sense to move some
of the common code to a single location in order to reduce duplication.

The code could live anywhere. Actually, most of KVM is already built
with a bunch of ugly ../../.. hacks in the various Makefiles, so we're
not exactly talking about style here. But maybe it is time to start
moving into a less ugly direction.

The include files must be in a "public" location, as they are accessed
from non-KVM files (arch/arm/kernel/asm-offsets.c).

For this purpose, introduce two new locations:
- virt/kvm/arm/ : x86 and ia64 already share the ioapic code in
  virt/kvm, so this could be seen as a (very ugly) precedent.
- include/kvm/  : there is already an include/xen, and while the
  intent is slightly different, this seems as good a location as
  any

Eventually, we should probably have independant Makefiles at every
levels (just like everywhere else in the kernel), but this is just
the first step.

Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
2013-05-19 15:13:08 +03:00