Commit Graph

5433 Commits

Author SHA1 Message Date
Sean Christopherson f99279825e KVM: lapic: Refactor ->set_hv_timer to use an explicit expired param
Refactor kvm_x86_ops->set_hv_timer to use an explicit parameter for
stating that the timer has expired.  Overloading the return value is
unnecessarily clever, e.g. can lead to confusion over the proper return
value from start_hv_timer() when r==1.

Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-30 21:32:16 +02:00
Sean Christopherson f1ba5cfbe4 KVM: lapic: Explicitly cancel the hv timer if it's pre-expired
Explicitly call cancel_hv_timer() instead of returning %false to coerce
restart_apic_timer() into canceling it by way of start_sw_timer().

Functionally, the existing code is correct in the sense that it doesn't
doing anything visibily wrong, e.g. generate spurious interrupts or miss
an interrupt.  But it's extremely confusing and inefficient, e.g. there
are multiple extraneous calls to apic_timer_expired() that effectively
get dropped due to @timer_pending being %true.

Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-30 21:32:16 +02:00
Sean Christopherson ee66e453db KVM: lapic: Busy wait for timer to expire when using hv_timer
...now that VMX's preemption timer, i.e. the hv_timer, also adjusts its
programmed time based on lapic_timer_advance_ns.  Without the delay, a
guest can see a timer interrupt arrive before the requested time when
KVM is using the hv_timer to emulate the guest's interrupt.

Fixes: c5ce8235cf ("KVM: VMX: Optimize tscdeadline timer latency")
Cc: <stable@vger.kernel.org>
Cc: Wanpeng Li <wanpengli@tencent.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-30 21:32:15 +02:00
Liran Alon 6c6a2ab962 KVM: VMX: Nop emulation of MSR_IA32_POWER_CTL
Since commits 668fffa3f8 ("kvm: better MWAIT emulation for guestsâ€)
and 4d5422cea3 ("KVM: X86: Provide a capability to disable MWAIT interceptsâ€),
KVM was modified to allow an admin to configure certain guests to execute
MONITOR/MWAIT inside guest without being intercepted by host.

This is useful in case admin wishes to allocate a dedicated logical
processor for each vCPU thread. Thus, making it safe for guest to
completely control the power-state of the logical processor.

The ability to use this new KVM capability was introduced to QEMU by
commits 6f131f13e68d ("kvm: support -overcommit cpu-pm=on|offâ€) and
2266d4431132 ("i386/cpu: make -cpu host support monitor/mwaitâ€).

However, exposing MONITOR/MWAIT to a Linux guest may cause it's intel_idle
kernel module to execute c1e_promotion_disable() which will attempt to
RDMSR/WRMSR from/to MSR_IA32_POWER_CTL to manipulate the "C1E Enable"
bit. This behaviour was introduced by commit
32e9518005 ("intel_idle: export both C1 and C1Eâ€).

Becuase KVM doesn't emulate this MSR, running KVM with ignore_msrs=0
will cause the above guest behaviour to raise a #GP which will cause
guest to kernel panic.

Therefore, add support for nop emulation of MSR_IA32_POWER_CTL to
avoid #GP in guest in this scenario.

Future commits can optimise emulation further by reflecting guest
MSR changes to host MSR to provide guest with the ability to
fine-tune the dedicated logical processor power-state.

Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-30 21:32:14 +02:00
Luwei Kang c715eb9fe9 KVM: x86: Add support of clear Trace_ToPA_PMI status
Let guests clear the Intel PT ToPA PMI status (bit 55 of
MSR_CORE_PERF_GLOBAL_OVF_CTRL).

Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-30 21:32:14 +02:00
Luwei Kang 8479e04e7d KVM: x86: Inject PMI for KVM guest
Inject a PMI for KVM guest when Intel PT working
in Host-Guest mode and Guest ToPA entry memory buffer
was completely filled.

Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-30 21:32:13 +02:00
Sean Christopherson b904cb8dff KVM: lapic: Check for in-kernel LAPIC before deferencing apic pointer
...to avoid dereferencing a null pointer when querying the per-vCPU
timer advance.

Fixes: 39497d7660 ("KVM: lapic: Track lapic timer advance per vCPU")
Reported-by: syzbot+f7e65445a40d3e0e4ebf@syzkaller.appspotmail.com
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-30 21:22:15 +02:00
Vitaly Kuznetsov 0699c64a4b x86/kvm/mmu: reset MMU context when 32-bit guest switches PAE
Commit 47c42e6b41 ("KVM: x86: fix handling of role.cr4_pae and rename it
to 'gpte_size'") introduced a regression: 32-bit PAE guests stopped
working. The issue appears to be: when guest switches (enables) PAE we need
to re-initialize MMU context (set context->root_level, do
reset_rsvds_bits_mask(), ...) but init_kvm_tdp_mmu() doesn't do that
because we threw away is_pae(vcpu) flag from mmu role. Restore it to
kvm_mmu_extended_role (as we now don't need it in base role) to fix
the issue.

Fixes: 47c42e6b41 ("KVM: x86: fix handling of role.cr4_pae and rename it to 'gpte_size'")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-30 21:03:58 +02:00
Sean Christopherson 8764ed55c9 KVM: x86: Whitelist port 0x7e for pre-incrementing %rip
KVM's recent bug fix to update %rip after emulating I/O broke userspace
that relied on the previous behavior of incrementing %rip prior to
exiting to userspace.  When running a Windows XP guest on AMD hardware,
Qemu may patch "OUT 0x7E" instructions in reaction to the OUT itself.
Because KVM's old behavior was to increment %rip before exiting to
userspace to handle the I/O, Qemu manually adjusted %rip to account for
the OUT instruction.

Arguably this is a userspace bug as KVM requires userspace to re-enter
the kernel to complete instruction emulation before taking any other
actions.  That being said, this is a bit of a grey area and breaking
userspace that has worked for many years is bad.

Pre-increment %rip on OUT to port 0x7e before exiting to userspace to
hack around the issue.

Fixes: 45def77ebf ("KVM: x86: update %rip after emulating IO")
Reported-by: Simon Becherer <simon@becherer.de>
Reported-and-tested-by: Iakov Karpov <srid@rkmail.ru>
Reported-by: Gabriele Balducci <balducci@units.it>
Reported-by: Antti Antinoja <reader@fennosys.fi>
Cc: stable@vger.kernel.org
Cc: Takashi Iwai <tiwai@suse.com>
Cc: Jiri Slaby <jslaby@suse.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-30 21:03:42 +02:00
Rick Edgecombe f2fde6a5bc KVM: VMX: Move RSB stuffing to before the first RET after VM-Exit
The not-so-recent change to move VMX's VM-Exit handing to a dedicated
"function" unintentionally exposed KVM to a speculative attack from the
guest by executing a RET prior to stuffing the RSB.  Make RSB stuffing
happen immediately after VM-Exit, before any unpaired returns.

Alternatively, the VM-Exit path could postpone full RSB stuffing until
its current location by stuffing the RSB only as needed, or by avoiding
returns in the VM-Exit path entirely, but both alternatives are beyond
ugly since vmx_vmexit() has multiple indirect callers (by way of
vmx_vmenter()).  And putting the RSB stuffing immediately after VM-Exit
makes it much less likely to be re-broken in the future.

Note, the cost of PUSH/POP could be avoided in the normal flow by
pairing the PUSH RAX with the POP RAX in __vmx_vcpu_run() and adding an
a POP to nested_vmx_check_vmentry_hw(), but such a weird/subtle
dependency is likely to cause problems in the long run, and PUSH/POP
will take all of a few cycles, which is peanuts compared to the number
of cycles required to fill the RSB.

Fixes: 453eafbe65 ("KVM: VMX: Move VM-Enter + VM-Exit handling to non-inline sub-routines")
Reported-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-27 09:48:52 +02:00
David Howells 5dd50aaeb1
Make anon_inodes unconditional
Make the anon_inodes facility unconditional so that it can be used by core
VFS code and pidfd code.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
[christian@brauner.io: adapt commit message to mention pidfds]
Signed-off-by: Christian Brauner <christian@brauner.io>
2019-04-19 14:03:11 +02:00
Sean Christopherson b6aa57c69c KVM: lapic: Convert guest TSC to host time domain if necessary
To minimize the latency of timer interrupts as observed by the guest,
KVM adjusts the values it programs into the host timers to account for
the host's overhead of programming and handling the timer event.  In
the event that the adjustments are too aggressive, i.e. the timer fires
earlier than the guest expects, KVM busy waits immediately prior to
entering the guest.

Currently, KVM manually converts the delay from nanoseconds to clock
cycles.  But, the conversion is done in the guest's time domain, while
the delay occurs in the host's time domain.  This is perfectly ok when
the guest and host are using the same TSC ratio, but if the guest is
using a different ratio then the delay may not be accurate and could
wait too little or too long.

When the guest is not using the host's ratio, convert the delay from
guest clock cycles to host nanoseconds and use ndelay() instead of
__delay() to provide more accurate timing.  Because converting to
nanoseconds is relatively expensive, e.g. requires division and more
multiplication ops, continue using __delay() directly when guest and
host TSCs are running at the same ratio.

Cc: Liran Alon <liran.alon@oracle.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: stable@vger.kernel.org
Fixes: 3b8a5df6c4 ("KVM: LAPIC: Tune lapic_timer_advance_ns automatically")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-18 18:56:30 +02:00
Sean Christopherson c3941d9e0c KVM: lapic: Allow user to disable adaptive tuning of timer advancement
The introduction of adaptive tuning of lapic timer advancement did not
allow for the scenario where userspace would want to disable adaptive
tuning but still employ timer advancement, e.g. for testing purposes or
to handle a use case where adaptive tuning is unable to settle on a
suitable time.  This is epecially pertinent now that KVM places a hard
threshold on the maximum advancment time.

Rework the timer semantics to accept signed values, with a value of '-1'
being interpreted as "use adaptive tuning with KVM's internal default",
and any other value being used as an explicit advancement time, e.g. a
time of '0' effectively disables advancement.

Note, this does not completely restore the original behavior of
lapic_timer_advance_ns.  Prior to tracking the advancement per vCPU,
which is necessary to support autotuning, userspace could adjust
lapic_timer_advance_ns for *running* vCPU.  With per-vCPU tracking, the
module params are snapshotted at vCPU creation, i.e. applying a new
advancement effectively requires restarting a VM.

Dynamically updating a running vCPU is possible, e.g. a helper could be
added to retrieve the desired delay, choosing between the global module
param and the per-VCPU value depending on whether or not auto-tuning is
(globally) enabled, but introduces a great deal of complexity.  The
wrapper itself is not complex, but understanding and documenting the
effects of dynamically toggling auto-tuning and/or adjusting the timer
advancement is nigh impossible since the behavior would be dependent on
KVM's implementation as well as compiler optimizations.  In other words,
providing stable behavior would require extremely careful consideration
now and in the future.

Given that the expected use of a manually-tuned timer advancement is to
"tune once, run many", use the vastly simpler approach of recognizing
changes to the module params only when creating a new vCPU.

Cc: Liran Alon <liran.alon@oracle.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Cc: stable@vger.kernel.org
Fixes: 3b8a5df6c4 ("KVM: LAPIC: Tune lapic_timer_advance_ns automatically")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-18 18:56:15 +02:00
Sean Christopherson 39497d7660 KVM: lapic: Track lapic timer advance per vCPU
Automatically adjusting the globally-shared timer advancement could
corrupt the timer, e.g. if multiple vCPUs are concurrently adjusting
the advancement value.  That could be partially fixed by using a local
variable for the arithmetic, but it would still be susceptible to a
race when setting timer_advance_adjust_done.

And because virtual_tsc_khz and tsc_scaling_ratio are per-vCPU, the
correct calibration for a given vCPU may not apply to all vCPUs.

Furthermore, lapic_timer_advance_ns is marked __read_mostly, which is
effectively violated when finding a stable advancement takes an extended
amount of timer.

Opportunistically change the definition of lapic_timer_advance_ns to
a u32 so that it matches the style of struct kvm_timer.  Explicitly
pass the param to kvm_create_lapic() so that it doesn't have to be
exposed to lapic.c, thus reducing the probability of unintentionally
using the global value instead of the per-vCPU value.

Cc: Liran Alon <liran.alon@oracle.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Cc: stable@vger.kernel.org
Fixes: 3b8a5df6c4 ("KVM: LAPIC: Tune lapic_timer_advance_ns automatically")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-18 18:55:41 +02:00
Sean Christopherson 57bf67e73c KVM: lapic: Disable timer advancement if adaptive tuning goes haywire
To minimize the latency of timer interrupts as observed by the guest,
KVM adjusts the values it programs into the host timers to account for
the host's overhead of programming and handling the timer event.  Now
that the timer advancement is automatically tuned during runtime, it's
effectively unbounded by default, e.g. if KVM is running as L1 the
advancement can measure in hundreds of milliseconds.

Disable timer advancement if adaptive tuning yields an advancement of
more than 5000ns, as large advancements can break reasonable assumptions
of the guest, e.g. that a timer configured to fire after 1ms won't
arrive on the next instruction.  Although KVM busy waits to mitigate the
case of a timer event arriving too early, complications can arise when
shifting the interrupt too far, e.g. kvm-unit-test's vmx.interrupt test
will fail when its "host" exits on interrupts as KVM may inject the INTR
before the guest executes STI+HLT.   Arguably the unit test is "broken"
in the sense that delaying a timer interrupt by 1ms doesn't technically
guarantee the interrupt will arrive after STI+HLT, but it's a reasonable
assumption that KVM should support.

Furthermore, an unbounded advancement also effectively unbounds the time
spent busy waiting, e.g. if the guest programs a timer with a very large
delay.

5000ns is a somewhat arbitrary threshold.  When running on bare metal,
which is the intended use case, timer advancement is expected to be in
the general vicinity of 1000ns.  5000ns is high enough that false
positives are unlikely, while not being so high as to negatively affect
the host's performance/stability.

Note, a future patch will enable userspace to disable KVM's adaptive
tuning, which will allow priveleged userspace will to specifying an
advancement value in excess of this arbitrary threshold in order to
satisfy an abnormal use case.

Cc: Liran Alon <liran.alon@oracle.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: stable@vger.kernel.org
Fixes: 3b8a5df6c4 ("KVM: LAPIC: Tune lapic_timer_advance_ns automatically")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-18 18:53:18 +02:00
Vitaly Kuznetsov da66761c2d x86: kvm: hyper-v: deal with buggy TLB flush requests from WS2012
It was reported that with some special Multi Processor Group configuration,
e.g:
 bcdedit.exe /set groupsize 1
 bcdedit.exe /set maxgroup on
 bcdedit.exe /set groupaware on
for a 16-vCPU guest WS2012 shows BSOD on boot when PV TLB flush mechanism
is in use.

Tracing kvm_hv_flush_tlb immediately reveals the issue:

 kvm_hv_flush_tlb: processor_mask 0x0 address_space 0x0 flags 0x2

The only flag set in this request is HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES,
however, processor_mask is 0x0 and no HV_FLUSH_ALL_PROCESSORS is specified.
We don't flush anything and apparently it's not what Windows expects.

TLFS doesn't say anything about such requests and newer Windows versions
seem to be unaffected. This all feels like a WS2012 bug, which is, however,
easy to workaround in KVM: let's flush everything when we see an empty
flush request, over-flushing doesn't hurt.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-18 18:53:18 +02:00
Liran Alon c09d65d9ea KVM: x86: Consider LAPIC TSC-Deadline timer expired if deadline too short
If guest sets MSR_IA32_TSCDEADLINE to value such that in host
time-domain it's shorter than lapic_timer_advance_ns, we can
reach a case that we call hrtimer_start() with expiration time set at
the past.

Because lapic_timer.timer is init with HRTIMER_MODE_ABS_PINNED, it
is not allowed to run in softirq and therefore will never expire.

To avoid such a scenario, verify that deadline expiration time is set on
host time-domain further than (now + lapic_timer_advance_ns).

A future patch can also consider adding a min_timer_deadline_ns module parameter,
similar to min_timer_period_us to avoid races that amount of ns it takes
to run logic could still call hrtimer_start() with expiration timer set
at the past.

Reviewed-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-18 18:53:17 +02:00
Paolo Bonzini c110ae578c kvm: move KVM_CAP_NR_MEMSLOTS to common code
All architectures except MIPS were defining it in the same way,
and memory slots are handled entirely by common code so there
is no point in keeping the definition per-architecture.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:39:08 +02:00
Sean Christopherson 0a62956312 KVM: x86: Inject #GP if guest attempts to set unsupported EFER bits
EFER.LME and EFER.NX are considered reserved if their respective feature
bits are not advertised to the guest.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:39:07 +02:00
Sean Christopherson 11988499e6 KVM: x86: Skip EFER vs. guest CPUID checks for host-initiated writes
KVM allows userspace to violate consistency checks related to the
guest's CPUID model to some degree.  Generally speaking, userspace has
carte blanche when it comes to guest state so long as jamming invalid
state won't negatively affect the host.

Currently this is seems to be a non-issue as most of the interesting
EFER checks are missing, e.g. NX and LME, but those will be added
shortly.  Proactively exempt userspace from the CPUID checks so as not
to break userspace.

Note, the efer_reserved_bits check still applies to userspace writes as
that mask reflects the host's capabilities, e.g. KVM shouldn't allow a
guest to run with NX=1 if it has been disabled in the host.

Fixes: d80174745b ("KVM: SVM: Only allow setting of EFER_SVME when CPUID SVM is set")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:39:07 +02:00
Sean Christopherson c80add0f48 KVM: nVMX: Return -EINVAL when signaling failure in VM-Entry helpers
Most, but not all, helpers that are related to emulating consistency
checks for nested VM-Entry return -EINVAL when a check fails.  Convert
the holdouts to have consistency throughout and to make it clear that
the functions are signaling pass/fail as opposed to "resume guest" vs.
"exit to userspace".

Opportunistically fix bad indentation in nested_vmx_check_guest_state().

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:39:06 +02:00
Paolo Bonzini 98d9e858fa KVM: nVMX: Return -EINVAL when signaling failure in pre-VM-Entry helpers
Convert all top-level nested VM-Enter consistency check functions to
return 0/-EINVAL instead of failure codes, since now they can only
ever return one failure code.

This also does not give the false impression that failure information is
always consumed and/or relevant, e.g. vmx_set_nested_state() only
cares whether or not the checks were successful.

nested_check_host_control_regs() can also now be inlined into its caller,
nested_vmx_check_host_state, since the two have effectively become the
same function.

Based on a patch by Sean Christopherson.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:39:05 +02:00
Sean Christopherson 5478ba349f KVM: nVMX: Rename and split top-level consistency checks to match SDM
Rename the top-level consistency check functions to (loosely) align with
the SDM.  Historically, KVM has used the terms "prereq" and "postreq" to
differentiate between consistency checks that lead to VM-Fail and those
that lead to VM-Exit.  The terms are vague and potentially misleading,
e.g. "postreq" might be interpreted as occurring after VM-Entry.

Note, while the SDM lumps controls and host state into a single section,
"Checks on VMX Controls and Host-State Area", split them into separate
top-level functions as the two categories of checks result in different
VM instruction errors.  This split will allow for additional cleanup.

Note #2, "vmentry" is intentionally dropped from the new function names
to avoid confusion with nested_check_vm_entry_controls(), and to keep
the length of the functions names somewhat manageable.

Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:39:05 +02:00
Sean Christopherson 9c3e922ba3 KVM: nVMX: Move guest non-reg state checks to VM-Exit path
Per Intel's SDM, volume 3, section Checking and Loading Guest State:

  Because the checking and the loading occur concurrently, a failure may
  be discovered only after some state has been loaded. For this reason,
  the logical processor responds to such failures by loading state from
  the host-state area, as it would for a VM exit.

In other words, a failed non-register state consistency check results in
a VM-Exit, not VM-Fail.  Moving the non-reg state checks also paves the
way for renaming nested_vmx_check_vmentry_postreqs() to align with the
SDM, i.e. nested_vmx_check_vmentry_guest_state().

Fixes: 26539bd0e4 ("KVM: nVMX: check vmcs12 for valid activity state")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:39:04 +02:00
Krish Sadhukhan de2bc2bfdf kvm: nVMX: Check "load IA32_PAT" VM-entry control on vmentry
According to section "Checking and Loading Guest State" in Intel SDM vol
3C, the following check is performed on vmentry:

    If the "load IA32_PAT" VM-entry control is 1, the value of the field
    for the IA32_PAT MSR must be one that could be written by WRMSR
    without fault at CPL 0. Specifically, each of the 8 bytes in the
    field must have one of the values 0 (UC), 1 (WC), 4 (WT), 5 (WP),
    6 (WB), or 7 (UC-).

Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Karl Heubaum <karl.heubaum@oracle.com>
Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:39:03 +02:00
Krish Sadhukhan f6b0db1fda kvm: nVMX: Check "load IA32_PAT" VM-exit control on vmentry
According to section "Checks on Host Control Registers and MSRs" in Intel
SDM vol 3C, the following check is performed on vmentry:

    If the "load IA32_PAT" VM-exit control is 1, the value of the field
    for the IA32_PAT MSR must be one that could be written by WRMSR
    without fault at CPL 0. Specifically, each of the 8 bytes in the
    field must have one of the values 0 (UC), 1 (WC), 4 (WT), 5 (WP),
    6 (WB), or 7 (UC-).

Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Karl Heubaum <karl.heubaum@oracle.com>
Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:39:02 +02:00
Paolo Bonzini 674ea351cd KVM: x86: optimize check for valid PAT value
This check will soon be done on every nested vmentry and vmexit,
"parallelize" it using bitwise operations.

Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:39:02 +02:00
Paolo Bonzini f16cb57be8 KVM: x86: clear VM_EXIT_SAVE_IA32_PAT
This is not needed, PAT writes always take an MSR vmexit.

Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:39:01 +02:00
Paolo Bonzini 9d609649bb KVM: vmx: print more APICv fields in dump_vmcs
The SVI, RVI, virtual-APIC page address and APIC-access page address fields
were left out of dump_vmcs.  Add them.

KERN_CONT technically isn't SMP safe, but it's okay to use it here since
the whole of dump_vmcs() is a single huge multi-line piece of output
that isn't SMP-safe.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:39:00 +02:00
Vitaly Kuznetsov 7a223e06b1 KVM: x86: avoid misreporting level-triggered irqs as edge-triggered in tracing
In __apic_accept_irq() interface trig_mode is int and actually on some code
paths it is set above u8:

kvm_apic_set_irq() extracts it from 'struct kvm_lapic_irq' where trig_mode
is u16. This is done on purpose as e.g. kvm_set_msi_irq() sets it to
(1 << 15) & e->msi.data

kvm_apic_local_deliver sets it to reg & (1 << 15).

Fix the immediate issue by making 'tm' into u16. We may also want to adjust
__apic_accept_irq() interface and use proper sizes for vector, level,
trig_mode but this is not urgent.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:38:08 +02:00
Paolo Bonzini 1d487e9bf8 KVM: fix spectrev1 gadgets
These were found with smatch, and then generalized when applicable.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:38:07 +02:00
Hariprasad Kelam be43c440eb KVM: x86: fix warning Using plain integer as NULL pointer
Changed passing argument as "0 to NULL" which resolves below sparse warning

arch/x86/kvm/x86.c:3096:61: warning: Using plain integer as NULL pointer

Signed-off-by: Hariprasad Kelam <hariprasad.kelam@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:38:07 +02:00
Sean Christopherson b68f3cc7d9 KVM: x86: Always use 32-bit SMRAM save state for 32-bit kernels
Invoking the 64-bit variation on a 32-bit kenrel will crash the guest,
trigger a WARN, and/or lead to a buffer overrun in the host, e.g.
rsm_load_state_64() writes r8-r15 unconditionally, but enum kvm_reg and
thus x86_emulate_ctxt._regs only define r8-r15 for CONFIG_X86_64.

KVM allows userspace to report long mode support via CPUID, even though
the guest is all but guaranteed to crash if it actually tries to enable
long mode.  But, a pure 32-bit guest that is ignorant of long mode will
happily plod along.

SMM complicates things as 64-bit CPUs use a different SMRAM save state
area.  KVM handles this correctly for 64-bit kernels, e.g. uses the
legacy save state map if userspace has hid long mode from the guest,
but doesn't fare well when userspace reports long mode support on a
32-bit host kernel (32-bit KVM doesn't support 64-bit guests).

Since the alternative is to crash the guest, e.g. by not loading state
or explicitly requesting shutdown, unconditionally use the legacy SMRAM
save state map for 32-bit KVM.  If a guest has managed to get far enough
to handle SMIs when running under a weird/buggy userspace hypervisor,
then don't deliberately crash the guest since there are no downsides
(from KVM's perspective) to allow it to continue running.

Fixes: 660a5d517a ("KVM: x86: save/load state on SMM switch")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:37:38 +02:00
Sean Christopherson 8f4dc2e77c KVM: x86: Don't clear EFER during SMM transitions for 32-bit vCPU
Neither AMD nor Intel CPUs have an EFER field in the legacy SMRAM save
state area, i.e. don't save/restore EFER across SMM transitions.  KVM
somewhat models this, e.g. doesn't clear EFER on entry to SMM if the
guest doesn't support long mode.  But during RSM, KVM unconditionally
clears EFER so that it can get back to pure 32-bit mode in order to
start loading CRs with their actual non-SMM values.

Clear EFER only when it will be written when loading the non-SMM state
so as to preserve bits that can theoretically be set on 32-bit vCPUs,
e.g. KVM always emulates EFER_SCE.

And because CR4.PAE is cleared only to play nice with EFER, wrap that
code in the long mode check as well.  Note, this may result in a
compiler warning about cr4 being consumed uninitialized.  Re-read CR4
even though it's technically unnecessary, as doing so allows for more
readable code and RSM emulation is not a performance critical path.

Fixes: 660a5d517a ("KVM: x86: save/load state on SMM switch")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:37:37 +02:00
Sean Christopherson 9ec19493fb KVM: x86: clear SMM flags before loading state while leaving SMM
RSM emulation is currently broken on VMX when the interrupted guest has
CR4.VMXE=1.  Stop dancing around the issue of HF_SMM_MASK being set when
loading SMSTATE into architectural state, e.g. by toggling it for
problematic flows, and simply clear HF_SMM_MASK prior to loading
architectural state (from SMRAM save state area).

Reported-by: Jon Doron <arilou@gmail.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Liran Alon <liran.alon@oracle.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Fixes: 5bea5123cb ("KVM: VMX: check nested state and CR4.VMXE against SMM")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Tested-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:37:36 +02:00
Sean Christopherson c5833c7a43 KVM: x86: Open code kvm_set_hflags
Prepare for clearing HF_SMM_MASK prior to loading state from the SMRAM
save state map, i.e. kvm_smm_changed() needs to be called after state
has been loaded and so cannot be done automatically when setting
hflags from RSM.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:37:36 +02:00
Sean Christopherson ed19321fb6 KVM: x86: Load SMRAM in a single shot when leaving SMM
RSM emulation is currently broken on VMX when the interrupted guest has
CR4.VMXE=1.  Rather than dance around the issue of HF_SMM_MASK being set
when loading SMSTATE into architectural state, ideally RSM emulation
itself would be reworked to clear HF_SMM_MASK prior to loading non-SMM
architectural state.

Ostensibly, the only motivation for having HF_SMM_MASK set throughout
the loading of state from the SMRAM save state area is so that the
memory accesses from GET_SMSTATE() are tagged with role.smm.  Load
all of the SMRAM save state area from guest memory at the beginning of
RSM emulation, and load state from the buffer instead of reading guest
memory one-by-one.

This paves the way for clearing HF_SMM_MASK prior to loading state,
and also aligns RSM with the enter_smm() behavior, which fills a
buffer and writes SMRAM save state in a single go.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:37:35 +02:00
Liran Alon e51bfdb687 KVM: nVMX: Expose RDPMC-exiting only when guest supports PMU
Issue was discovered when running kvm-unit-tests on KVM running as L1 on
top of Hyper-V.

When vmx_instruction_intercept unit-test attempts to run RDPMC to test
RDPMC-exiting, it is intercepted by L1 KVM which it's EXIT_REASON_RDPMC
handler raise #GP because vCPU exposed by Hyper-V doesn't support PMU.
Instead of unit-test expectation to be reflected with EXIT_REASON_RDPMC.

The reason vmx_instruction_intercept unit-test attempts to run RDPMC
even though Hyper-V doesn't support PMU is because L1 expose to L2
support for RDPMC-exiting. Which is reasonable to assume that is
supported only in case CPU supports PMU to being with.

Above issue can easily be simulated by modifying
vmx_instruction_intercept config in x86/unittests.cfg to run QEMU with
"-cpu host,+vmx,-pmu" and run unit-test.

To handle issue, change KVM to expose RDPMC-exiting only when guest
supports PMU.

Reported-by: Saar Amar <saaramar@microsoft.com>
Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:37:34 +02:00
Liran Alon 672ff6cff8 KVM: x86: Raise #GP when guest vCPU do not support PMU
Before this change, reading a VMware pseduo PMC will succeed even when
PMU is not supported by guest. This can easily be seen by running
kvm-unit-test vmware_backdoors with "-cpu host,-pmu" option.

Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:37:34 +02:00
WANG Chao 1811d979c7 x86/kvm: move kvm_load/put_guest_xcr0 into atomic context
guest xcr0 could leak into host when MCE happens in guest mode. Because
do_machine_check() could schedule out at a few places.

For example:

kvm_load_guest_xcr0
...
kvm_x86_ops->run(vcpu) {
  vmx_vcpu_run
    vmx_complete_atomic_exit
      kvm_machine_check
        do_machine_check
          do_memory_failure
            memory_failure
              lock_page

In this case, host_xcr0 is 0x2ff, guest vcpu xcr0 is 0xff. After schedule
out, host cpu has guest xcr0 loaded (0xff).

In __switch_to {
     switch_fpu_finish
       copy_kernel_to_fpregs
         XRSTORS

If any bit i in XSTATE_BV[i] == 1 and xcr0[i] == 0, XRSTORS will
generate #GP (In this case, bit 9). Then ex_handler_fprestore kicks in
and tries to reinitialize fpu by restoring init fpu state. Same story as
last #GP, except we get DOUBLE FAULT this time.

Cc: stable@vger.kernel.org
Signed-off-by: WANG Chao <chao.wang@ucloud.cn>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:37:33 +02:00
Vitaly Kuznetsov 99c221796a KVM: x86: svm: make sure NMI is injected after nmi_singlestep
I noticed that apic test from kvm-unit-tests always hangs on my EPYC 7401P,
the hanging test nmi-after-sti is trying to deliver 30000 NMIs and tracing
shows that we're sometimes able to deliver a few but never all.

When we're trying to inject an NMI we may fail to do so immediately for
various reasons, however, we still need to inject it so enable_nmi_window()
arms nmi_singlestep mode. #DB occurs as expected, but we're not checking
for pending NMIs before entering the guest and unless there's a different
event to process, the NMI will never get delivered.

Make KVM_REQ_EVENT request on the vCPU from db_interception() to make sure
pending NMIs are checked and possibly injected.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:37:32 +02:00
Suthikulpanit, Suravee e44e3eaccc svm/avic: Fix invalidate logical APIC id entry
Only clear the valid bit when invalidate logical APIC id entry.
The current logic clear the valid bit, but also set the rest of
the bits (including reserved bits) to 1.

Fixes: 98d90582be ('svm: Fix AVIC DFR and LDR handling')
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:37:32 +02:00
Suthikulpanit, Suravee 4a58038b9e Revert "svm: Fix AVIC incomplete IPI emulation"
This reverts commit bb218fbcfa.

As Oren Twaig pointed out the old discussion:

  https://patchwork.kernel.org/patch/8292231/

that the change coud potentially cause an extra IPI to be sent to
the destination vcpu because the AVIC hardware already set the IRR bit
before the incomplete IPI #VMEXIT with id=1 (target vcpu is not running).
Since writting to ICR and ICR2 will also set the IRR. If something triggers
the destination vcpu to get scheduled before the emulation finishes, then
this could result in an additional IPI.

Also, the issue mentioned in the commit bb218fbcfa was misdiagnosed.

Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Reported-by: Oren Twaig <oren@scalemp.com>
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:37:31 +02:00
Ben Gardon bc8a3d8925 kvm: mmu: Fix overflow on kvm mmu page limit calculation
KVM bases its memory usage limits on the total number of guest pages
across all memslots. However, those limits, and the calculations to
produce them, use 32 bit unsigned integers. This can result in overflow
if a VM has more guest pages that can be represented by a u32. As a
result of this overflow, KVM can use a low limit on the number of MMU
pages it will allocate. This makes KVM unable to map all of guest memory
at once, prompting spurious faults.

Tested: Ran all kvm-unit-tests on an Intel Haswell machine. This patch
	introduced no new failures.

Signed-off-by: Ben Gardon <bgardon@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:37:30 +02:00
Paolo Bonzini 2b27924bb1 KVM: nVMX: always use early vmcs check when EPT is disabled
The remaining failures of vmx.flat when EPT is disabled are caused by
incorrectly reflecting VMfails to the L1 hypervisor.  What happens is
that nested_vmx_restore_host_state corrupts the guest CR3, reloading it
with the host's shadow CR3 instead, because it blindly loads GUEST_CR3
from the vmcs01.

For simplicity let's just always use hardware VMCS checks when EPT is
disabled.  This way, nested_vmx_restore_host_state is not reached at
all (or at least shouldn't be reached).

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:37:12 +02:00
Paolo Bonzini 690908104e KVM: nVMX: allow tests to use bad virtual-APIC page address
As mentioned in the comment, there are some special cases where we can simply
clear the TPR shadow bit from the CPU-based execution controls in the vmcs02.
Handle them so that we can remove some XFAILs from vmx.flat.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 10:59:07 +02:00
Sean Christopherson cfd32acf78 KVM: x86/mmu: Fix an inverted list_empty() check when zapping sptes
A recently introduced helper for handling zap vs. remote flush
incorrectly bails early, effectively leaking defunct shadow pages.
Manifests as a slab BUG when exiting KVM due to the shadow pages
being alive when their associated cache is destroyed.

==========================================================================
BUG kvm_mmu_page_header: Objects remaining in kvm_mmu_page_header on ...
--------------------------------------------------------------------------
Disabling lock debugging due to kernel taint
INFO: Slab 0x00000000fc436387 objects=26 used=23 fp=0x00000000d023caee ...
CPU: 6 PID: 4315 Comm: rmmod Tainted: G    B             5.1.0-rc2+ #19
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
Call Trace:
 dump_stack+0x46/0x5b
 slab_err+0xad/0xd0
 ? on_each_cpu_mask+0x3c/0x50
 ? ksm_migrate_page+0x60/0x60
 ? on_each_cpu_cond_mask+0x7c/0xa0
 ? __kmalloc+0x1ca/0x1e0
 __kmem_cache_shutdown+0x13a/0x310
 shutdown_cache+0xf/0x130
 kmem_cache_destroy+0x1d5/0x200
 kvm_mmu_module_exit+0xa/0x30 [kvm]
 kvm_arch_exit+0x45/0x60 [kvm]
 kvm_exit+0x6f/0x80 [kvm]
 vmx_exit+0x1a/0x50 [kvm_intel]
 __x64_sys_delete_module+0x153/0x1f0
 ? exit_to_usermode_loop+0x88/0xc0
 do_syscall_64+0x4f/0x100
 entry_SYSCALL_64_after_hwframe+0x44/0xa9

Fixes: a21136345c ("KVM: x86/mmu: Split remote_flush+zap case out of kvm_mmu_flush_or_zap()")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-15 13:25:07 +02:00
Rik van Riel 5f409e20b7 x86/fpu: Defer FPU state load until return to userspace
Defer loading of FPU state until return to userspace. This gives
the kernel the potential to skip loading FPU state for tasks that
stay in kernel mode, or for tasks that end up with repeated
invocations of kernel_fpu_begin() & kernel_fpu_end().

The fpregs_lock/unlock() section ensures that the registers remain
unchanged. Otherwise a context switch or a bottom half could save the
registers to its FPU context and the processor's FPU registers would
became random if modified at the same time.

KVM swaps the host/guest registers on entry/exit path. This flow has
been kept as is. First it ensures that the registers are loaded and then
saves the current (host) state before it loads the guest's registers. The
swap is done at the very end with disabled interrupts so it should not
change anymore before theg guest is entered. The read/save version seems
to be cheaper compared to memcpy() in a micro benchmark.

Each thread gets TIF_NEED_FPU_LOAD set as part of fork() / fpu__copy().
For kernel threads, this flag gets never cleared which avoids saving /
restoring the FPU state for kernel threads and during in-kernel usage of
the FPU registers.

 [
   bp: Correct and update commit message and fix checkpatch warnings.
   s/register/registers/ where it is used in plural.
   minor comment corrections.
   remove unused trace_x86_fpu_activate_state() TP.
 ]

Signed-off-by: Rik van Riel <riel@surriel.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aubrey Li <aubrey.li@intel.com>
Cc: Babu Moger <Babu.Moger@amd.com>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: Dmitry Safonov <dima@arista.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Waiman Long <longman@redhat.com>
Cc: x86-ml <x86@kernel.org>
Cc: Yi Wang <wang.yi59@zte.com.cn>
Link: https://lkml.kernel.org/r/20190403164156.19645-24-bigeasy@linutronix.de
2019-04-12 19:34:47 +02:00
Sebastian Andrzej Siewior c806e88734 x86/pkeys: Provide *pkru() helpers
Dave Hansen asked for __read_pkru() and __write_pkru() to be
symmetrical.

As part of the series __write_pkru() will read back the value and only
write it if it is different.

In order to make both functions symmetrical, move the function
containing only the opcode asm into a function called like the
instruction itself.

__write_pkru() will just invoke wrpkru() but in a follow-up patch will
also read back the value.

 [ bp: Convert asm opcode wrapper names to rd/wrpkru(). ]

Suggested-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Juergen Gross <jgross@suse.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-13-bigeasy@linutronix.de
2019-04-11 15:40:58 +02:00
Sebastian Andrzej Siewior abd16d68d6 x86/fpu: Use a feature number instead of mask in two more helpers
After changing the argument of __raw_xsave_addr() from a mask to
number Dave suggested to check if it makes sense to do the same for
get_xsave_addr(). As it turns out it does.

Only get_xsave_addr() needs the mask to check if the requested feature
is part of what is supported/saved and then uses the number again. The
shift operation is cheaper compared to fls64() (find last bit set).
Also, the feature number uses less opcode space compared to the mask. :)

Make the get_xsave_addr() argument a xfeature number instead of a mask
and fix up its callers.

Furthermore, use xfeature_nr and xfeature_mask consistently.

This results in the following changes to the kvm code:

  feature -> xfeature_mask
  index -> xfeature_nr

Suggested-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Rik van Riel <riel@surriel.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Siarhei Liakh <Siarhei.Liakh@concurrent-rt.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-12-bigeasy@linutronix.de
2019-04-10 18:20:27 +02:00
Marc Orr c73f4c998e KVM: x86: nVMX: fix x2APIC VTPR read intercept
Referring to the "VIRTUALIZING MSR-BASED APIC ACCESSES" chapter of the
SDM, when "virtualize x2APIC mode" is 1 and "APIC-register
virtualization" is 0, a RDMSR of 808H should return the VTPR from the
virtual APIC page.

However, for nested, KVM currently fails to disable the read intercept
for this MSR. This means that a RDMSR exit takes precedence over
"virtualize x2APIC mode", and KVM passes through L1's TPR to L2,
instead of sourcing the value from L2's virtual APIC page.

This patch fixes the issue by disabling the read intercept, in VMCS02,
for the VTPR when "APIC-register virtualization" is 0.

The issue described above and fix prescribed here, were verified with
a related patch in kvm-unit-tests titled "Test VMX's virtualize x2APIC
mode w/ nested".

Signed-off-by: Marc Orr <marcorr@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Fixes: c992384bde ("KVM: vmx: speed up MSR bitmap merge")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-05 21:08:30 +02:00
Marc Orr acff78477b KVM: x86: nVMX: close leak of L0's x2APIC MSRs (CVE-2019-3887)
The nested_vmx_prepare_msr_bitmap() function doesn't directly guard the
x2APIC MSR intercepts with the "virtualize x2APIC mode" MSR. As a
result, we discovered the potential for a buggy or malicious L1 to get
access to L0's x2APIC MSRs, via an L2, as follows.

1. L1 executes WRMSR(IA32_SPEC_CTRL, 1). This causes the spec_ctrl
variable, in nested_vmx_prepare_msr_bitmap() to become true.
2. L1 disables "virtualize x2APIC mode" in VMCS12.
3. L1 enables "APIC-register virtualization" in VMCS12.

Now, KVM will set VMCS02's x2APIC MSR intercepts from VMCS12, and then
set "virtualize x2APIC mode" to 0 in VMCS02. Oops.

This patch closes the leak by explicitly guarding VMCS02's x2APIC MSR
intercepts with VMCS12's "virtualize x2APIC mode" control.

The scenario outlined above and fix prescribed here, were verified with
a related patch in kvm-unit-tests titled "Add leak scenario to
virt_x2apic_mode_test".

Note, it looks like this issue may have been introduced inadvertently
during a merge---see 15303ba5d1.

Signed-off-by: Marc Orr <marcorr@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-05 21:08:22 +02:00
David Rientjes b86bc2858b KVM: SVM: prevent DBG_DECRYPT and DBG_ENCRYPT overflow
This ensures that the address and length provided to DBG_DECRYPT and
DBG_ENCRYPT do not cause an overflow.

At the same time, pass the actual number of pages pinned in memory to
sev_unpin_memory() as a cleanup.

Reported-by: Cfir Cohen <cfir@google.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-05 20:49:42 +02:00
David Rientjes ede885ecb2 kvm: svm: fix potential get_num_contig_pages overflow
get_num_contig_pages() could potentially overflow int so make its type
consistent with its usage.

Reported-by: Cfir Cohen <cfir@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-05 20:48:59 +02:00
Sean Christopherson 45def77ebf KVM: x86: update %rip after emulating IO
Most (all?) x86 platforms provide a port IO based reset mechanism, e.g.
OUT 92h or CF9h.  Userspace may emulate said mechanism, i.e. reset a
vCPU in response to KVM_EXIT_IO, without explicitly announcing to KVM
that it is doing a reset, e.g. Qemu jams vCPU state and resumes running.

To avoid corruping %rip after such a reset, commit 0967b7bf1c ("KVM:
Skip pio instruction when it is emulated, not executed") changed the
behavior of PIO handlers, i.e. today's "fast" PIO handling to skip the
instruction prior to exiting to userspace.  Full emulation doesn't need
such tricks becase re-emulating the instruction will naturally handle
%rip being changed to point at the reset vector.

Updating %rip prior to executing to userspace has several drawbacks:

  - Userspace sees the wrong %rip on the exit, e.g. if PIO emulation
    fails it will likely yell about the wrong address.
  - Single step exits to userspace for are effectively dropped as
    KVM_EXIT_DEBUG is overwritten with KVM_EXIT_IO.
  - Behavior of PIO emulation is different depending on whether it
    goes down the fast path or the slow path.

Rather than skip the PIO instruction before exiting to userspace,
snapshot the linear %rip and cancel PIO completion if the current
value does not match the snapshot.  For a 64-bit vCPU, i.e. the most
common scenario, the snapshot and comparison has negligible overhead
as VMCS.GUEST_RIP will be cached regardless, i.e. there is no extra
VMREAD in this case.

All other alternatives to snapshotting the linear %rip that don't
rely on an explicit reset announcenment suffer from one corner case
or another.  For example, canceling PIO completion on any write to
%rip fails if userspace does a save/restore of %rip, and attempting to
avoid that issue by canceling PIO only if %rip changed then fails if PIO
collides with the reset %rip.  Attempting to zero in on the exact reset
vector won't work for APs, which means adding more hooks such as the
vCPU's MP_STATE, and so on and so forth.

Checking for a linear %rip match technically suffers from corner cases,
e.g. userspace could theoretically rewrite the underlying code page and
expect a different instruction to execute, or the guest hardcodes a PIO
reset at 0xfffffff0, but those are far, far outside of what can be
considered normal operation.

Fixes: 432baf60ee ("KVM: VMX: use kvm_fast_pio_in for handling IN I/O")
Cc: <stable@vger.kernel.org>
Reported-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-28 17:29:04 +01:00
Vitaly Kuznetsov 013cc6ebbf x86/kvm/hyper-v: avoid spurious pending stimer on vCPU init
When userspace initializes guest vCPUs it may want to zero all supported
MSRs including Hyper-V related ones including HV_X64_MSR_STIMERn_CONFIG/
HV_X64_MSR_STIMERn_COUNT. With commit f3b138c5d8 ("kvm/x86: Update SynIC
timers on guest entry only") we began doing stimer_mark_pending()
unconditionally on every config change.

The issue I'm observing manifests itself as following:
- Qemu writes 0 to STIMERn_{CONFIG,COUNT} MSRs and marks all stimers as
  pending in stimer_pending_bitmap, arms KVM_REQ_HV_STIMER;
- kvm_hv_has_stimer_pending() starts returning true;
- kvm_vcpu_has_events() starts returning true;
- kvm_arch_vcpu_runnable() starts returning true;
- when kvm_arch_vcpu_ioctl_run() gets into
  (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED) case:
  - kvm_vcpu_block() gets in 'kvm_vcpu_check_block(vcpu) < 0' and returns
    immediately, avoiding normal wait path;
  - -EAGAIN is returned from kvm_arch_vcpu_ioctl_run() immediately forcing
    userspace to retry.

So instead of normal wait path we get a busy loop on all secondary vCPUs
before they get INIT signal. This seems to be undesirable, especially given
that this happens even when Hyper-V extensions are not used.

Generally, it seems to be pointless to mark an stimer as pending in
stimer_pending_bitmap and arm KVM_REQ_HV_STIMER as the only thing
kvm_hv_process_stimers() will do is clear the corresponding bit. We may
just not mark disabled timers as pending instead.

Fixes: f3b138c5d8 ("kvm/x86: Update SynIC timers on guest entry only")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-28 17:29:03 +01:00
Xiaoyao Li 2bdb76c015 kvm/x86: Move MSR_IA32_ARCH_CAPABILITIES to array emulated_msrs
Since MSR_IA32_ARCH_CAPABILITIES is emualted unconditionally even if
host doesn't suppot it. We should move it to array emulated_msrs from
arry msrs_to_save, to report to userspace that guest support this msr.

Signed-off-by: Xiaoyao Li <xiaoyao.li@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-28 17:29:01 +01:00
Sean Christopherson 0cf9135b77 KVM: x86: Emulate MSR_IA32_ARCH_CAPABILITIES on AMD hosts
The CPUID flag ARCH_CAPABILITIES is unconditioinally exposed to host
userspace for all x86 hosts, i.e. KVM advertises ARCH_CAPABILITIES
regardless of hardware support under the pretense that KVM fully
emulates MSR_IA32_ARCH_CAPABILITIES.  Unfortunately, only VMX hosts
handle accesses to MSR_IA32_ARCH_CAPABILITIES (despite KVM_GET_MSRS
also reporting MSR_IA32_ARCH_CAPABILITIES for all hosts).

Move the MSR_IA32_ARCH_CAPABILITIES handling to common x86 code so
that it's emulated on AMD hosts.

Fixes: 1eaafe91a0 ("kvm: x86: IA32_ARCH_CAPABILITIES is always supported")
Cc: stable@vger.kernel.org
Reported-by: Xiaoyao Li <xiaoyao.li@linux.intel.com>
Cc: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-28 17:29:00 +01:00
Ben Gardon f285c633cb kvm: mmu: Used range based flushing in slot_handle_level_range
Replace kvm_flush_remote_tlbs with kvm_flush_remote_tlbs_with_address
in slot_handle_level_range. When range based flushes are not enabled
kvm_flush_remote_tlbs_with_address falls back to kvm_flush_remote_tlbs.

This changes the behavior of many functions that indirectly use
slot_handle_level_range, iff the range based flushes are enabled. The
only potential problem I see with this is that kvm->tlbs_dirty will be
cleared less often, however the only caller of slot_handle_level_range that
checks tlbs_dirty is kvm_mmu_notifier_invalidate_range_start which
checks it and does a kvm_flush_remote_tlbs after calling
kvm_unmap_hva_range anyway.

Tested: Ran all kvm-unit-tests on a Intel Haswell machine with and
	without this patch. The patch introduced no new failures.

Signed-off-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-28 17:28:57 +01:00
Wei Yang 4d66623cfb KVM: x86: remove check on nr_mmu_pages in kvm_arch_commit_memory_region()
* nr_mmu_pages would be non-zero only if kvm->arch.n_requested_mmu_pages is
  non-zero.

* nr_mmu_pages is always non-zero, since kvm_mmu_calculate_mmu_pages()
  never return zero.

Based on these two reasons, we can merge the two *if* clause and use the
return value from kvm_mmu_calculate_mmu_pages() directly. This simplify
the code and also eliminate the possibility for reader to believe
nr_mmu_pages would be zero.

Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-28 17:27:19 +01:00
Krish Sadhukhan 711eff3a8f kvm: nVMX: Add a vmentry check for HOST_SYSENTER_ESP and HOST_SYSENTER_EIP fields
According to section "Checks on VMX Controls" in Intel SDM vol 3C, the
following check is performed on vmentry of L2 guests:

    On processors that support Intel 64 architecture, the IA32_SYSENTER_ESP
    field and the IA32_SYSENTER_EIP field must each contain a canonical
    address.

Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-28 17:27:18 +01:00
Singh, Brijesh 05d5a48635 KVM: SVM: Workaround errata#1096 (insn_len maybe zero on SMAP violation)
Errata#1096:

On a nested data page fault when CR.SMAP=1 and the guest data read
generates a SMAP violation, GuestInstrBytes field of the VMCB on a
VMEXIT will incorrectly return 0h instead the correct guest
instruction bytes .

Recommend Workaround:

To determine what instruction the guest was executing the hypervisor
will have to decode the instruction at the instruction pointer.

The recommended workaround can not be implemented for the SEV
guest because guest memory is encrypted with the guest specific key,
and instruction decoder will not be able to decode the instruction
bytes. If we hit this errata in the SEV guest then log the message
and request a guest shutdown.

Reported-by: Venkatesh Srinivas <venkateshs@google.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-28 17:27:17 +01:00
Sean Christopherson 47c42e6b41 KVM: x86: fix handling of role.cr4_pae and rename it to 'gpte_size'
The cr4_pae flag is a bit of a misnomer, its purpose is really to track
whether the guest PTE that is being shadowed is a 4-byte entry or an
8-byte entry.  Prior to supporting nested EPT, the size of the gpte was
reflected purely by CR4.PAE.  KVM fudged things a bit for direct sptes,
but it was mostly harmless since the size of the gpte never mattered.
Now that a spte may be tracking an indirect EPT entry, relying on
CR4.PAE is wrong and ill-named.

For direct shadow pages, force the gpte_size to '1' as they are always
8-byte entries; EPT entries can only be 8-bytes and KVM always uses
8-byte entries for NPT and its identity map (when running with EPT but
not unrestricted guest).

Likewise, nested EPT entries are always 8-bytes.  Nested EPT presents a
unique scenario as the size of the entries are not dictated by CR4.PAE,
but neither is the shadow page a direct map.  To handle this scenario,
set cr0_wp=1 and smap_andnot_wp=1, an otherwise impossible combination,
to denote a nested EPT shadow page.  Use the information to avoid
incorrectly zapping an unsync'd indirect page in __kvm_sync_page().

Providing a consistent and accurate gpte_size fixes a bug reported by
Vitaly where fast_cr3_switch() always fails when switching from L2 to
L1 as kvm_mmu_get_page() would force role.cr4_pae=0 for direct pages,
whereas kvm_calc_mmu_role_common() would set it according to CR4.PAE.

Fixes: 7dcd575520 ("x86/kvm/mmu: check if tdp/shadow MMU reconfiguration is needed")
Reported-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Tested-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-28 17:27:03 +01:00
Sean Christopherson 552c69b1dc KVM: nVMX: Do not inherit quadrant and invalid for the root shadow EPT
Explicitly zero out quadrant and invalid instead of inheriting them from
the root_mmu.  Functionally, this patch is a nop as we (should) never
set quadrant for a direct mapped (EPT) root_mmu and nested EPT is only
allowed if EPT is used for L1, and the root_mmu will never be invalid at
this point.

Explicitly setting flags sets the stage for repurposing the legacy
paging bits in role, e.g. nxe, cr0_wp, and sm{a,e}p_andnot_wp, at which
point 'smm' would be the only flag to be inherited from root_mmu.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-28 17:27:01 +01:00
Linus Torvalds 636deed6c0 ARM: some cleanups, direct physical timer assignment, cache sanitization
for 32-bit guests
 
 s390: interrupt cleanup, introduction of the Guest Information Block,
 preparation for processor subfunctions in cpu models
 
 PPC: bug fixes and improvements, especially related to machine checks
 and protection keys
 
 x86: many, many cleanups, including removing a bunch of MMU code for
 unnecessary optimizations; plus AVIC fixes.
 
 Generic: memcg accounting
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQEcBAABAgAGBQJci+7XAAoJEL/70l94x66DUMkIAKvEefhceySHYiTpfefjLjIC
 16RewgHa+9CO4Oo5iXiWd90fKxtXLXmxDQOS4VGzN0rxvLGRw/fyXIxL1MDOkaAO
 l8SLSNuewY4XBUgISL3PMz123r18DAGOuy9mEcYU/IMesYD2F+wy5lJ17HIGq6X2
 RpoF1p3qO1jfkPTKOob6Ixd4H5beJNPKpdth7LY3PJaVhDxgouj32fxnLnATVSnN
 gENQ10fnt8BCjshRYW6Z2/9bF15JCkUFR1xdBW2/xh1oj+kvPqqqk2bEN1eVQzUy
 2hT/XkwtpthqjSbX8NNavWRSFnOnbMLTRKQyIXmFVsM5VoSrwtiGsCFzBgcT++I=
 =XIzU
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Paolo Bonzini:
 "ARM:
   - some cleanups
   - direct physical timer assignment
   - cache sanitization for 32-bit guests

  s390:
   - interrupt cleanup
   - introduction of the Guest Information Block
   - preparation for processor subfunctions in cpu models

  PPC:
   - bug fixes and improvements, especially related to machine checks
     and protection keys

  x86:
   - many, many cleanups, including removing a bunch of MMU code for
     unnecessary optimizations
   - AVIC fixes

  Generic:
   - memcg accounting"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (147 commits)
  kvm: vmx: fix formatting of a comment
  KVM: doc: Document the life cycle of a VM and its resources
  MAINTAINERS: Add KVM selftests to existing KVM entry
  Revert "KVM/MMU: Flush tlb directly in the kvm_zap_gfn_range()"
  KVM: PPC: Book3S: Add count cache flush parameters to kvmppc_get_cpu_char()
  KVM: PPC: Fix compilation when KVM is not enabled
  KVM: Minor cleanups for kvm_main.c
  KVM: s390: add debug logging for cpu model subfunctions
  KVM: s390: implement subfunction processor calls
  arm64: KVM: Fix architecturally invalid reset value for FPEXC32_EL2
  KVM: arm/arm64: Remove unused timer variable
  KVM: PPC: Book3S: Improve KVM reference counting
  KVM: PPC: Book3S HV: Fix build failure without IOMMU support
  Revert "KVM: Eliminate extra function calls in kvm_get_dirty_log_protect()"
  x86: kvmguest: use TSC clocksource if invariant TSC is exposed
  KVM: Never start grow vCPU halt_poll_ns from value below halt_poll_ns_grow_start
  KVM: Expose the initial start value in grow_halt_poll_ns() as a module parameter
  KVM: grow_halt_poll_ns() should never shrink vCPU halt_poll_ns
  KVM: x86/mmu: Consolidate kvm_mmu_zap_all() and kvm_mmu_zap_mmio_sptes()
  KVM: x86/mmu: WARN if zapping a MMIO spte results in zapping children
  ...
2019-03-15 15:00:28 -07:00
Paolo Bonzini 4a605bc08e kvm: vmx: fix formatting of a comment
Eliminate a gratuitous conflict with 5.0.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-15 19:24:34 +01:00
Ben Gardon 92da008fa2 Revert "KVM/MMU: Flush tlb directly in the kvm_zap_gfn_range()"
This reverts commit 71883a62fc.

The above commit contains an optimization to kvm_zap_gfn_range which
uses gfn-limited TLB flushes, if enabled. If using these limited flushes,
kvm_zap_gfn_range passes lock_flush_tlb=false to slot_handle_level_range
which creates a race when the function unlocks to call cond_resched.
See an example of this race below:

CPU 0                   CPU 1                           CPU 3
// zap_direct_gfn_range
mmu_lock()
// *ptep == pte_1
*ptep = 0
if (lock_flush_tlb)
        flush_tlbs()
mmu_unlock()
                        // In invalidate range
                        // MMU notifier
                        mmu_lock()
                        if (pte != 0)
                                *ptep = 0
                                flush = true
                        if (flush)
                                flush_remote_tlbs()
                        mmu_unlock()
                        return
                        // Host MM reallocates
                        // page previously
                        // backing guest memory.
                                                        // Guest accesses
                                                        // invalid page
                                                        // through pte_1
                                                        // in its TLB!!

Tested: Ran all kvm-unit-tests on a Intel Haswell machine with and
	without this patch. The patch introduced no new failures.

Signed-off-by: Ben Gardon <bgardon@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-15 19:16:45 +01:00
Thomas Gleixner 65fd4cb65b Documentation: Move L1TF to separate directory
Move L!TF to a separate directory so the MDS stuff can be added at the
side. Otherwise the all hardware vulnerabilites have their own top level
entry. Should have done that right away.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Jon Masters <jcm@redhat.com>
2019-03-06 21:52:15 +01:00
Thomas Gleixner 650b68a062 x86/kvm/vmx: Add MDS protection when L1D Flush is not active
CPUs which are affected by L1TF and MDS mitigate MDS with the L1D Flush on
VMENTER when updated microcode is installed.

If a CPU is not affected by L1TF or if the L1D Flush is not in use, then
MDS mitigation needs to be invoked explicitly.

For these cases, follow the host mitigation state and invoke the MDS
mitigation before VMENTER.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Jon Masters <jcm@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>
2019-03-06 21:52:13 +01:00
Andi Kleen 6c4dbbd147 x86/kvm: Expose X86_FEATURE_MD_CLEAR to guests
X86_FEATURE_MD_CLEAR is a new CPUID bit which is set when microcode
provides the mechanism to invoke a flush of various exploitable CPU buffers
by invoking the VERW instruction.

Hand it through to guests so they can adjust their mitigations.

This also requires corresponding qemu changes, which are available
separately.

[ tglx: Massaged changelog ]

Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Jon Masters <jcm@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>
2019-03-06 21:52:12 +01:00
Yu Zhang de3ccd26fa KVM: MMU: record maximum physical address width in kvm_mmu_extended_role
Previously, commit 7dcd575520 ("x86/kvm/mmu: check if tdp/shadow
MMU reconfiguration is needed") offered some optimization to avoid
the unnecessary reconfiguration. Yet one scenario is broken - when
cpuid changes VM's maximum physical address width, reconfiguration
is needed to reset the reserved bits.  Also, the TDP may need to
reset its shadow_root_level when this value is changed.

To fix this, a new field, maxphyaddr, is introduced in the extended
role structure to keep track of the configured guest physical address
width.

Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-22 19:25:10 +01:00
Yu Zhang 511da98d20 kvm: x86: Return LA57 feature based on hardware capability
Previously, 'commit 372fddf709 ("x86/mm: Introduce the 'no5lvl' kernel
parameter")' cleared X86_FEATURE_LA57 in boot_cpu_data, if Linux chooses
to not run in 5-level paging mode. Yet boot_cpu_data is queried by
do_cpuid_ent() as the host capability later when creating vcpus, and Qemu
will not be able to detect this feature and create VMs with LA57 feature.

As discussed earlier, VMs can still benefit from extended linear address
width, e.g. to enhance features like ASLR. So we would like to fix this,
by return the true hardware capability when Qemu queries.

Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-22 19:25:05 +01:00
Vitaly Kuznetsov ad7dc69aeb x86/kvm/mmu: fix switch between root and guest MMUs
Commit 14c07ad89f ("x86/kvm/mmu: introduce guest_mmu") brought one subtle
change: previously, when switching back from L2 to L1, we were resetting
MMU hooks (like mmu->get_cr3()) in kvm_init_mmu() called from
nested_vmx_load_cr3() and now we do that in nested_ept_uninit_mmu_context()
when we re-target vcpu->arch.mmu pointer.
The change itself looks logical: if nested_ept_init_mmu_context() changes
something than nested_ept_uninit_mmu_context() restores it back. There is,
however, one thing: the following call chain:

 nested_vmx_load_cr3()
  kvm_mmu_new_cr3()
    __kvm_mmu_new_cr3()
      fast_cr3_switch()
        cached_root_available()

now happens with MMU hooks pointing to the new MMU (root MMU in our case)
while previously it was happening with the old one. cached_root_available()
tries to stash current root but it is incorrect to read current CR3 with
mmu->get_cr3(), we need to use old_mmu->get_cr3() which in case we're
switching from L2 to L1 is guest_mmu. (BTW, in shadow page tables case this
is a non-issue because we don't switch MMU).

While we could've tried to guess that we're switching between MMUs and call
the right ->get_cr3() from cached_root_available() this seems to be overly
complicated. Instead, just stash the corresponding CR3 when setting
root_hpa and make cached_root_available() use the stashed value.

Fixes: 14c07ad89f ("x86/kvm/mmu: introduce guest_mmu")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-22 19:24:48 +01:00
Sean Christopherson 8ab3c471ee KVM: x86/mmu: Consolidate kvm_mmu_zap_all() and kvm_mmu_zap_mmio_sptes()
...via a new helper, __kvm_mmu_zap_all().  An alternative to passing a
'bool mmio_only' would be to pass a callback function to filter the
shadow page, i.e. to make __kvm_mmu_zap_all() generic and reusable, but
zapping all shadow pages is a last resort, i.e. making the helper less
extensible is a feature of sorts.  And the explicit MMIO parameter makes
it easy to preserve the WARN_ON_ONCE() if a restart is triggered when
zapping MMIO sptes.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:49 +01:00
Sean Christopherson 24efe61f69 KVM: x86/mmu: WARN if zapping a MMIO spte results in zapping children
Paolo expressed a concern that kvm_mmu_zap_mmio_sptes() could have a
quadratic runtime[1], i.e. restarting the spte walk while zapping only
MMIO sptes could result in re-walking large portions of the list over
and over due to the non-MMIO sptes encountered before the restart not
being removed.

At the time, the concern was legitimate as the walk was restarted when
any spte was zapped.  But that is no longer the case as the walk is now
restarted iff one or more children have been zapped, which is necessary
because zapping children makes the active_mmu_pages list unstable.

Furthermore, it should be impossible for an MMIO spte to have children,
i.e. zapping an MMIO spte should never result in zapping children.  In
other words, kvm_mmu_zap_mmio_sptes() should never restart its walk, and
so should always execute in linear time.  WARN if this assertion fails.

Although it should never be needed, leave the restart logic in place.
In normal operation, the cost is at worst an extra CMP+Jcc, and if for
some reason the list does become unstable, not restarting would likely
crash KVM, or worse, the kernel.

[1] https://patchwork.kernel.org/patch/10756589/#22452085

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:48 +01:00
Sean Christopherson 83cdb56864 KVM: x86/mmu: Differentiate between nr zapped and list unstable
The return value of kvm_mmu_prepare_zap_page() has evolved to become
overloaded to convey two separate pieces of information.  1) was at
least one page zapped and 2) has the list of MMU pages become unstable.

In it's original incarnation (as kvm_mmu_zap_page()), there was no
return value at all.  Commit 0738541396 ("KVM: MMU: awareness of new
kvm_mmu_zap_page behaviour") added a return value in preparation for
commit 4731d4c7a0 ("KVM: MMU: out of sync shadow core").  Although
the return value was of type 'int', it was actually used as a boolean
to indicate whether or not active_mmu_pages may have become unstable due
to zapping children.  Walking a list with list_for_each_entry_safe()
only protects against deleting/moving the current entry, i.e. zapping a
child page would break iteration due to modifying any number of entries.

Later, commit 60c8aec6e2 ("KVM: MMU: use page array in unsync walk")
modified mmu_zap_unsync_children() to return an approximation of the
number of children zapped.  This was not intentional, it was simply a
side effect of how the code was written.

The unintented side affect was then morphed into an actual feature by
commit 77662e0028 ("KVM: MMU: fix kvm_mmu_zap_page() and its calling
path"), which modified kvm_mmu_change_mmu_pages() to use the number of
zapped pages when determining the number of MMU pages in use by the VM.

Finally, commit 54a4f0239f ("KVM: MMU: make kvm_mmu_zap_page() return
the number of pages it actually freed") added the initial page to the
return value to make its behavior more consistent with what most users
would expect.  Incorporating the initial parent page in the return value
of kvm_mmu_zap_page() breaks the original usage of restarting a list
walk on a non-zero return value to handle a potentially unstable list,
i.e. walks will unnecessarily restart when any page is zapped.

Fix this by restoring the original behavior of kvm_mmu_zap_page(), i.e.
return a boolean to indicate that the list may be unstable and move the
number of zapped children to a dedicated parameter.  Since the majority
of callers to kvm_mmu_prepare_zap_page() don't care about either return
value, preserve the current definition of kvm_mmu_prepare_zap_page() by
making it a wrapper of a new helper, __kvm_mmu_prepare_zap_page().  This
avoids having to update every call site and also provides cleaner code
for functions that only care about the number of pages zapped.

Fixes: 54a4f0239f ("KVM: MMU: make kvm_mmu_zap_page() return
                      the number of pages it actually freed")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:48 +01:00
Sean Christopherson ea145aacf4 Revert "KVM: MMU: fast invalidate all pages"
Remove x86 KVM's fast invalidate mechanism, i.e. revert all patches
from the original series[1], now that all users of the fast invalidate
mechanism are gone.

This reverts commit 5304b8d37c.

[1] https://lkml.kernel.org/r/1369960590-14138-1-git-send-email-xiaoguangrong@linux.vnet.ibm.com

Cc: Xiao Guangrong <guangrong.xiao@gmail.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:47 +01:00
Sean Christopherson 5d6317ca4e KVM: x86/mmu: Voluntarily reschedule as needed when zapping all sptes
Call cond_resched_lock() when zapping all sptes to reschedule if needed
or to release and reacquire mmu_lock in case of contention.  There is no
need to flush or zap when temporarily dropping mmu_lock as zapping all
sptes is done only when the owning userspace VMM has exited or when the
VM is being destroyed, i.e. there is no interplay with memslots or MMIO
generations to worry about.

Be paranoid and restart the walk if mmu_lock is dropped to avoid any
potential issues with consuming a stale iterator.  The overhead in doing
so is negligible as at worst there will be a few root shadow pages at
the head of the list, i.e. the iterator is essentially the head of the
list already.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:46 +01:00
Sean Christopherson 8a674adc11 KVM: x86/mmu: skip over invalid root pages when zapping all sptes
...to guarantee forward progress.  When zapped, root pages are marked
invalid and moved to the head of the active pages list until they are
explicitly freed.  Theoretically, having unzappable root pages at the
head of the list could prevent kvm_mmu_zap_all() from making forward
progress were a future patch to add a loop restart after processing a
page, e.g. to drop mmu_lock on contention.

Although kvm_mmu_prepare_zap_page() can theoretically take action on
invalid pages, e.g. to zap unsync children, functionally it's not
necessary (root pages will be re-zapped when freed) and practically
speaking the odds of e.g. @unsync or @unsync_children becoming %true
while zapping all pages is basically nil.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:46 +01:00
Sean Christopherson 7390de1e99 Revert "KVM: x86: use the fast way to invalidate all pages"
Revert to a slow kvm_mmu_zap_all() for kvm_arch_flush_shadow_all().
Flushing all shadow entries is only done during VM teardown, i.e.
kvm_arch_flush_shadow_all() is only called when the associated MM struct
is being released or when the VM instance is being freed.

Although the performance of teardown itself isn't critical, KVM should
still voluntarily schedule to play nice with the rest of the kernel;
but that can be done without the fast invalidate mechanism in a future
patch.

This reverts commit 6ca18b6950.

Cc: Xiao Guangrong <guangrong.xiao@gmail.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:45 +01:00
Sean Christopherson b59c4830ca Revert "KVM: MMU: show mmu_valid_gen in shadow page related tracepoints"
...as part of removing x86 KVM's fast invalidate mechanism, i.e. this
is one part of a revert all patches from the series that introduced the
mechanism[1].

This reverts commit 2248b02321.

[1] https://lkml.kernel.org/r/1369960590-14138-1-git-send-email-xiaoguangrong@linux.vnet.ibm.com

Cc: Xiao Guangrong <guangrong.xiao@gmail.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:44 +01:00
Sean Christopherson 42560fb1f3 Revert "KVM: MMU: add tracepoint for kvm_mmu_invalidate_all_pages"
...as part of removing x86 KVM's fast invalidate mechanism, i.e. this
is one part of a revert all patches from the series that introduced the
mechanism[1].

This reverts commit 35006126f0.

[1] https://lkml.kernel.org/r/1369960590-14138-1-git-send-email-xiaoguangrong@linux.vnet.ibm.com

Cc: Xiao Guangrong <guangrong.xiao@gmail.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:44 +01:00
Sean Christopherson 43d2b14b10 Revert "KVM: MMU: zap pages in batch"
Unwinding optimizations related to obsolete pages is a step towards
removing x86 KVM's fast invalidate mechanism, i.e. this is one part of
a revert all patches from the series that introduced the mechanism[1].

This reverts commit e7d11c7a89.

[1] https://lkml.kernel.org/r/1369960590-14138-1-git-send-email-xiaoguangrong@linux.vnet.ibm.com

Cc: Xiao Guangrong <guangrong.xiao@gmail.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:43 +01:00
Sean Christopherson 210f494261 Revert "KVM: MMU: collapse TLB flushes when zap all pages"
Unwinding optimizations related to obsolete pages is a step towards
removing x86 KVM's fast invalidate mechanism, i.e. this is one part of
a revert all patches from the series that introduced the mechanism[1].

This reverts commit f34d251d66.

[1] https://lkml.kernel.org/r/1369960590-14138-1-git-send-email-xiaoguangrong@linux.vnet.ibm.com

Cc: Xiao Guangrong <guangrong.xiao@gmail.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:42 +01:00
Sean Christopherson 52d5dedc79 Revert "KVM: MMU: reclaim the zapped-obsolete page first"
Unwinding optimizations related to obsolete pages is a step towards
removing x86 KVM's fast invalidate mechanism, i.e. this is one part of
a revert all patches from the series that introduced the mechanism[1].

This reverts commit 365c886860.

[1] https://lkml.kernel.org/r/1369960590-14138-1-git-send-email-xiaoguangrong@linux.vnet.ibm.com

Cc: Xiao Guangrong <guangrong.xiao@gmail.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:42 +01:00
Sean Christopherson 5ff0568374 KVM: x86/mmu: Remove is_obsolete() call
Unwinding usage of is_obsolete() is a step towards removing x86's fast
invalidate mechanism, i.e. this is one part of a revert all patches from
the series that introduced the mechanism[1].

This is a partial revert of commit 05988d728d ("KVM: MMU: reduce
KVM_REQ_MMU_RELOAD when root page is zapped").

[1] https://lkml.kernel.org/r/1369960590-14138-1-git-send-email-xiaoguangrong@linux.vnet.ibm.com

Cc: Xiao Guangrong <guangrong.xiao@gmail.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:41 +01:00
Sean Christopherson 571c5af06e KVM: x86/mmu: Voluntarily reschedule as needed when zapping MMIO sptes
Call cond_resched_lock() when zapping MMIO to reschedule if needed or to
release and reacquire mmu_lock in case of contention.  There is no need
to flush or zap when temporarily dropping mmu_lock as zapping MMIO sptes
is done when holding the memslots lock and with the "update in-progress"
bit set in the memslots generation, which disables MMIO spte caching.
The walk does need to be restarted if mmu_lock is dropped as the active
pages list may be modified.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:40 +01:00
Sean Christopherson 4771450c34 Revert "KVM: MMU: drop kvm_mmu_zap_mmio_sptes"
Revert back to a dedicated (and slower) mechanism for handling the
scenario where all MMIO shadow PTEs need to be zapped due to overflowing
the MMIO generation number.  The MMIO generation scenario is almost
literally a one-in-a-million occurrence, i.e. is not a performance
sensitive scenario.

Restoring kvm_mmu_zap_mmio_sptes() leaves VM teardown as the only user
of kvm_mmu_invalidate_zap_all_pages() and paves the way for removing
the fast invalidate mechanism altogether.

This reverts commit a8eca9dcc6.

Cc: Xiao Guangrong <guangrong.xiao@gmail.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:40 +01:00
Sean Christopherson 4e103134b8 KVM: x86/mmu: Zap only the relevant pages when removing a memslot
Modify kvm_mmu_invalidate_zap_pages_in_memslot(), a.k.a. the x86 MMU's
handler for kvm_arch_flush_shadow_memslot(), to zap only the pages/PTEs
that actually belong to the memslot being removed.  This improves
performance, especially why the deleted memslot has only a few shadow
entries, or even no entries.  E.g. a microbenchmark to access regular
memory while concurrently reading PCI ROM to trigger memslot deletion
showed a 5% improvement in throughput.

Cc: Xiao Guangrong <guangrong.xiao@gmail.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:39 +01:00
Sean Christopherson a21136345c KVM: x86/mmu: Split remote_flush+zap case out of kvm_mmu_flush_or_zap()
...and into a separate helper, kvm_mmu_remote_flush_or_zap(), that does
not require a vcpu so that the code can be (re)used by
kvm_mmu_invalidate_zap_pages_in_memslot().

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:38 +01:00
Sean Christopherson 85875a133e KVM: x86/mmu: Move slot_level_*() helper functions up a few lines
...so that kvm_mmu_invalidate_zap_pages_in_memslot() can utilize the
helpers in future patches.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:37 +01:00
Sean Christopherson 164bf7e56c KVM: Move the memslot update in-progress flag to bit 63
...now that KVM won't explode by moving it out of bit 0.  Using bit 63
eliminates the need to jump over bit 0, e.g. when calculating a new
memslots generation or when propagating the memslots generation to an
MMIO spte.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:37 +01:00
Sean Christopherson cae7ed3c2c KVM: x86: Refactor the MMIO SPTE generation handling
The code to propagate the memslots generation number into MMIO sptes is
a bit convoluted.  The "what" is relatively straightfoward, e.g. the
comment explaining which bits go where is quite readable, but the "how"
requires a lot of staring to understand what is happening.  For example,
'MMIO_GEN_LOW_SHIFT' is actually used to calculate the high bits of the
spte, while 'MMIO_SPTE_GEN_LOW_SHIFT' is used to calculate the low bits.

Refactor the code to:

  - use #defines whose values align with the bits defined in the comment
  - use consistent code for both the high and low mask
  - explicitly highlight the handling of bit 0 (update in-progress flag)
  - explicitly call out that the defines are for MMIO sptes (to avoid
    confusion with the per-vCPU MMIO cache, which uses the full memslots
    generation)

In addition to making the code a little less magical, this paves the way
for moving the update in-progress flag to bit 63 without having to
simultaneously rewrite all of the MMIO spte code.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:35 +01:00
Sean Christopherson 5192f9b976 KVM: x86: Use a u64 when passing the MMIO gen around
KVM currently uses an 'unsigned int' for the MMIO generation number
despite it being derived from the 64-bit memslots generation and
being propagated to (potentially) 64-bit sptes.  There is no hidden
agenda behind using an 'unsigned int', it's done simply because the
MMIO generation will never set bits above bit 19.

Passing a u64 will allow the "update in-progress" flag to be relocated
from bit 0 to bit 63 and removes the need to cast the generation back
to a u64 when propagating it to a spte.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:35 +01:00
Sean Christopherson 361209e054 KVM: Explicitly define the "memslot update in-progress" bit
KVM uses bit 0 of the memslots generation as an "update in-progress"
flag, which is used by x86 to prevent caching MMIO access while the
memslots are changing.  Although the intended behavior is flag-like,
e.g. MMIO sptes intentionally drop the in-progress bit so as to avoid
caching data from in-flux memslots, the implementation oftentimes treats
the bit as part of the generation number itself, e.g. incrementing the
generation increments twice, once to set the flag and once to clear it.

Prior to commit 4bd518f159 ("KVM: use separate generations for
each address space"), incorporating the "update in-progress" bit into
the generation number largely made sense, e.g. "real" generations are
even, "bogus" generations are odd, most code doesn't need to be aware of
the bit, etc...

Now that unique memslots generation numbers are assigned to each address
space, stealthing the in-progress status into the generation number
results in a wide variety of subtle code, e.g. kvm_create_vm() jumps
over bit 0 when initializing the memslots generation without any hint as
to why.

Explicitly define the flag and convert as much code as possible (which
isn't much) to actually treat it like a flag.  This paves the way for
eventually using a different bit for "update in-progress" so that it can
be a flag in truth instead of a awkward extension to the generation
number.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:34 +01:00
Sean Christopherson ddfd1730fd KVM: x86/mmu: Do not cache MMIO accesses while memslots are in flux
When installing new memslots, KVM sets bit 0 of the generation number to
indicate that an update is in-progress.  Until the update is complete,
there are no guarantees as to whether a vCPU will see the old or the new
memslots.  Explicity prevent caching MMIO accesses so as to avoid using
an access cached from the old memslots after the new memslots have been
installed.

Note that it is unclear whether or not disabling caching during the
update window is strictly necessary as there is no definitive
documentation as to what ordering guarantees KVM provides with respect
to updating memslots.  That being said, the MMIO spte code does not
allow reusing sptes created while an update is in-progress, and the
associated documentation explicitly states:

    We do not want to use an MMIO sptes created with an odd generation
    number, ...  If KVM is unlucky and creates an MMIO spte while the
    low bit is 1, the next access to the spte will always be a cache miss.

At the very least, disabling the per-vCPU MMIO cache during updates will
make its behavior consistent with the MMIO spte behavior and
documentation.

Fixes: 56f17dd3fb ("kvm: x86: fix stale mmio cache bug")
Cc: <stable@vger.kernel.org>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:33 +01:00
Sean Christopherson e1359e2beb KVM: x86/mmu: Detect MMIO generation wrap in any address space
The check to detect a wrap of the MMIO generation explicitly looks for a
generation number of zero.  Now that unique memslots generation numbers
are assigned to each address space, only address space 0 will get a
generation number of exactly zero when wrapping.  E.g. when address
space 1 goes from 0x7fffe to 0x80002, the MMIO generation number will
wrap to 0x2.  Adjust the MMIO generation to strip the address space
modifier prior to checking for a wrap.

Fixes: 4bd518f159 ("KVM: use separate generations for each address space")
Cc: <stable@vger.kernel.org>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:33 +01:00
Sean Christopherson 152482580a KVM: Call kvm_arch_memslots_updated() before updating memslots
kvm_arch_memslots_updated() is at this point in time an x86-specific
hook for handling MMIO generation wraparound.  x86 stashes 19 bits of
the memslots generation number in its MMIO sptes in order to avoid
full page fault walks for repeat faults on emulated MMIO addresses.
Because only 19 bits are used, wrapping the MMIO generation number is
possible, if unlikely.  kvm_arch_memslots_updated() alerts x86 that
the generation has changed so that it can invalidate all MMIO sptes in
case the effective MMIO generation has wrapped so as to avoid using a
stale spte, e.g. a (very) old spte that was created with generation==0.

Given that the purpose of kvm_arch_memslots_updated() is to prevent
consuming stale entries, it needs to be called before the new generation
is propagated to memslots.  Invalidating the MMIO sptes after updating
memslots means that there is a window where a vCPU could dereference
the new memslots generation, e.g. 0, and incorrectly reuse an old MMIO
spte that was created with (pre-wrap) generation==0.

Fixes: e59dbe09f8 ("KVM: Introduce kvm_arch_memslots_updated()")
Cc: <stable@vger.kernel.org>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:32 +01:00
Ben Gardon 4183683918 kvm: vmx: Add memcg accounting to KVM allocations
There are many KVM kernel memory allocations which are tied to the life of
the VM process and should be charged to the VM process's cgroup. If the
allocations aren't tied to the process, the OOM killer will not know
that killing the process will free the associated kernel memory.
Add __GFP_ACCOUNT flags to many of the allocations which are not yet being
charged to the VM process's cgroup.

Tested:
	Ran all kvm-unit-tests on a 64 bit Haswell machine, the patch
	introduced no new failures.
	Ran a kernel memory accounting test which creates a VM to touch
	memory and then checks that the kernel memory allocated for the
	process is within certain bounds.
	With this patch we account for much more of the vmalloc and slab memory
	allocated for the VM.

Signed-off-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:31 +01:00
Ben Gardon 1ec696470c kvm: svm: Add memcg accounting to KVM allocations
There are many KVM kernel memory allocations which are tied to the life of
the VM process and should be charged to the VM process's cgroup. If the
allocations aren't tied to the process, the OOM killer will not know
that killing the process will free the associated kernel memory.
Add __GFP_ACCOUNT flags to many of the allocations which are not yet being
charged to the VM process's cgroup.

Tested:
	Ran all kvm-unit-tests on a 64 bit Haswell machine, the patch
	introduced no new failures.
	Ran a kernel memory accounting test which creates a VM to touch
	memory and then checks that the kernel memory allocated for the
	process is within certain bounds.
	With this patch we account for much more of the vmalloc and slab memory
	allocated for the VM.

Signed-off-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:31 +01:00
Ben Gardon 254272ce65 kvm: x86: Add memcg accounting to KVM allocations
There are many KVM kernel memory allocations which are tied to the life of
the VM process and should be charged to the VM process's cgroup. If the
allocations aren't tied to the process, the OOM killer will not know
that killing the process will free the associated kernel memory.
Add __GFP_ACCOUNT flags to many of the allocations which are not yet being
charged to the VM process's cgroup.

Tested:
	Ran all kvm-unit-tests on a 64 bit Haswell machine, the patch
	introduced no new failures.
	Ran a kernel memory accounting test which creates a VM to touch
	memory and then checks that the kernel memory allocated for the
	process is within certain bounds.
	With this patch we account for much more of the vmalloc and slab memory
	allocated for the VM.

There remain a few allocations which should be charged to the VM's
cgroup but are not. In x86, they include:
	vcpu->arch.pio_data
There allocations are unaccounted in this patch because they are mapped
to userspace, and accounting them to a cgroup causes problems. This
should be addressed in a future patch.

Signed-off-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:30 +01:00
Paolo Bonzini 359a6c3ddc KVM: nVMX: do not start the preemption timer hrtimer unnecessarily
The preemption timer can be started even if there is a vmentry
failure during or after loading guest state.  That is pointless,
move the call after all conditions have been checked.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:29 +01:00
Yu Zhang d92935979a kvm: vmx: Fix typos in vmentry/vmexit control setting
Previously, 'commit f99e3daf94 ("KVM: x86: Add Intel PT
virtualization work mode")' work mode' offered framework
to support Intel PT virtualization. However, the patch has
some typos in vmx_vmentry_ctrl() and vmx_vmexit_ctrl(), e.g.
used wrong flags and wrong variable, which will cause the
VM entry failure later.

Fixes: 'commit f99e3daf94 ("KVM: x86: Add Intel PT virtualization work mode")'
Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:28 +01:00
Paolo Bonzini b4b65b5642 KVM: x86: cleanup freeing of nested state
Ensure that the VCPU free path goes through vmx_leave_nested and
thus nested_vmx_vmexit, so that the cancellation of the timer does
not have to be in free_nested.  In addition, because some paths through
nested_vmx_vmexit do not go through sync_vmcs12, the cancellation of
the timer is moved there.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:27 +01:00
Luwei Kang 81b016676e KVM: x86: Sync the pending Posted-Interrupts
Some Posted-Interrupts from passthrough devices may be lost or
overwritten when the vCPU is in runnable state.

The SN (Suppress Notification) of PID (Posted Interrupt Descriptor) will
be set when the vCPU is preempted (vCPU in KVM_MP_STATE_RUNNABLE state
but not running on physical CPU). If a posted interrupt coming at this
time, the irq remmaping facility will set the bit of PIR (Posted
Interrupt Requests) without ON (Outstanding Notification).
So this interrupt can't be sync to APIC virtualization register and
will not be handled by Guest because ON is zero.

Signed-off-by: Luwei Kang <luwei.kang@intel.com>
[Eliminate the pi_clear_sn fast path. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:27 +01:00
Liu Jingqi c029b5deb0 KVM: x86: expose MOVDIR64B CPU feature into VM.
MOVDIR64B moves 64-bytes as direct-store with 64-bytes write atomicity.
Direct store is implemented by using write combining (WC) for writing
data directly into memory without caching the data.

Availability of the MOVDIR64B instruction is indicated by the presence
of the CPUID feature flag MOVDIR64B (CPUID.0x07.0x0:ECX[bit 28]).

This patch exposes the movdir64b feature to the guest.

The release document ref below link:
https://software.intel.com/sites/default/files/managed/c5/15/\
architecture-instruction-set-extensions-programming-reference.pdf

Signed-off-by: Liu Jingqi <jingqi.liu@intel.com>
Cc: Xu Tao <tao3.xu@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:26 +01:00
Liu Jingqi 74f2370bb6 KVM: x86: expose MOVDIRI CPU feature into VM.
MOVDIRI moves doubleword or quadword from register to memory through
direct store which is implemented by using write combining (WC) for
writing data directly into memory without caching the data.

Availability of the MOVDIRI instruction is indicated by the presence of
the CPUID feature flag MOVDIRI(CPUID.0x07.0x0:ECX[bit 27]).

This patch exposes the movdiri feature to the guest.

The release document ref below link:
https://software.intel.com/sites/default/files/managed/c5/15/\
architecture-instruction-set-extensions-programming-reference.pdf

Signed-off-by: Liu Jingqi <jingqi.liu@intel.com>
Cc: Xu Tao <tao3.xu@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:26 +01:00
Kai Huang 8acc0993e3 kvm, x86, mmu: Use kernel generic dynamic physical address mask
AMD's SME/SEV is no longer the only case which reduces supported
physical address bits, since Intel introduced Multi-key Total Memory
Encryption (MKTME), which repurposes high bits of physical address as
keyID, thus effectively shrinks supported physical address bits. To
cover both cases (and potential similar future features), kernel MM
introduced generic dynamaic physical address mask instead of hard-coded
__PHYSICAL_MASK in 'commit 94d49eb30e ("x86/mm: Decouple dynamic
__PHYSICAL_MASK from AMD SME")'. KVM should use that too.

Change PT64_BASE_ADDR_MASK to use kernel dynamic physical address mask
when it is enabled, instead of sme_clr. PT64_DIR_BASE_ADDR_MASK is also
deleted since it is not used at all.

Signed-off-by: Kai Huang <kai.huang@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:25 +01:00
Paolo Bonzini e0dfacbfe9 KVM: nVMX: remove useless is_protmode check
VMX is only accessible in protected mode, remove a confusing check
that causes the conditional to lack a final "else" branch.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:24 +01:00
Sean Christopherson 34333cc6c2 KVM: nVMX: Ignore limit checks on VMX instructions using flat segments
Regarding segments with a limit==0xffffffff, the SDM officially states:

    When the effective limit is FFFFFFFFH (4 GBytes), these accesses may
    or may not cause the indicated exceptions.  Behavior is
    implementation-specific and may vary from one execution to another.

In practice, all CPUs that support VMX ignore limit checks for "flat
segments", i.e. an expand-up data or code segment with base=0 and
limit=0xffffffff.  This is subtly different than wrapping the effective
address calculation based on the address size, as the flat segment
behavior also applies to accesses that would wrap the 4g boundary, e.g.
a 4-byte access starting at 0xffffffff will access linear addresses
0xffffffff, 0x0, 0x1 and 0x2.

Fixes: f9eb4af67c ("KVM: nVMX: VMX instructions: add checks for #GP/#SS exceptions")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:24 +01:00
Sean Christopherson 8570f9e881 KVM: nVMX: Apply addr size mask to effective address for VMX instructions
The address size of an instruction affects the effective address, not
the virtual/linear address.  The final address may still be truncated,
e.g. to 32-bits outside of long mode, but that happens irrespective of
the address size, e.g. a 32-bit address size can yield a 64-bit virtual
address when using FS/GS with a non-zero base.

Fixes: 064aea7747 ("KVM: nVMX: Decoding memory operands of VMX instructions")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:23 +01:00
Sean Christopherson 946c522b60 KVM: nVMX: Sign extend displacements of VMX instr's mem operands
The VMCS.EXIT_QUALIFCATION field reports the displacements of memory
operands for various instructions, including VMX instructions, as a
naturally sized unsigned value, but masks the value by the addr size,
e.g. given a ModRM encoded as -0x28(%ebp), the -0x28 displacement is
reported as 0xffffffd8 for a 32-bit address size.  Despite some weird
wording regarding sign extension, the SDM explicitly states that bits
beyond the instructions address size are undefined:

    In all cases, bits of this field beyond the instruction’s address
    size are undefined.

Failure to sign extend the displacement results in KVM incorrectly
treating a negative displacement as a large positive displacement when
the address size of the VMX instruction is smaller than KVM's native
size, e.g. a 32-bit address size on a 64-bit KVM.

The very original decoding, added by commit 064aea7747 ("KVM: nVMX:
Decoding memory operands of VMX instructions"), sort of modeled sign
extension by truncating the final virtual/linear address for a 32-bit
address size.  I.e. it messed up the effective address but made it work
by adjusting the final address.

When segmentation checks were added, the truncation logic was kept
as-is and no sign extension logic was introduced.  In other words, it
kept calculating the wrong effective address while mostly generating
the correct virtual/linear address.  As the effective address is what's
used in the segment limit checks, this results in KVM incorreclty
injecting #GP/#SS faults due to non-existent segment violations when
a nested VMM uses negative displacements with an address size smaller
than KVM's native address size.

Using the -0x28(%ebp) example, an EBP value of 0x1000 will result in
KVM using 0x100000fd8 as the effective address when checking for a
segment limit violation.  This causes a 100% failure rate when running
a 32-bit KVM build as L1 on top of a 64-bit KVM L0.

Fixes: f9eb4af67c ("KVM: nVMX: VMX instructions: add checks for #GP/#SS exceptions")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:22 +01:00
Suthikulpanit, Suravee c57cd3c89e svm: Fix improper check when deactivate AVIC
The function svm_refresh_apicv_exec_ctrl() always returning prematurely
as kvm_vcpu_apicv_active() always return false when calling from
the function arch/x86/kvm/x86.c:kvm_vcpu_deactivate_apicv().
This is because the apicv_active is set to false just before calling
refresh_apicv_exec_ctrl().

Also, we need to mark VMCB_AVIC bit as dirty instead of VMCB_INTR.

So, fix svm_refresh_apicv_exec_ctrl() to properly deactivate AVIC.

Fixes: 67034bb9dd ('KVM: SVM: Add irqchip_split() checks before enabling AVIC')
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:22 +01:00
Paolo Bonzini f7589cca50 KVM: x86: cull apicv code when userspace irqchip is requested
Currently apicv_active can be true even if in-kernel LAPIC
emulation is disabled.  Avoid this by properly initializing
it in kvm_arch_vcpu_init, and then do not do anything to
deactivate APICv when it is actually not used

(Currently APICv is only deactivated by SynIC code that in turn
is only reachable when in-kernel LAPIC is in use.  However, it is
cleaner if kvm_vcpu_deactivate_apicv avoids relying on this.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:21 +01:00
Suthikulpanit, Suravee 98d90582be svm: Fix AVIC DFR and LDR handling
Current SVM AVIC driver makes two incorrect assumptions:
  1. APIC LDR register cannot be zero
  2. APIC DFR for all vCPUs must be the same

LDR=0 means the local APIC does not support logical destination mode.
Therefore, the driver should mark any previously assigned logical APIC ID
table entry as invalid, and return success.  Also, DFR is specific to
a particular local APIC, and can be different among all vCPUs
(as observed on Windows 10).

These incorrect assumptions cause Windows 10 and FreeBSD VMs to fail
to boot with AVIC enabled. So, instead of flush the whole logical APIC ID
table, handle DFR and LDR for each vCPU independently.

Fixes: 18f40c53e1 ('svm: Add VMEXIT handlers for AVIC')
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Reported-by: Julian Stecklina <jsteckli@amazon.de>
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:20 +01:00
Sean Christopherson 4f44c4eec5 KVM: VMX: Reorder clearing of registers in the vCPU-run assembly flow
Move the clearing of the common registers (not 64-bit-only) to the start
of the flow that clears registers holding guest state.  This is
purely a cosmetic change so that the label doesn't point at a blank line
and a #define.

No functional change intended.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:18 +01:00
Sean Christopherson fc2ba5a27a KVM: VMX: Call vCPU-run asm sub-routine from C and remove clobbering
...now that the sub-routine follows standard calling conventions.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:18 +01:00
Sean Christopherson 3b895ef486 KVM: VMX: Preserve callee-save registers in vCPU-run asm sub-routine
...to make it callable from C code.

Note that because KVM chooses to be ultra paranoid about guest register
values, all callee-save registers are still cleared after VM-Exit even
though the host's values are now reloaded from the stack.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:17 +01:00
Sean Christopherson e75c3c3a04 KVM: VMX: Return VM-Fail from vCPU-run assembly via standard ABI reg
...to prepare for making the assembly sub-routine callable from C code.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:17 +01:00
Sean Christopherson 77df549559 KVM: VMX: Pass @launched to the vCPU-run asm via standard ABI regs
...to prepare for making the sub-routine callable from C code.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:16 +01:00
Sean Christopherson a62fd5a76c KVM: VMX: Use RAX as the scratch register during vCPU-run
...to prepare for making the sub-routine callable from C code.  That
means returning the result in RAX.  Since RAX will be used to return the
result, use it as the scratch register as well to make the code readable
and to document that the scratch register is more or less arbitrary.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:15 +01:00
Sean Christopherson ee2fc635ef KVM: VMX: Rename ____vmx_vcpu_run() to __vmx_vcpu_run()
...now that the name is no longer usurped by a defunct helper function.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:15 +01:00
Sean Christopherson c823dd5c0f KVM: VMX: Fold __vmx_vcpu_run() back into vmx_vcpu_run()
...now that the code is no longer tagged with STACK_FRAME_NON_STANDARD.
Arguably, providing __vmx_vcpu_run() to break up vmx_vcpu_run() is
valuable on its own, but the previous split was purposely made as small
as possible to limit the effects STACK_FRAME_NON_STANDARD.  In other
words, the current split is now completely arbitrary and likely not the
most logical.

This also allows renaming ____vmx_vcpu_run() to __vmx_vcpu_run() in a
future patch.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:14 +01:00
Sean Christopherson 5e0781df18 KVM: VMX: Move vCPU-run code to a proper assembly routine
As evidenced by the myriad patches leading up to this moment, using
an inline asm blob for vCPU-run is nothing short of horrific.  It's also
been called "unholy", "an abomination" and likely a whole host of other
names that would violate the Code of Conduct if recorded here and now.

The code is relocated nearly verbatim, e.g. quotes, newlines, tabs and
__stringify need to be dropped, but other than those cosmetic changes
the only functional changees are to add the "call" and replace the final
"jmp" with a "ret".

Note that STACK_FRAME_NON_STANDARD is also dropped from __vmx_vcpu_run().

Suggested-by: Andi Kleen <ak@linux.intel.com>
Suggested-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:13 +01:00
Sean Christopherson 63c73aa07f KVM: VMX: Create a stack frame in vCPU-run
...in preparation for moving to a proper assembly sub-routnine.
vCPU-run isn't a leaf function since it calls vmx_update_host_rsp()
and vmx_vmenter().  And since we need to save/restore RBP anyways,
unconditionally creating the frame costs a single MOV, i.e. don't
bother keying off CONFIG_FRAME_POINTER or using FRAME_BEGIN, etc...

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:13 +01:00
Sean Christopherson c14f9dd50b KVM: VMX: Use #defines in place of immediates in VM-Enter inline asm
...to prepare for moving the inline asm to a proper asm sub-routine.
Eliminating the immediates allows a nearly verbatim move, e.g. quotes,
newlines, tabs and __stringify need to be dropped, but other than those
cosmetic changes the only function change will be to replace the final
"jmp" with a "ret".

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:12 +01:00
Xiaoyao Li 98ae70cc47 kvm: vmx: Fix entry number check for add_atomic_switch_msr()
Commit ca83b4a7f2 ("x86/KVM/VMX: Add find_msr() helper function")
introduces the helper function find_msr(), which returns -ENOENT when
not find the msr in vmx->msr_autoload.guest/host. Correct checking contion
of no more available entry in vmx->msr_autoload.

Fixes: ca83b4a7f2 ("x86/KVM/VMX: Add find_msr() helper function")
Cc: stable@vger.kernel.org
Signed-off-by: Xiaoyao Li <xiaoyao.li@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-14 16:22:20 +01:00
Luwei Kang c112b5f502 KVM: x86: Recompute PID.ON when clearing PID.SN
Some Posted-Interrupts from passthrough devices may be lost or
overwritten when the vCPU is in runnable state.

The SN (Suppress Notification) of PID (Posted Interrupt Descriptor) will
be set when the vCPU is preempted (vCPU in KVM_MP_STATE_RUNNABLE state but
not running on physical CPU). If a posted interrupt comes at this time,
the irq remapping facility will set the bit of PIR (Posted Interrupt
Requests) but not ON (Outstanding Notification).  Then, the interrupt
will not be seen by KVM, which always expects PID.ON=1 if PID.PIR=1
as documented in the Intel processor SDM but not in the VT-d specification.
To fix this, restore the invariant after PID.SN is cleared.

Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-14 16:20:31 +01:00
Sean Christopherson bc44121190 KVM: nVMX: Restore a preemption timer consistency check
A recently added preemption timer consistency check was unintentionally
dropped when the consistency checks were being reorganized to match the
SDM's ordering.

Fixes: 461b4ba4c7 ("KVM: nVMX: Move the checks for VM-Execution Control Fields to a separate helper function")
Cc: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-13 19:38:25 +01:00
Vitaly Kuznetsov 6b1971c694 x86/kvm/nVMX: read from MSR_IA32_VMX_PROCBASED_CTLS2 only when it is available
SDM says MSR_IA32_VMX_PROCBASED_CTLS2 is only available "If
(CPUID.01H:ECX.[5] && IA32_VMX_PROCBASED_CTLS[63])". It was found that
some old cpus (namely "Intel(R) Core(TM)2 CPU 6600 @ 2.40GHz (family: 0x6,
model: 0xf, stepping: 0x6") don't have it. Add the missing check.

Reported-by: Zdenek Kaspar <zkaspar82@gmail.com>
Tested-by: Zdenek Kaspar <zkaspar82@gmail.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-12 15:16:01 +01:00
Sean Christopherson d558920491 KVM: VMX: Use vcpu->arch.regs directly when saving/loading guest state
...now that all other references to struct vcpu_vmx have been removed.

Note that 'vmx' still needs to be passed into the asm blob in _ASM_ARG1
as it is consumed by vmx_update_host_rsp().  And similar to that code,
use _ASM_ARG2 in the assembly code to prepare for moving to proper asm,
while explicitly referencing the exact registers in the clobber list for
clarity in the short term and to avoid additional precompiler games.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-12 13:12:26 +01:00
Sean Christopherson f78d0971b7 KVM: VMX: Don't save guest registers after VM-Fail
A failed VM-Enter (obviously) didn't succeed, meaning the CPU never
executed an instrunction in guest mode and so can't have changed the
general purpose registers.

In addition to saving some instructions in the VM-Fail case, this also
provides a separate path entirely and thus an opportunity to propagate
the fail condition to vmx->fail via register without introducing undue
pain.  Using a register, as opposed to directly referencing vmx->fail,
eliminates the need to pass the offset of 'fail', which will simplify
moving the code to proper assembly in future patches.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-12 13:12:26 +01:00
Sean Christopherson 217aaff53c KVM: VMX: Invert the ordering of saving guest/host scratch reg at VM-Enter
Switching the ordering allows for an out-of-line path for VM-Fail
that elides saving guest state but still shares the register clearing
with the VM-Exit path.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-12 13:12:25 +01:00
Sean Christopherson c9afc58cc3 KVM: VMX: Pass "launched" directly to the vCPU-run asm blob
...and remove struct vcpu_vmx's temporary __launched variable.

Eliminating __launched is a bonus, the real motivation is to get to the
point where the only reference to struct vcpu_vmx in the asm code is
to vcpu.arch.regs, which will simplify moving the blob to a proper asm
file.  Note that also means this approach is deliberately different than
what is used in nested_vmx_check_vmentry_hw().

Use BL as it is a callee-save register in both 32-bit and 64-bit ABIs,
i.e. it can't be modified by vmx_update_host_rsp(), to avoid having to
temporarily save/restore the launched flag.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-12 13:12:24 +01:00
Sean Christopherson c09b03eb7f KVM: VMX: Update VMCS.HOST_RSP via helper C function
Providing a helper function to update HOST_RSP is visibly easier to
read, and more importantly (for the future) eliminates two arguments to
the VM-Enter assembly blob.  Reducing the number of arguments to the asm
blob is for all intents and purposes a prerequisite to moving the code
to a proper assembly routine.  It's not truly mandatory, but it greatly
simplifies the future code, and the cost of the extra CALL+RET is
negligible in the grand scheme.

Note that although _ASM_ARG[1-3] can be used in the inline asm itself,
the intput/output constraints need to be manually defined.  gcc will
actually compile with _ASM_ARG[1-3] specified as constraints, but what
it actually ends up doing with the bogus constraint is unknown.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-12 13:12:24 +01:00
Sean Christopherson 47e97c099b KVM: VMX: Load/save guest CR2 via C code in __vmx_vcpu_run()
...to eliminate its parameter and struct vcpu_vmx offset definition
from the assembly blob.  Accessing CR2 from C versus assembly doesn't
change the likelihood of taking a page fault (and modifying CR2) while
it's loaded with the guest's value, so long as we don't do anything
silly between accessing CR2 and VM-Enter/VM-Exit.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-12 13:12:23 +01:00
Sean Christopherson 5a8781607e KVM: nVMX: Cache host_rsp on a per-VMCS basis
Currently, host_rsp is cached on a per-vCPU basis, i.e. it's stored in
struct vcpu_vmx.  In non-nested usage the caching is for all intents
and purposes 100% effective, e.g. only the first VMLAUNCH needs to
synchronize VMCS.HOST_RSP since the call stack to vmx_vcpu_run() is
identical each and every time.  But when running a nested guest, KVM
must invalidate the cache when switching the current VMCS as it can't
guarantee the new VMCS has the same HOST_RSP as the previous VMCS.  In
other words, the cache loses almost all of its efficacy when running a
nested VM.

Move host_rsp to struct vmcs_host_state, which is per-VMCS, so that it
is cached on a per-VMCS basis and restores its 100% hit rate when
nested VMs are in play.

Note that the host_rsp cache for vmcs02 essentially "breaks" when
nested early checks are enabled as nested_vmx_check_vmentry_hw() will
see a different RSP at the time of its VM-Enter.  While it's possible
to avoid even that VMCS.HOST_RSP synchronization, e.g. by employing a
dedicated VM-Exit stack, there is little motivation for doing so as
the overhead of two VMWRITEs (~55 cycles) is dwarfed by the overhead
of the extra VMX transition (600+ cycles) and is a proverbial drop in
the ocean relative to the total cost of a nested transtion (10s of
thousands of cycles).

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-12 13:12:22 +01:00
Sean Christopherson fbda0fd31a KVM: nVMX: Let the compiler select the reg for holding HOST_RSP
...and provide an explicit name for the constraint.  Naming the input
constraint makes the code self-documenting and also avoids the fragility
of numerically referring to constraints, e.g. %4 breaks badly whenever
the constraints are modified.

Explicitly using RDX was inherited from vCPU-run, i.e. completely
arbitrary.  Even vCPU-run doesn't truly need to explicitly use RDX, but
doing so is more robust as vCPU-run needs tight control over its
register usage.

Note that while the naming "conflict" between host_rsp and HOST_RSP
is slightly confusing, the former will be renamed slightly in a
future patch, at which point HOST_RSP is absolutely what is desired.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-12 13:12:21 +01:00
Sean Christopherson 74dfa2784e KVM: nVMX: Reference vmx->loaded_vmcs->launched directly
Temporarily propagating vmx->loaded_vmcs->launched to vmx->__launched
is not functionally necessary, but rather was done historically to
avoid passing both 'vmx' and 'loaded_vmcs' to the vCPU-run asm blob.
Nested early checks inherited this behavior by virtue of copy+paste.

A future patch will move HOST_RSP caching to be per-VMCS, i.e. store
'host_rsp' in loaded VMCS.  Now that the reference to 'vmx->fail' is
also gone from nested early checks, referencing 'loaded_vmcs' directly
means we can drop the 'vmx' reference when introducing per-VMCS RSP
caching.  And it means __launched can be dropped from struct vcpu_vmx
if/when vCPU-run receives similar treatment.

Note the use of a named register constraint for 'loaded_vmcs'.  Using
RCX to hold 'vmx' was inherited from vCPU-run.  In the vCPU-run case,
the scratch register needs to be explicitly defined as it is crushed
when loading guest state, i.e. deferring to the compiler would corrupt
the pointer.  Since nested early checks never loads guests state, it's
a-ok to let the compiler pick any register.  Naming the constraint
avoids the fragility of referencing constraints via %1, %2, etc.., which
breaks horribly when modifying constraints, and generally makes the asm
blob more readable.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-12 13:12:21 +01:00
Sean Christopherson bbc0b82392 KVM: nVMX: Capture VM-Fail via CC_{SET,OUT} in nested early checks
...to take advantage of __GCC_ASM_FLAG_OUTPUTS__ when possible.

Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-12 13:12:20 +01:00
Sean Christopherson f1727b4954 KVM: nVMX: Capture VM-Fail to a local var in nested_vmx_check_vmentry_hw()
Unlike the primary vCPU-run flow, the nested early checks code doesn't
actually want to propagate VM-Fail back to 'vmx'.  Yay copy+paste.

In additional to eliminating the need to clear vmx->fail before
returning, using a local boolean also drops a reference to 'vmx' in the
asm blob.  Dropping the reference to 'vmx' will save a register in the
long run as future patches will shift all pointer references from 'vmx'
to 'vmx->loaded_vmcs'.

Fixes: 52017608da ("KVM: nVMX: add option to perform early consistency checks via H/W")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-12 13:12:19 +01:00
Sean Christopherson 6c1e7e5b40 KVM: nVMX: Explicitly reference the scratch reg in nested early checks
Using %1 to reference RCX, i.e. the 'vmx' pointer', is obtuse and
fragile, e.g. it results in cryptic and infurating compile errors if the
output constraints are touched by anything more than a gentle breeze.

Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-12 13:12:19 +01:00
Sean Christopherson 98ff2acc91 KVM: nVMX: Drop STACK_FRAME_NON_STANDARD from nested_vmx_check_vmentry_hw()
...as it doesn't technically actually do anything non-standard with the
stack even though it modifies RSP in a weird way.  E.g. RSP is loaded
with VMCS.HOST_RSP if the VM-Enter gets far enough to trigger VM-Exit,
but it's simply reloaded with the current value.

Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-12 13:12:18 +01:00
Sean Christopherson 9ce0a07a6f KVM: nVMX: Remove a rogue "rax" clobber from nested_vmx_check_vmentry_hw()
RAX is not touched by nested_vmx_check_vmentry_hw(), directly or
indirectly (e.g. vmx_vmenter()).  Remove it from the clobber list.

Fixes: 52017608da ("KVM: nVMX: add option to perform early consistency checks via H/W")
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-12 13:12:17 +01:00
Sean Christopherson 6f7c6d23b7 KVM: VMX: Let the compiler save/load RDX during vCPU-run
Per commit c20363006a ("KVM: VMX: Let gcc to choose which registers
to save (x86_64)"), the only reason RDX is saved/loaded to/from the
stack is because it was specified as an input, i.e. couldn't be marked
as clobbered (ignoring the fact that "saving" it to a dummy output
would indirectly mark it as clobbered).

Now that RDX is no longer an input, clobber it.

Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-12 13:12:17 +01:00
Sean Christopherson ccf447434e KVM: VMX: Manually load RDX in vCPU-run asm blob
Load RDX with the VMCS.HOST_RSP field encoding on-demand instead of
delegating to the compiler via an input constraint.  In addition to
saving one whole MOV instruction, this allows RDX to be properly
clobbered (in a future patch) instead of being saved/loaded to/from
the stack.

Despite nested_vmx_check_vmentry_hw() having similar code, leave it
alone, for now.  In that case, RDX is unconditionally used and isn't
clobbered, i.e. sending in HOST_RSP as an input is simpler.

Note that because HOST_RSP is an enum and not a define, it must be
redefined as an immediate instead of using __stringify(HOST_RSP).  The
naming "conflict" between host_rsp and HOST_RSP is slightly confusing,
but the former will be removed in a future patch, at which point
HOST_RSP is absolutely what is desired.

Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-12 13:12:16 +01:00
Sean Christopherson f3689e3f17 KVM: VMX: Save RSI to an unused output in the vCPU-run asm blob
RSI is clobbered by the vCPU-run asm blob, but it's not marked as such,
probably because GCC doesn't let you mark inputs as clobbered.  "Save"
RSI to a dummy output so that GCC recognizes it as being clobbered.

Fixes: 773e8a0425 ("x86/kvm: use Enlightened VMCS when running on Hyper-V")
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-12 13:12:15 +01:00
Sean Christopherson 831a301129 KVM: VMX: Modify only RSP when creating a placeholder for guest's RCX
In the vCPU-run asm blob, the guest's RCX is temporarily saved onto the
stack after VM-Exit as the exit flow must first load a register with a
pointer to the vCPU's save area in order to save the guest's registers.
RCX is arbitrarily designated as the scratch register.

Since the stack usage is to (1)save host, (2)save guest, (3)load host
and (4)load guest, the code can't conform to the stack's natural FIFO
semantics, i.e. it can't simply do PUSH/POP.  Regardless of whether it
is done for the host's value or guest's value, at some point the code
needs to access the stack using a non-traditional method, e.g. MOV
instead of POP.  vCPU-run opts to create a placeholder on the stack for
guest's RCX (by adjusting RSP) and saves RCX to its place immediately
after VM-Exit (via MOV).

In other words, the purpose of the first 'PUSH RCX' at the start of
the vCPU-run asm blob  is to adjust RSP down, i.e. there's no need to
actually access memory.  Use 'SUB $wordsize, RSP' instead of 'PUSH RCX'
to make it more obvious that the intent is simply to create a gap on
the stack for the guest's RCX.

Reviewed-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-12 13:12:14 +01:00
Sean Christopherson 0e0ab73c9a KVM: VMX: Zero out *all* general purpose registers after VM-Exit
...except RSP, which is restored by hardware as part of VM-Exit.

Paolo theorized that restoring registers from the stack after a VM-Exit
in lieu of zeroing them could lead to speculative execution with the
guest's values, e.g. if the stack accesses miss the L1 cache[1].
Zeroing XORs are dirt cheap, so just be ultra-paranoid.

Note that the scratch register (currently RCX) used to save/restore the
guest state is also zeroed as its host-defined value is loaded via the
stack, just with a MOV instead of a POP.

[1] https://patchwork.kernel.org/patch/10771539/#22441255

Fixes: 0cb5b30698 ("kvm: vmx: Scrub hardware GPRs at VM-exit")
Cc: <stable@vger.kernel.org>
Cc: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-12 13:12:14 +01:00
Sean Christopherson 1ce072cbfd KVM: nVMX: Check a single byte for VMCS "launched" in nested early checks
Nested early checks does a manual comparison of a VMCS' launched status
in its asm blob to execute the correct VM-Enter instruction, i.e.
VMLAUNCH vs. VMRESUME.  The launched flag is a bool, which is a typedef
of _Bool.  C99 does not define an exact size for _Bool, stating only
that is must be large enough to hold '0' and '1'.  Most, if not all,
compilers use a single byte for _Bool, including gcc[1].

The use of 'cmpl' instead of 'cmpb' was not deliberate, but rather the
result of a copy-paste as the asm blob was directly derived from the asm
blob for vCPU-run.

This has not caused any known problems, likely due to compilers aligning
variables to 4-byte or 8-byte boundaries and KVM zeroing out struct
vcpu_vmx during allocation.  I.e. vCPU-run accesses "junk" data, it just
happens to always be zero and so doesn't affect the result.

[1] https://gcc.gnu.org/ml/gcc-patches/2000-10/msg01127.html

Fixes: 52017608da ("KVM: nVMX: add option to perform early consistency checks via H/W")
Cc: <stable@vger.kernel.org>
Reviewed-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-12 13:12:13 +01:00
Sean Christopherson 61c08aa960 KVM: VMX: Compare only a single byte for VMCS' "launched" in vCPU-run
The vCPU-run asm blob does a manual comparison of a VMCS' launched
status to execute the correct VM-Enter instruction, i.e. VMLAUNCH vs.
VMRESUME.  The launched flag is a bool, which is a typedef of _Bool.
C99 does not define an exact size for _Bool, stating only that is must
be large enough to hold '0' and '1'.  Most, if not all, compilers use
a single byte for _Bool, including gcc[1].

Originally, 'launched' was of type 'int' and so the asm blob used 'cmpl'
to check the launch status.  When 'launched' was moved to be stored on a
per-VMCS basis, struct vcpu_vmx's "temporary" __launched flag was added
in order to avoid having to pass the current VMCS into the asm blob.
The new  '__launched' was defined as a 'bool' and not an 'int', but the
'cmp' instruction was not updated.

This has not caused any known problems, likely due to compilers aligning
variables to 4-byte or 8-byte boundaries and KVM zeroing out struct
vcpu_vmx during allocation.  I.e. vCPU-run accesses "junk" data, it just
happens to always be zero and so doesn't affect the result.

[1] https://gcc.gnu.org/ml/gcc-patches/2000-10/msg01127.html

Fixes: d462b81923 ("KVM: VMX: Keep list of loaded VMCSs, instead of vcpus")
Cc: <stable@vger.kernel.org>
Reviewed-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-12 13:12:12 +01:00
Peter Shier ecec76885b KVM: nVMX: unconditionally cancel preemption timer in free_nested (CVE-2019-7221)
Bugzilla: 1671904

There are multiple code paths where an hrtimer may have been started to
emulate an L1 VMX preemption timer that can result in a call to free_nested
without an intervening L2 exit where the hrtimer is normally
cancelled. Unconditionally cancel in free_nested to cover all cases.

Embargoed until Feb 7th 2019.

Signed-off-by: Peter Shier <pshier@google.com>
Reported-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Reported-by: Felix Wilhelm <fwilhelm@google.com>
Cc: stable@kernel.org
Message-Id: <20181011184646.154065-1-pshier@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-07 19:03:01 +01:00
Paolo Bonzini 353c0956a6 KVM: x86: work around leak of uninitialized stack contents (CVE-2019-7222)
Bugzilla: 1671930

Emulation of certain instructions (VMXON, VMCLEAR, VMPTRLD, VMWRITE with
memory operand, INVEPT, INVVPID) can incorrectly inject a page fault
when passed an operand that points to an MMIO address.  The page fault
will use uninitialized kernel stack memory as the CR2 and error code.

The right behavior would be to abort the VM with a KVM_EXIT_INTERNAL_ERROR
exit to userspace; however, it is not an easy fix, so for now just
ensure that the error code and CR2 are zero.

Embargoed until Feb 7th 2019.

Reported-by: Felix Wilhelm <fwilhelm@google.com>
Cc: stable@kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-07 19:02:56 +01:00
Josh Poimboeuf b284909aba cpu/hotplug: Fix "SMT disabled by BIOS" detection for KVM
With the following commit:

  73d5e2b472 ("cpu/hotplug: detect SMT disabled by BIOS")

... the hotplug code attempted to detect when SMT was disabled by BIOS,
in which case it reported SMT as permanently disabled.  However, that
code broke a virt hotplug scenario, where the guest is booted with only
primary CPU threads, and a sibling is brought online later.

The problem is that there doesn't seem to be a way to reliably
distinguish between the HW "SMT disabled by BIOS" case and the virt
"sibling not yet brought online" case.  So the above-mentioned commit
was a bit misguided, as it permanently disabled SMT for both cases,
preventing future virt sibling hotplugs.

Going back and reviewing the original problems which were attempted to
be solved by that commit, when SMT was disabled in BIOS:

  1) /sys/devices/system/cpu/smt/control showed "on" instead of
     "notsupported"; and

  2) vmx_vm_init() was incorrectly showing the L1TF_MSG_SMT warning.

I'd propose that we instead consider #1 above to not actually be a
problem.  Because, at least in the virt case, it's possible that SMT
wasn't disabled by BIOS and a sibling thread could be brought online
later.  So it makes sense to just always default the smt control to "on"
to allow for that possibility (assuming cpuid indicates that the CPU
supports SMT).

The real problem is #2, which has a simple fix: change vmx_vm_init() to
query the actual current SMT state -- i.e., whether any siblings are
currently online -- instead of looking at the SMT "control" sysfs value.

So fix it by:

  a) reverting the original "fix" and its followup fix:

     73d5e2b472 ("cpu/hotplug: detect SMT disabled by BIOS")
     bc2d8d262c ("cpu/hotplug: Fix SMT supported evaluation")

     and

  b) changing vmx_vm_init() to query the actual current SMT state --
     instead of the sysfs control value -- to determine whether the L1TF
     warning is needed.  This also requires the 'sched_smt_present'
     variable to exported, instead of 'cpu_smt_control'.

Fixes: 73d5e2b472 ("cpu/hotplug: detect SMT disabled by BIOS")
Reported-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Joe Mario <jmario@redhat.com>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: kvm@vger.kernel.org
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/e3a85d585da28cc333ecbc1e78ee9216e6da9396.1548794349.git.jpoimboe@redhat.com
2019-01-30 19:27:00 +01:00
Gustavo A. R. Silva b2869f28e1 KVM: x86: Mark expected switch fall-throughs
In preparation to enabling -Wimplicit-fallthrough, mark switch
cases where we are expecting to fall through.

This patch fixes the following warnings:

arch/x86/kvm/lapic.c:1037:27: warning: this statement may fall through [-Wimplicit-fallthrough=]
arch/x86/kvm/lapic.c:1876:3: warning: this statement may fall through [-Wimplicit-fallthrough=]
arch/x86/kvm/hyperv.c:1637:6: warning: this statement may fall through [-Wimplicit-fallthrough=]
arch/x86/kvm/svm.c:4396:6: warning: this statement may fall through [-Wimplicit-fallthrough=]
arch/x86/kvm/mmu.c:4372:36: warning: this statement may fall through [-Wimplicit-fallthrough=]
arch/x86/kvm/x86.c:3835:6: warning: this statement may fall through [-Wimplicit-fallthrough=]
arch/x86/kvm/x86.c:7938:23: warning: this statement may fall through [-Wimplicit-fallthrough=]
arch/x86/kvm/vmx/vmx.c:2015:6: warning: this statement may fall through [-Wimplicit-fallthrough=]
arch/x86/kvm/vmx/vmx.c:1773:6: warning: this statement may fall through [-Wimplicit-fallthrough=]

Warning level 3 was used: -Wimplicit-fallthrough=3

This patch is part of the ongoing efforts to enabling -Wimplicit-fallthrough.

Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-01-25 19:29:36 +01:00
Masahiro Yamada 5cd5548ff4 KVM: x86: fix TRACE_INCLUDE_PATH and remove -I. header search paths
The header search path -I. in kernel Makefiles is very suspicious;
it allows the compiler to search for headers in the top of $(srctree),
where obviously no header file exists.

The reason of having -I. here is to make the incorrectly set
TRACE_INCLUDE_PATH working.

As the comment block in include/trace/define_trace.h says,
TRACE_INCLUDE_PATH should be a relative path to the define_trace.h

Fix the TRACE_INCLUDE_PATH, and remove the iffy include paths.

Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-01-25 19:12:37 +01:00
Vitaly Kuznetsov 3a2f5773ba x86/kvm/hyper-v: nested_enable_evmcs() sets vmcs_version incorrectly
Commit e2e871ab2f ("x86/kvm/hyper-v: Introduce nested_get_evmcs_version()
helper") broke EVMCS enablement: to set vmcs_version we now call
nested_get_evmcs_version() but this function checks
enlightened_vmcs_enabled flag which is not yet set so we end up returning
zero.

Fix the issue by re-arranging things in nested_enable_evmcs().

Fixes: e2e871ab2f ("x86/kvm/hyper-v: Introduce nested_get_evmcs_version() helper")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-01-25 19:11:37 +01:00
Sean Christopherson 5ad6ece869 KVM: VMX: Move vmx_vcpu_run()'s VM-Enter asm blob to a helper function
...along with the function's STACK_FRAME_NON_STANDARD tag.  Moving the
asm blob results in a significantly smaller amount of code that is
marked with STACK_FRAME_NON_STANDARD, which makes it far less likely
that gcc will split the function and trigger a spurious objtool warning.
As a bonus, removing STACK_FRAME_NON_STANDARD from vmx_vcpu_run() allows
the bulk of code to be properly checked by objtool.

Because %rbp is not loaded via VMCS fields, vmx_vcpu_run() must manually
save/restore the host's RBP and load the guest's RBP prior to calling
vmx_vmenter().  Modifying %rbp triggers objtool's stack validation code,
and so vmx_vcpu_run() is tagged with STACK_FRAME_NON_STANDARD since it's
impossible to avoid modifying %rbp.

Unfortunately, vmx_vcpu_run() is also a gigantic function that gcc will
split into separate functions, e.g. so that pieces of the function can
be inlined.  Splitting the function means that the compiled Elf file
will contain one or more vmx_vcpu_run.part.* functions in addition to
a vmx_vcpu_run function.  Depending on where the function is split,
objtool may warn about a "call without frame pointer save/setup" in
vmx_vcpu_run.part.* since objtool's stack validation looks for exact
names when whitelisting functions tagged with STACK_FRAME_NON_STANDARD.

Up until recently, the undesirable function splitting was effectively
blocked because vmx_vcpu_run() was tagged with __noclone.  At the time,
__noclone had an unintended side effect that put vmx_vcpu_run() into a
separate optimization unit, which in turn prevented gcc from inlining
the function (or any of its own function calls) and thus eliminated gcc's
motivation to split the function.  Removing the __noclone attribute
allowed gcc to optimize vmx_vcpu_run(), exposing the objtool warning.

Kudos to Qian Cai for root causing that the fnsplit optimization is what
caused objtool to complain.

Fixes: 453eafbe65 ("KVM: VMX: Move VM-Enter + VM-Exit handling to non-inline sub-routines")
Tested-by: Qian Cai <cai@lca.pw>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Reported-by: kbuild test robot <lkp@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-01-25 19:11:37 +01:00
Yi Wang 8997f65700 kvm: vmx: fix some -Wmissing-prototypes warnings
We get some warnings when building kernel with W=1:
arch/x86/kvm/vmx/vmx.c:426:5: warning: no previous prototype for ‘kvm_fill_hv_flush_list_func’ [-Wmissing-prototypes]
arch/x86/kvm/vmx/nested.c:58:6: warning: no previous prototype for ‘init_vmcs_shadow_fields’ [-Wmissing-prototypes]

Make them static to fix this.

Signed-off-by: Yi Wang <wang.yi59@zte.com.cn>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-01-25 19:11:35 +01:00
Vitaly Kuznetsov 619ad846fc KVM: nSVM: clear events pending from svm_complete_interrupts() when exiting to L1
kvm-unit-tests' eventinj "NMI failing on IDT" test results in NMI being
delivered to the host (L1) when it's running nested. The problem seems to
be: svm_complete_interrupts() raises 'nmi_injected' flag but later we
decide to reflect EXIT_NPF to L1. The flag remains pending and we do NMI
injection upon entry so it got delivered to L1 instead of L2.

It seems that VMX code solves the same issue in prepare_vmcs12(), this was
introduced with code refactoring in commit 5f3d579997 ("KVM: nVMX: Rework
event injection and recovery").

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-01-25 19:11:35 +01:00
Suravee Suthikulpanit bb218fbcfa svm: Fix AVIC incomplete IPI emulation
In case of incomplete IPI with invalid interrupt type, the current
SVM driver does not properly emulate the IPI, and fails to boot
FreeBSD guests with multiple vcpus when enabling AVIC.

Fix this by update APIC ICR high/low registers, which also
emulate sending the IPI.

Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-01-25 19:11:34 +01:00
Suravee Suthikulpanit 37ef0c4414 svm: Add warning message for AVIC IPI invalid target
Print warning message when IPI target ID is invalid due to one of
the following reasons:
  * In logical mode: cluster > max_cluster (64)
  * In physical mode: target > max_physical (512)
  * Address is not present in the physical or logical ID tables

Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-01-25 19:11:34 +01:00
Sean Christopherson 1ed199a41c KVM: x86: Fix PV IPIs for 32-bit KVM host
The recognition of the KVM_HC_SEND_IPI hypercall was unintentionally
wrapped in "#ifdef CONFIG_X86_64", causing 32-bit KVM hosts to reject
any and all PV IPI requests despite advertising the feature.  This
results in all KVM paravirtualized guests hanging during SMP boot due
to IPIs never being delivered.

Fixes: 4180bf1b65 ("KVM: X86: Implement "send IPI" hypercall")
Cc: stable@vger.kernel.org
Cc: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-01-25 19:11:32 +01:00
Vitaly Kuznetsov f1adceaf01 x86/kvm/hyper-v: recommend using eVMCS only when it is enabled
We shouldn't probably be suggesting using Enlightened VMCS when it's not
enabled (not supported from guest's point of view). Hyper-V on KVM seems
to be fine either way but let's be consistent.

Fixes: 2bc39970e9 ("x86/kvm/hyper-v: Introduce KVM_GET_SUPPORTED_HV_CPUID")
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-01-25 19:11:25 +01:00
Vitaly Kuznetsov 1998fd32aa x86/kvm/hyper-v: don't recommend doing reset via synthetic MSR
System reset through synthetic MSR is not recommended neither by genuine
Hyper-V nor my QEMU.

Fixes: 2bc39970e9 ("x86/kvm/hyper-v: Introduce KVM_GET_SUPPORTED_HV_CPUID")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-01-25 18:53:45 +01:00
Tom Roeder 3a33d030da kvm: x86/vmx: Use kzalloc for cached_vmcs12
This changes the allocation of cached_vmcs12 to use kzalloc instead of
kmalloc. This removes the information leak found by Syzkaller (see
Reported-by) in this case and prevents similar leaks from happening
based on cached_vmcs12.

It also changes vmx_get_nested_state to copy out the full 4k VMCS12_SIZE
in copy_to_user rather than only the size of the struct.

Tested: rebuilt against head, booted, and ran the syszkaller repro
  https://syzkaller.appspot.com/text?tag=ReproC&x=174efca3400000 without
  observing any problems.

Reported-by: syzbot+ded1696f6b50b615b630@syzkaller.appspotmail.com
Fixes: 8fcc4b5923
Cc: stable@vger.kernel.org
Signed-off-by: Tom Roeder <tmroeder@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-01-25 18:53:10 +01:00
Sean Christopherson 85ba2b165d KVM: VMX: Use the correct field var when clearing VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL
Fix a recently introduced bug that results in the wrong VMCS control
field being updated when applying a IA32_PERF_GLOBAL_CTRL errata.

Fixes: c73da3fcab ("KVM: VMX: Properly handle dynamic VM Entry/Exit controls")
Reported-by: Harald Arnesen <harald@skogtun.org>
Tested-by: Harald Arnesen <harald@skogtun.org>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-01-25 18:52:54 +01:00
Alexander Popov 5cc244a20b KVM: x86: Fix single-step debugging
The single-step debugging of KVM guests on x86 is broken: if we run
gdb 'stepi' command at the breakpoint when the guest interrupts are
enabled, RIP always jumps to native_apic_mem_write(). Then other
nasty effects follow.

Long investigation showed that on Jun 7, 2017 the
commit c8401dda2f ("KVM: x86: fix singlestepping over syscall")
introduced the kvm_run.debug corruption: kvm_vcpu_do_singlestep() can
be called without X86_EFLAGS_TF set.

Let's fix it. Please consider that for -stable.

Signed-off-by: Alexander Popov <alex.popov@linux.com>
Cc: stable@vger.kernel.org
Fixes: c8401dda2f ("KVM: x86: fix singlestepping over syscall")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-01-25 18:52:53 +01:00
Vitaly Kuznetsov 9699f970de x86/kvm/hyper-v: don't announce GUEST IDLE MSR support
HV_X64_MSR_GUEST_IDLE_AVAILABLE appeared in kvm_vcpu_ioctl_get_hv_cpuid()
by mistake: it announces support for HV_X64_MSR_GUEST_IDLE (0x400000F0)
which we don't support in KVM (yet).

Fixes: 2bc39970e9 ("x86/kvm/hyper-v: Introduce KVM_GET_SUPPORTED_HV_CPUID")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-01-25 18:52:34 +01:00
Vitaly Kuznetsov 826c1362e7 x86/kvm/nVMX: don't skip emulated instruction twice when vmptr address is not backed
Since commit 09abb5e3e5 ("KVM: nVMX: call kvm_skip_emulated_instruction
in nested_vmx_{fail,succeed}") nested_vmx_failValid() results in
kvm_skip_emulated_instruction() so doing it again in handle_vmptrld() when
vmptr address is not backed is wrong, we end up advancing RIP twice.

Fixes: fca91f6d60 ("kvm: nVMX: Set VM instruction error for VMPTRLD of unbacked page")
Reported-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2019-01-11 18:41:53 +01:00
Lan Tianyu b7c1c226f9 KVM/VMX: Avoid return error when flush tlb successfully in the hv_remote_flush_tlb_with_range()
The "ret" is initialized to be ENOTSUPP. The return value of
__hv_remote_flush_tlb_with_range() will be Or with "ret" when ept
table potiners are mismatched. This will cause return ENOTSUPP even if
flush tlb successfully. This patch is to fix the issue and set
"ret" to 0.

Fixes: a5c214dad1 ("KVM/VMX: Change hv flush logic when ept tables are mismatched.")
Signed-off-by: Lan Tianyu <Tianyu.Lan@microsoft.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2019-01-11 18:38:07 +01:00
David Rientjes 3f14a89d11 kvm: sev: Fail KVM_SEV_INIT if already initialized
By code inspection, it was found that multiple calls to KVM_SEV_INIT
could deplete asid bits and overwrite kvm_sev_info's regions_list.

Multiple calls to KVM_SVM_INIT is not likely to occur with QEMU, but this
should likely be fixed anyway.

This code is serialized by kvm->lock.

Fixes: 1654efcbc4 ("KVM: SVM: Add KVM_SEV_INIT command")
Reported-by: Cfir Cohen <cfir@google.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2019-01-11 18:38:07 +01:00
Gustavo A. R. Silva d14eff1bc5 KVM: x86: Fix bit shifting in update_intel_pt_cfg
ctl_bitmask in pt_desc is of type u64. When an integer like 0xf is
being left shifted more than 32 bits, the behavior is undefined.

Fix this by adding suffix ULL to integer 0xf.

Addresses-Coverity-ID: 1476095 ("Bad bit shift operation")
Fixes: 6c0f0bba85 ("KVM: x86: Introduce a function to initialize the PT configuration")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Reviewed-by: Wei Yang <richardw.yang@linux.intel.com>
Reviewed-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2019-01-11 18:38:07 +01:00
Masahiro Yamada e9666d10a5 jump_label: move 'asm goto' support test to Kconfig
Currently, CONFIG_JUMP_LABEL just means "I _want_ to use jump label".

The jump label is controlled by HAVE_JUMP_LABEL, which is defined
like this:

  #if defined(CC_HAVE_ASM_GOTO) && defined(CONFIG_JUMP_LABEL)
  # define HAVE_JUMP_LABEL
  #endif

We can improve this by testing 'asm goto' support in Kconfig, then
make JUMP_LABEL depend on CC_HAS_ASM_GOTO.

Ugly #ifdef HAVE_JUMP_LABEL will go away, and CONFIG_JUMP_LABEL will
match to the real kernel capability.

Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
2019-01-06 09:46:51 +09:00
Linus Torvalds 769e47094d Kconfig updates for v4.21
- support -y option for merge_config.sh to avoid downgrading =y to =m
 
  - remove S_OTHER symbol type, and touch include/config/*.h files correctly
 
  - fix file name and line number in lexer warnings
 
  - fix memory leak when EOF is encountered in quotation
 
  - resolve all shift/reduce conflicts of the parser
 
  - warn no new line at end of file
 
  - make 'source' statement more strict to take only string literal
 
  - rewrite the lexer and remove the keyword lookup table
 
  - convert to SPDX License Identifier
 
  - compile C files independently instead of including them from zconf.y
 
  - fix various warnings of gconfig
 
  - misc cleanups
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJcJieuAAoJED2LAQed4NsGHlIP/1s0fQ86XD9dIMyHzAO0gh2f
 7rylfe2kEXJgIzJ0DyZdLu4iZtwbkEUqTQrRS1abriNGVemPkfBAnZdM5d92lOQX
 3iREa700AJ2xo7V7gYZ6AbhZoG3p0S9U9Q2qE5S+tFTe8c2Gy4xtjnODF+Vel85r
 S0P8tF5sE1/d00lm+yfMI/CJVfDjyNaMm+aVEnL0kZTPiRkaktjWgo6Fc2p4z1L5
 HFmMMP6/iaXmRZ+tHJGPQ2AT70GFVZw5ePxPcl50EotUP25KHbuUdzs8wDpYm3U/
 rcESVsIFpgqHWmTsdBk6dZk0q8yFZNkMlkaP/aYukVZpUn/N6oAXgTFckYl8dmQL
 fQBkQi6DTfr9EBPVbj18BKm7xI3Y4DdQ2fzTfYkJ2XwNRGFA5r9N3sjd7ZTVGjxC
 aeeMHCwvGdSx1x8PeZAhZfsUHW8xVDMSQiT713+ljBY+6cwzA+2NF0kP7B6OAqwr
 ETFzd4Xu2/lZcL7gQRH8WU3L2S5iedmDG6RnZgJMXI0/9V4qAA+nlsWaCgnl1TgA
 mpxYlLUMrd6AUJevE34FlnyFdk8IMn9iKRFsvF0f3doO5C7QzTVGqFdJu5a0CuWO
 4NBJvZjFT8/4amoWLfnDlfApWXzTfwLbKG+r6V2F30fLuXpYg5LxWhBoGRPYLZSq
 oi4xN1Mpx3TvXz6WcKVZ
 =r3Fl
 -----END PGP SIGNATURE-----

Merge tag 'kconfig-v4.21' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild

Pull Kconfig updates from Masahiro Yamada:

 - support -y option for merge_config.sh to avoid downgrading =y to =m

 - remove S_OTHER symbol type, and touch include/config/*.h files correctly

 - fix file name and line number in lexer warnings

 - fix memory leak when EOF is encountered in quotation

 - resolve all shift/reduce conflicts of the parser

 - warn no new line at end of file

 - make 'source' statement more strict to take only string literal

 - rewrite the lexer and remove the keyword lookup table

 - convert to SPDX License Identifier

 - compile C files independently instead of including them from zconf.y

 - fix various warnings of gconfig

 - misc cleanups

* tag 'kconfig-v4.21' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild: (39 commits)
  kconfig: surround dbg_sym_flags with #ifdef DEBUG to fix gconf warning
  kconfig: split images.c out of qconf.cc/gconf.c to fix gconf warnings
  kconfig: add static qualifiers to fix gconf warnings
  kconfig: split the lexer out of zconf.y
  kconfig: split some C files out of zconf.y
  kconfig: convert to SPDX License Identifier
  kconfig: remove keyword lookup table entirely
  kconfig: update current_pos in the second lexer
  kconfig: switch to ASSIGN_VAL state in the second lexer
  kconfig: stop associating kconf_id with yylval
  kconfig: refactor end token rules
  kconfig: stop supporting '.' and '/' in unquoted words
  treewide: surround Kconfig file paths with double quotes
  microblaze: surround string default in Kconfig with double quotes
  kconfig: use T_WORD instead of T_VARIABLE for variables
  kconfig: use specific tokens instead of T_ASSIGN for assignments
  kconfig: refactor scanning and parsing "option" properties
  kconfig: use distinct tokens for type and default properties
  kconfig: remove redundant token defines
  kconfig: rename depends_list to comment_option_list
  ...
2018-12-29 13:03:29 -08:00
Linus Torvalds 312a466155 Merge branch 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cleanups from Ingo Molnar:
 "Misc cleanups"

* 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/kprobes: Remove trampoline_handler() prototype
  x86/kernel: Fix more -Wmissing-prototypes warnings
  x86: Fix various typos in comments
  x86/headers: Fix -Wmissing-prototypes warning
  x86/process: Avoid unnecessary NULL check in get_wchan()
  x86/traps: Complete prototype declarations
  x86/mce: Fix -Wmissing-prototypes warnings
  x86/gart: Rewrite early_gart_iommu_check() comment
2018-12-26 17:03:51 -08:00
Linus Torvalds 42b00f122c * ARM: selftests improvements, large PUD support for HugeTLB,
single-stepping fixes, improved tracing, various timer and vGIC
 fixes
 
 * x86: Processor Tracing virtualization, STIBP support, some correctness fixes,
 refactorings and splitting of vmx.c, use the Hyper-V range TLB flush hypercall,
 reduce order of vcpu struct, WBNOINVD support, do not use -ftrace for __noclone
 functions, nested guest support for PAUSE filtering on AMD, more Hyper-V
 enlightenments (direct mode for synthetic timers)
 
 * PPC: nested VFIO
 
 * s390: bugfixes only this time
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQEcBAABAgAGBQJcH0vFAAoJEL/70l94x66Dw/wH/2FZp1YOM5OgiJzgqnXyDbyf
 dNEfWo472MtNiLsuf+ZAfJojVIu9cv7wtBfXNzW+75XZDfh/J88geHWNSiZDm3Fe
 aM4MOnGG0yF3hQrRQyEHe4IFhGFNERax8Ccv+OL44md9CjYrIrsGkRD08qwb+gNh
 P8T/3wJEKwUcVHA/1VHEIM8MlirxNENc78p6JKd/C7zb0emjGavdIpWFUMr3SNfs
 CemabhJUuwOYtwjRInyx1y34FzYwW3Ejuc9a9UoZ+COahUfkuxHE8u+EQS7vLVF6
 2VGVu5SA0PqgmLlGhHthxLqVgQYo+dB22cRnsLtXlUChtVAq8q9uu5sKzvqEzuE=
 =b4Jx
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Paolo Bonzini:
 "ARM:
   - selftests improvements
   - large PUD support for HugeTLB
   - single-stepping fixes
   - improved tracing
   - various timer and vGIC fixes

  x86:
   - Processor Tracing virtualization
   - STIBP support
   - some correctness fixes
   - refactorings and splitting of vmx.c
   - use the Hyper-V range TLB flush hypercall
   - reduce order of vcpu struct
   - WBNOINVD support
   - do not use -ftrace for __noclone functions
   - nested guest support for PAUSE filtering on AMD
   - more Hyper-V enlightenments (direct mode for synthetic timers)

  PPC:
   -  nested VFIO

  s390:
   - bugfixes only this time"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (171 commits)
  KVM: x86: Add CPUID support for new instruction WBNOINVD
  kvm: selftests: ucall: fix exit mmio address guessing
  Revert "compiler-gcc: disable -ftracer for __noclone functions"
  KVM: VMX: Move VM-Enter + VM-Exit handling to non-inline sub-routines
  KVM: VMX: Explicitly reference RCX as the vmx_vcpu pointer in asm blobs
  KVM: x86: Use jmp to invoke kvm_spurious_fault() from .fixup
  MAINTAINERS: Add arch/x86/kvm sub-directories to existing KVM/x86 entry
  KVM/x86: Use SVM assembly instruction mnemonics instead of .byte streams
  KVM/MMU: Flush tlb directly in the kvm_zap_gfn_range()
  KVM/MMU: Flush tlb directly in kvm_set_pte_rmapp()
  KVM/MMU: Move tlb flush in kvm_set_pte_rmapp() to kvm_mmu_notifier_change_pte()
  KVM: Make kvm_set_spte_hva() return int
  KVM: Replace old tlb flush function with new one to flush a specified range.
  KVM/MMU: Add tlb flush with range helper function
  KVM/VMX: Add hv tlb range flush support
  x86/hyper-v: Add HvFlushGuestAddressList hypercall support
  KVM: Add tlb_remote_flush_with_range callback in kvm_x86_ops
  KVM: x86: Disable Intel PT when VMXON in L1 guest
  KVM: x86: Set intercept for Intel PT MSRs read/write
  KVM: x86: Implement Intel PT MSRs read/write emulation
  ...
2018-12-26 11:46:28 -08:00
Masahiro Yamada 8636a1f967 treewide: surround Kconfig file paths with double quotes
The Kconfig lexer supports special characters such as '.' and '/' in
the parameter context. In my understanding, the reason is just to
support bare file paths in the source statement.

I do not see a good reason to complicate Kconfig for the room of
ambiguity.

The majority of code already surrounds file paths with double quotes,
and it makes sense since file paths are constant string literals.

Make it treewide consistent now.

Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Acked-by: Wolfram Sang <wsa@the-dreams.de>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Ingo Molnar <mingo@kernel.org>
2018-12-22 00:25:54 +09:00
Robert Hoo a0aea130af KVM: x86: Add CPUID support for new instruction WBNOINVD
Signed-off-by: Robert Hoo <robert.hu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-21 14:26:32 +01:00
Sean Christopherson 453eafbe65 KVM: VMX: Move VM-Enter + VM-Exit handling to non-inline sub-routines
Transitioning to/from a VMX guest requires KVM to manually save/load
the bulk of CPU state that the guest is allowed to direclty access,
e.g. XSAVE state, CR2, GPRs, etc...  For obvious reasons, loading the
guest's GPR snapshot prior to VM-Enter and saving the snapshot after
VM-Exit is done via handcoded assembly.  The assembly blob is written
as inline asm so that it can easily access KVM-defined structs that
are used to hold guest state, e.g. moving the blob to a standalone
assembly file would require generating defines for struct offsets.

The other relevant aspect of VMX transitions in KVM is the handling of
VM-Exits.  KVM doesn't employ a separate VM-Exit handler per se, but
rather treats the VMX transition as a mega instruction (with many side
effects), i.e. sets the VMCS.HOST_RIP to a label immediately following
VMLAUNCH/VMRESUME.  The label is then exposed to C code via a global
variable definition in the inline assembly.

Because of the global variable, KVM takes steps to (attempt to) ensure
only a single instance of the owning C function, e.g. vmx_vcpu_run, is
generated by the compiler.  The earliest approach placed the inline
assembly in a separate noinline function[1].  Later, the assembly was
folded back into vmx_vcpu_run() and tagged with __noclone[2][3], which
is still used today.

After moving to __noclone, an edge case was encountered where GCC's
-ftracer optimization resulted in the inline assembly blob being
duplicated.  This was "fixed" by explicitly disabling -ftracer in the
__noclone definition[4].

Recently, it was found that disabling -ftracer causes build warnings
for unsuspecting users of __noclone[5], and more importantly for KVM,
prevents the compiler for properly optimizing vmx_vcpu_run()[6].  And
perhaps most importantly of all, it was pointed out that there is no
way to prevent duplication of a function with 100% reliability[7],
i.e. more edge cases may be encountered in the future.

So to summarize, the only way to prevent the compiler from duplicating
the global variable definition is to move the variable out of inline
assembly, which has been suggested several times over[1][7][8].

Resolve the aforementioned issues by moving the VMLAUNCH+VRESUME and
VM-Exit "handler" to standalone assembly sub-routines.  Moving only
the core VMX transition codes allows the struct indexing to remain as
inline assembly and also allows the sub-routines to be used by
nested_vmx_check_vmentry_hw().  Reusing the sub-routines has a happy
side-effect of eliminating two VMWRITEs in the nested_early_check path
as there is no longer a need to dynamically change VMCS.HOST_RIP.

Note that callers to vmx_vmenter() must account for the CALL modifying
RSP, e.g. must subtract op-size from RSP when synchronizing RSP with
VMCS.HOST_RSP and "restore" RSP prior to the CALL.  There are no great
alternatives to fudging RSP.  Saving RSP in vmx_enter() is difficult
because doing so requires a second register (VMWRITE does not provide
an immediate encoding for the VMCS field and KVM supports Hyper-V's
memory-based eVMCS ABI).  The other more drastic alternative would be
to use eschew VMCS.HOST_RSP and manually save/load RSP using a per-cpu
variable (which can be encoded as e.g. gs:[imm]).  But because a valid
stack is needed at the time of VM-Exit (NMIs aren't blocked and a user
could theoretically insert INT3/INT1ICEBRK at the VM-Exit handler), a
dedicated per-cpu VM-Exit stack would be required.  A dedicated stack
isn't difficult to implement, but it would require at least one page
per CPU and knowledge of the stack in the dumpstack routines.  And in
most cases there is essentially zero overhead in dynamically updating
VMCS.HOST_RSP, e.g. the VMWRITE can be avoided for all but the first
VMLAUNCH unless nested_early_check=1, which is not a fast path.  In
other words, avoiding the VMCS.HOST_RSP by using a dedicated stack
would only make the code marginally less ugly while requiring at least
one page per CPU and forcing the kernel to be aware (and approve) of
the VM-Exit stack shenanigans.

[1] cea15c24ca39 ("KVM: Move KVM context switch into own function")
[2] a3b5ba49a8 ("KVM: VMX: add the __noclone attribute to vmx_vcpu_run")
[3] 104f226bfd ("KVM: VMX: Fold __vmx_vcpu_run() into vmx_vcpu_run()")
[4] 95272c2937 ("compiler-gcc: disable -ftracer for __noclone functions")
[5] https://lkml.kernel.org/r/20181218140105.ajuiglkpvstt3qxs@treble
[6] https://patchwork.kernel.org/patch/8707981/#21817015
[7] https://lkml.kernel.org/r/ri6y38lo23g.fsf@suse.cz
[8] https://lkml.kernel.org/r/20181218212042.GE25620@tassilo.jf.intel.com

Suggested-by: Andi Kleen <ak@linux.intel.com>
Suggested-by: Martin Jambor <mjambor@suse.cz>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Martin Jambor <mjambor@suse.cz>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-21 12:02:50 +01:00
Sean Christopherson 051a2d3e59 KVM: VMX: Explicitly reference RCX as the vmx_vcpu pointer in asm blobs
Use '%% " _ASM_CX"' instead of '%0' to dereference RCX, i.e. the
'struct vcpu_vmx' pointer, in the VM-Enter asm blobs of vmx_vcpu_run()
and nested_vmx_check_vmentry_hw().  Using the symbolic name means that
adding/removing an output parameter(s) requires "rewriting" almost all
of the asm blob, which makes it nearly impossible to understand what's
being changed in even the most minor patches.

Opportunistically improve the code comments.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-21 12:02:43 +01:00
Uros Bizjak ac5ffda244 KVM/x86: Use SVM assembly instruction mnemonics instead of .byte streams
Recently the minimum required version of binutils was changed to 2.20,
which supports all SVM instruction mnemonics. The patch removes
all .byte #defines and uses real instruction mnemonics instead.

Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-21 11:28:44 +01:00
Lan Tianyu 71883a62fc KVM/MMU: Flush tlb directly in the kvm_zap_gfn_range()
Originally, flush tlb is done by slot_handle_level_range(). This patch
moves the flush directly to kvm_zap_gfn_range() when range flush is
available, so that only the requested range can be flushed.

Signed-off-by: Lan Tianyu <Tianyu.Lan@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-21 11:28:43 +01:00
Lan Tianyu 3cc5ea94de KVM/MMU: Flush tlb directly in kvm_set_pte_rmapp()
This patch is to flush tlb directly in kvm_set_pte_rmapp()
function when Hyper-V remote TLB flush is available, returning 0
so that kvm_mmu_notifier_change_pte() does not flush again.

Signed-off-by: Lan Tianyu <Tianyu.Lan@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-21 11:28:42 +01:00
Lan Tianyu 0cf853c5e2 KVM/MMU: Move tlb flush in kvm_set_pte_rmapp() to kvm_mmu_notifier_change_pte()
This patch is to move tlb flush in kvm_set_pte_rmapp() to
kvm_mmu_notifier_change_pte() in order to avoid redundant tlb flush.

Signed-off-by: Lan Tianyu <Tianyu.Lan@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-21 11:28:42 +01:00
Lan Tianyu 748c0e312f KVM: Make kvm_set_spte_hva() return int
The patch is to make kvm_set_spte_hva() return int and caller can
check return value to determine flush tlb or not.

Signed-off-by: Lan Tianyu <Tianyu.Lan@microsoft.com>
Acked-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-21 11:28:41 +01:00
Lan Tianyu c3134ce240 KVM: Replace old tlb flush function with new one to flush a specified range.
This patch is to replace kvm_flush_remote_tlbs() with kvm_flush_
remote_tlbs_with_address() in some functions without logic change.

Signed-off-by: Lan Tianyu <Tianyu.Lan@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-21 11:28:41 +01:00
Lan Tianyu 40ef75a758 KVM/MMU: Add tlb flush with range helper function
This patch is to add wrapper functions for tlb_remote_flush_with_range
callback and flush tlb directly in kvm_mmu_zap_collapsible_spte().
kvm_mmu_zap_collapsible_spte() returns flush request to the
slot_handle_leaf() and the latter does flush on demand. When
range flush is available, make kvm_mmu_zap_collapsible_spte()
to flush tlb with range directly to avoid returning range back
to slot_handle_leaf().

Signed-off-by: Lan Tianyu <Tianyu.Lan@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-21 11:28:40 +01:00
Lan Tianyu 1f3a3e46cc KVM/VMX: Add hv tlb range flush support
This patch is to register tlb_remote_flush_with_range callback with
hv tlb range flush interface.

Signed-off-by: Lan Tianyu <Tianyu.Lan@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-21 11:28:39 +01:00
Luwei Kang ee85dec2fe KVM: x86: Disable Intel PT when VMXON in L1 guest
Currently, Intel Processor Trace do not support tracing in L1 guest
VMX operation(IA32_VMX_MISC[bit 14] is 0). As mentioned in SDM,
on these type of processors, execution of the VMXON instruction will
clears IA32_RTIT_CTL.TraceEn and any attempt to write IA32_RTIT_CTL
causes a general-protection exception (#GP).

Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-21 11:28:38 +01:00
Chao Peng b08c28960f KVM: x86: Set intercept for Intel PT MSRs read/write
To save performance overhead, disable intercept Intel PT MSRs
read/write when Intel PT is enabled in guest.
MSR_IA32_RTIT_CTL is an exception that will always be intercepted.

Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-21 11:28:37 +01:00
Chao Peng bf8c55d8dc KVM: x86: Implement Intel PT MSRs read/write emulation
This patch implement Intel Processor Trace MSRs read/write
emulation.
Intel PT MSRs read/write need to be emulated when Intel PT
MSRs is intercepted in guest and during live migration.

Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-21 11:28:36 +01:00
Luwei Kang 6c0f0bba85 KVM: x86: Introduce a function to initialize the PT configuration
Initialize the Intel PT configuration when cpuid update.
Include cpuid inforamtion, rtit_ctl bit mask and the number of
address ranges.

Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-21 11:28:36 +01:00
Chao Peng 2ef444f160 KVM: x86: Add Intel PT context switch for each vcpu
Load/Store Intel Processor Trace register in context switch.
MSR IA32_RTIT_CTL is loaded/stored automatically from VMCS.
In Host-Guest mode, we need load/resore PT MSRs only when PT
is enabled in guest.

Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-21 11:28:35 +01:00
Chao Peng 86f5201df0 KVM: x86: Add Intel Processor Trace cpuid emulation
Expose Intel Processor Trace to guest only when
the PT works in Host-Guest mode.

Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-21 11:28:35 +01:00
Chao Peng f99e3daf94 KVM: x86: Add Intel PT virtualization work mode
Intel Processor Trace virtualization can be work in one
of 2 possible modes:

a. System-Wide mode (default):
   When the host configures Intel PT to collect trace packets
   of the entire system, it can leave the relevant VMX controls
   clear to allow VMX-specific packets to provide information
   across VMX transitions.
   KVM guest will not aware this feature in this mode and both
   host and KVM guest trace will output to host buffer.

b. Host-Guest mode:
   Host can configure trace-packet generation while in
   VMX non-root operation for guests and root operation
   for native executing normally.
   Intel PT will be exposed to KVM guest in this mode, and
   the trace output to respective buffer of host and guest.
   In this mode, tht status of PT will be saved and disabled
   before VM-entry and restored after VM-exit if trace
   a virtual machine.

Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-21 11:28:34 +01:00
Wei Yang bdd303cb1b KVM: fix some typos
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
[Preserved the iff and a probably intentional weird bracket notation.
 Also dropped the style change to make a single-purpose patch. - Radim]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-12-21 11:28:26 +01:00
Sean Christopherson 9b7ebff23c KVM: x86: Remove KF() macro placeholder
Although well-intentioned, keeping the KF() definition as a hint for
handling scattered CPUID features may be counter-productive.  Simply
redefining the bit position only works for directly manipulating the
guest's CPUID leafs, e.g. it doesn't make guest_cpuid_has() magically
work.  Taking an alternative approach, e.g. ensuring the bit position
is identical between the Linux-defined and hardware-defined features,
may be a simpler and/or more effective method of exposing scattered
features to the guest.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-12-21 11:28:25 +01:00
Jim Mattson 788fc1e9ad kvm: vmx: Allow guest read access to IA32_TSC
Let the guest read the IA32_TSC MSR with the generic RDMSR instruction
as well as the specific RDTSC(P) instructions. Note that the hardware
applies the TSC multiplier and offset (when applicable) to the result of
RDMSR(IA32_TSC), just as it does to the result of RDTSC(P).

Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Reviewed-by: Marc Orr <marcorr@google.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-12-21 11:28:24 +01:00
Jim Mattson 9ebdfe5230 kvm: nVMX: NMI-window and interrupt-window exiting should wake L2 from HLT
According to the SDM, "NMI-window exiting" VM-exits wake a logical
processor from the same inactive states as would an NMI and
"interrupt-window exiting" VM-exits wake a logical processor from the
same inactive states as would an external interrupt. Specifically, they
wake a logical processor from the shutdown state and from the states
entered using the HLT and MWAIT instructions.

Fixes: 6dfacadd58 ("KVM: nVMX: Add support for activity state HLT")
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com>
[Squashed comments of two Jim's patches and used the simplified code
 hunk provided by Sean. - Radim]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-12-21 11:28:24 +01:00
Tambe, William e081354d6a KVM: nSVM: Fix nested guest support for PAUSE filtering.
Currently, the nested guest's PAUSE intercept intentions are not being
honored.  Instead, since the L0 hypervisor's pause_filter_count and
pause_filter_thresh values are still in place, these values are used
instead of those programmed in the VMCB by the L1 hypervisor.

To honor the desired PAUSE intercept support of the L1 hypervisor, the L0
hypervisor must use the PAUSE filtering fields of the L1 hypervisor. This
requires saving and restoring of both the L0 and L1 hypervisor's PAUSE
filtering fields.

Signed-off-by: William Tambe <william.tambe@amd.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-12-21 11:28:23 +01:00
YueHaibing ba7424b200 KVM: VMX: Remove duplicated include from vmx.c
Remove duplicated include.

Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-12-21 11:28:21 +01:00
Vitaly Kuznetsov e87555e550 KVM: x86: svm: report MSR_IA32_MCG_EXT_CTL as unsupported
AMD doesn't seem to implement MSR_IA32_MCG_EXT_CTL and svm code in kvm
knows nothing about it, however, this MSR is among emulated_msrs and
thus returned with KVM_GET_MSR_INDEX_LIST. The consequent KVM_GET_MSRS,
of course, fails.

Report the MSR as unsupported to not confuse userspace.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-12-21 11:28:20 +01:00
Paolo Bonzini ed8e481227 KVM: x86: fix size of x86_fpu_cache objects
The memory allocation in b666a4b697 ("kvm: x86: Dynamically allocate
guest_fpu", 2018-11-06) is wrong, there are other members in struct fpu
before the fpregs_state union and the patch should be doing something
similar to the code in fpu__init_task_struct_size.  It's enough to run
a guest and then rmmod kvm to see slub errors which are actually caused
by memory corruption.

For now let's revert it to sizeof(struct fpu), which is conservative.
I have plans to move fsave/fxsave/xsave directly in KVM, without using
the kernel FPU helpers, and once it's done, the size of the object in
the cache will be something like kvm_xstate_size.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-21 11:28:19 +01:00
Vitaly Kuznetsov 3cf85f9f6b KVM: x86: nSVM: fix switch to guest mmu
Recent optimizations in MMU code broke nested SVM with NPT in L1
completely: when we do nested_svm_{,un}init_mmu_context() we want
to switch from TDP MMU to shadow MMU, both init_kvm_tdp_mmu() and
kvm_init_shadow_mmu() check if re-configuration is needed by looking
at cache source data. The data, however, doesn't change - it's only
the type of the MMU which changes. We end up not re-initializing
guest MMU as shadow and everything goes off the rails.

The issue could have been fixed by putting MMU type into extended MMU
role but this is not really needed. We can just split root and guest MMUs
the exact same way we did for nVMX, their types never change in the
lifetime of a vCPU.

There is still room for improvement: currently, we reset all MMU roots
when switching from L1 to L2 and back and this is not needed.

Fixes: 7dcd575520 ("x86/kvm/mmu: check if tdp/shadow MMU reconfiguration is needed")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-19 22:19:22 +01:00
Eduardo Habkost 0e1b869fff kvm: x86: Add AMD's EX_CFG to the list of ignored MSRs
Some guests OSes (including Windows 10) write to MSR 0xc001102c
on some cases (possibly while trying to apply a CPU errata).
Make KVM ignore reads and writes to that MSR, so the guest won't
crash.

The MSR is documented as "Execution Unit Configuration (EX_CFG)",
at AMD's "BIOS and Kernel Developer's Guide (BKDG) for AMD Family
15h Models 00h-0Fh Processors".

Cc: stable@vger.kernel.org
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-18 22:15:44 +01:00
Wanpeng Li dcbd3e49c2 KVM: X86: Fix NULL deref in vcpu_scan_ioapic
Reported by syzkaller:

    CPU: 1 PID: 5962 Comm: syz-executor118 Not tainted 4.20.0-rc6+ #374
    Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
    RIP: 0010:kvm_apic_hw_enabled arch/x86/kvm/lapic.h:169 [inline]
    RIP: 0010:vcpu_scan_ioapic arch/x86/kvm/x86.c:7449 [inline]
    RIP: 0010:vcpu_enter_guest arch/x86/kvm/x86.c:7602 [inline]
    RIP: 0010:vcpu_run arch/x86/kvm/x86.c:7874 [inline]
    RIP: 0010:kvm_arch_vcpu_ioctl_run+0x5296/0x7320 arch/x86/kvm/x86.c:8074
    Call Trace:
	 kvm_vcpu_ioctl+0x5c8/0x1150 arch/x86/kvm/../../../virt/kvm/kvm_main.c:2596
	 vfs_ioctl fs/ioctl.c:46 [inline]
	 file_ioctl fs/ioctl.c:509 [inline]
	 do_vfs_ioctl+0x1de/0x1790 fs/ioctl.c:696
	 ksys_ioctl+0xa9/0xd0 fs/ioctl.c:713
	 __do_sys_ioctl fs/ioctl.c:720 [inline]
	 __se_sys_ioctl fs/ioctl.c:718 [inline]
	 __x64_sys_ioctl+0x73/0xb0 fs/ioctl.c:718
	 do_syscall_64+0x1b9/0x820 arch/x86/entry/common.c:290
	 entry_SYSCALL_64_after_hwframe+0x49/0xbe

The reason is that the testcase writes hyperv synic HV_X64_MSR_SINT14 msr
and triggers scan ioapic logic to load synic vectors into EOI exit bitmap.
However, irqchip is not initialized by this simple testcase, ioapic/apic
objects should not be accessed.

This patch fixes it by also considering whether or not apic is present.

Reported-by: syzbot+39810e6c400efadfef71@syzkaller.appspotmail.com
Cc: stable@vger.kernel.org
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-18 22:15:44 +01:00
Cfir Cohen c2dd5146e9 KVM: Fix UAF in nested posted interrupt processing
nested_get_vmcs12_pages() processes the posted_intr address in vmcs12. It
caches the kmap()ed page object and pointer, however, it doesn't handle
errors correctly: it's possible to cache a valid pointer, then release
the page and later dereference the dangling pointer.

I was able to reproduce with the following steps:

1. Call vmlaunch with valid posted_intr_desc_addr but an invalid
MSR_EFER. This causes nested_get_vmcs12_pages() to cache the kmap()ed
pi_desc_page and pi_desc. Later the invalid EFER value fails
check_vmentry_postreqs() which fails the first vmlaunch.

2. Call vmlanuch with a valid EFER but an invalid posted_intr_desc_addr
(I set it to 2G - 0x80). The second time we call nested_get_vmcs12_pages
pi_desc_page is unmapped and released and pi_desc_page is set to NULL
(the "shouldn't happen" clause). Due to the invalid
posted_intr_desc_addr, kvm_vcpu_gpa_to_page() fails and
nested_get_vmcs12_pages() returns. It doesn't return an error value so
vmlaunch proceeds. Note that at this time we have a dangling pointer in
vmx->nested.pi_desc and POSTED_INTR_DESC_ADDR in L0's vmcs.

3. Issue an IPI in L2 guest code. This triggers a call to
vmx_complete_nested_posted_interrupt() and pi_test_and_clear_on() which
dereferences the dangling pointer.

Vulnerable code requires nested and enable_apicv variables to be set to
true. The host CPU must also support posted interrupts.

Fixes: 5e2f30b756 "KVM: nVMX: get rid of nested_get_page()"
Cc: stable@vger.kernel.org
Reviewed-by: Andy Honig <ahonig@google.com>
Signed-off-by: Cfir Cohen <cfir@google.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-18 22:15:34 +01:00
Marc Orr b666a4b697 kvm: x86: Dynamically allocate guest_fpu
Previously, the guest_fpu field was embedded in the kvm_vcpu_arch
struct. Unfortunately, the field is quite large, (e.g., 4352 bytes on my
current setup). This bloats the kvm_vcpu_arch struct for x86 into an
order 3 memory allocation, which can become a problem on overcommitted
machines. Thus, this patch moves the fpu state outside of the
kvm_vcpu_arch struct.

With this patch applied, the kvm_vcpu_arch struct is reduced to 15168
bytes for vmx on my setup when building the kernel with kvmconfig.

Suggested-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Marc Orr <marcorr@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14 18:00:08 +01:00
Marc Orr 240c35a378 kvm: x86: Use task structs fpu field for user
Previously, x86's instantiation of 'struct kvm_vcpu_arch' added an fpu
field to save/restore fpu-related architectural state, which will differ
from kvm's fpu state. However, this is redundant to the 'struct fpu'
field, called fpu, embedded in the task struct, via the thread field.
Thus, this patch removes the user_fpu field from the kvm_vcpu_arch
struct and replaces it with the task struct's fpu field.

This change is significant because the fpu struct is actually quite
large. For example, on the system used to develop this patch, this
change reduces the size of the vcpu_vmx struct from 23680 bytes down to
19520 bytes, when building the kernel with kvmconfig. This reduction in
the size of the vcpu_vmx struct moves us closer to being able to
allocate the struct at order 2, rather than order 3.

Suggested-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Marc Orr <marcorr@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14 18:00:07 +01:00
Krish Sadhukhan 4e445aee96 KVM: nVMX: Move the checks for Guest Non-Register States to a separate helper function
.. to improve readability and maintainability, and to align the code as per
the layout of the checks in chapter "VM Entries" in Intel SDM vol 3C.

Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com>
Reviewed-by: Mark Kanda <mark.kanda@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14 18:00:06 +01:00
Krish Sadhukhan 254b2f3b0f KVM: nVMX: Move the checks for Host Control Registers and MSRs to a separate helper function
.. to improve readability and maintainability, and to align the code as per
the layout of the checks in chapter "VM Entries" in Intel SDM vol 3C.

Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com>
Reviewed-by: Mark Kanda <mark.kanda@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14 18:00:06 +01:00
Krish Sadhukhan 5fbf963400 KVM: nVMX: Move the checks for VM-Entry Control Fields to a separate helper function
.. to improve readability and maintainability, and to align the code as per
the layout of the checks in chapter "VM Entries" in Intel SDM vol 3C.

Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com>
Reviewed-by: Mark Kanda <mark.kanda@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14 18:00:05 +01:00
Krish Sadhukhan 61446ba75e KVM: nVMX: Move the checks for VM-Exit Control Fields to a separate helper function
.. to improve readability and maintainability, and to align the code as per
the layout of the checks in chapter "VM Entries" in Intel SDM vol 3C.

Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com>
Reviewed-by: Mark Kanda <mark.kanda@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14 18:00:04 +01:00
Sean Christopherson f9b245e182 KVM: nVMX: Remove param indirection from nested_vmx_check_msr_switch()
Passing the enum and doing an indirect lookup is silly when we can
simply pass the field directly.  Remove the "fast path" code in
nested_vmx_check_msr_switch_controls() as it's now nothing more than a
redundant check.

Remove the debug message rather than continue passing the enum for the
address field.  Having debug messages for the MSRs themselves is useful
as MSR legality is a huge space, whereas messing up a physical address
means the VMM is fundamentally broken.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14 18:00:04 +01:00
Krish Sadhukhan 461b4ba4c7 KVM: nVMX: Move the checks for VM-Execution Control Fields to a separate helper function
.. to improve readability and maintainability, and to align the code as per
the layout of the checks in chapter "VM Entries" in Intel SDM vol 3C.

Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com>
Reviewed-by: Mark Kanda <mark.kanda@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14 18:00:03 +01:00
Krish Sadhukhan 16322a3b5e KVM: nVMX: Prepend "nested_vmx_" to check_vmentry_{pre,post}reqs()
.. as they are used only in nested vmx context.

Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com>
Reviewed-by: Mark Kanda <mark.kanda@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14 18:00:02 +01:00
Lan Tianyu 53963a70ac KVM/VMX: Check ept_pointer before flushing ept tlb
This patch is to initialize ept_pointer to INVALID_PAGE and check it
before flushing ept tlb. If ept_pointer is invalid, bypass the flush
request.

Signed-off-by: Lan Tianyu <Tianyu.Lan@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14 18:00:02 +01:00
Krish Sadhukhan a0d4f80344 KVM nVMX: MSRs should not be stored if VM-entry fails during or after loading guest state
According to section "VM-entry Failures During or After Loading Guest State"
in Intel SDM vol 3C,

	"No MSRs are saved into the VM-exit MSR-store area."

when bit 31 of the exit reason is set.

Reported-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Suggested-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Darren Kenny <darren.kenny@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14 18:00:01 +01:00
Jim Mattson e53d88af63 kvm: x86: Don't modify MSR_PLATFORM_INFO on vCPU reset
If userspace has provided a different value for this MSR (e.g with the
turbo bits set), the userspace-provided value should survive a vCPU
reset. For backwards compatibility, MSR_PLATFORM_INFO is initialized
in kvm_arch_vcpu_setup.

Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Drew Schmitt <dasch@google.com>
Cc: Abhiroop Dabral <adabral@paloaltonetworks.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14 18:00:01 +01:00
Wei Huang 3d82c565a7 kvm: vmx: add cpu into VMX preemption timer bug list
This patch adds Intel "Xeon CPU E3-1220 V2", with CPUID.01H.EAX=0x000306A8,
into the list of known broken CPUs which fail to support VMX preemption
timer. This bug was found while running the APIC timer test of
kvm-unit-test on this specific CPU, even though the errata info can't be
located in the public domain for this CPU.

Signed-off-by: Wei Huang <wei@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14 18:00:00 +01:00
Eduardo Habkost d7b09c827a kvm: x86: Report STIBP on GET_SUPPORTED_CPUID
Months ago, we have added code to allow direct access to MSR_IA32_SPEC_CTRL
to the guest, which makes STIBP available to guests.  This was implemented
by commits d28b387fb7 ("KVM/VMX: Allow direct access to
MSR_IA32_SPEC_CTRL") and b2ac58f905 ("KVM/SVM: Allow direct access to
MSR_IA32_SPEC_CTRL").

However, we never updated GET_SUPPORTED_CPUID to let userspace know that
STIBP can be enabled in CPUID.  Fix that by updating
kvm_cpuid_8000_0008_ebx_x86_features and kvm_cpuid_7_0_edx_x86_features.

Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14 17:59:59 +01:00
Vitaly Kuznetsov 87a8d795b2 x86/hyper-v: Stop caring about EOI for direct stimers
Turns out we over-engineered Direct Mode for stimers a bit: unlike
traditional stimers where we may want to try to re-inject the message upon
EOI, Direct Mode stimers just set the irq in APIC and kvm_apic_set_irq()
fails only when APIC is disabled (see APIC_DM_FIXED case in
__apic_accept_irq()). Remove the redundant part.

Suggested-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14 17:59:59 +01:00
Vitaly Kuznetsov 08a800ac25 x86/kvm/hyper-v: avoid open-coding stimer_mark_pending() in kvm_hv_notify_acked_sint()
stimers_pending optimization only helps us to avoid multiple
kvm_make_request() calls. This doesn't happen very often and these
calls are very cheap in the first place, remove open-coded version of
stimer_mark_pending() from kvm_hv_notify_acked_sint().

Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14 17:59:58 +01:00
Vitaly Kuznetsov 8644f771e0 x86/kvm/hyper-v: direct mode for synthetic timers
Turns out Hyper-V on KVM (as of 2016) will only use synthetic timers
if direct mode is available. With direct mode we notify the guest by
asserting APIC irq instead of sending a SynIC message.

The implementation uses existing vec_bitmap for letting lapic code
know that we're interested in the particular IRQ's EOI request. We assume
that the same APIC irq won't be used by the guest for both direct mode
stimer and as sint source (especially with AutoEOI semantics). It is
unclear how things should be handled if that's not true.

Direct mode is also somewhat less expensive; in my testing
stimer_send_msg() takes not less than 1500 cpu cycles and
stimer_notify_direct() can usually be done in 300-400. WS2016 without
Hyper-V, however, always sticks to non-direct version.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14 17:59:57 +01:00
Vitaly Kuznetsov 6a058a1ead x86/kvm/hyper-v: use stimer config definition from hyperv-tlfs.h
As a preparation to implementing Direct Mode for Hyper-V synthetic
timers switch to using stimer config definition from hyperv-tlfs.h.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14 17:59:57 +01:00
Vitaly Kuznetsov 2bc39970e9 x86/kvm/hyper-v: Introduce KVM_GET_SUPPORTED_HV_CPUID
With every new Hyper-V Enlightenment we implement we're forced to add a
KVM_CAP_HYPERV_* capability. While this approach works it is fairly
inconvenient: the majority of the enlightenments we do have corresponding
CPUID feature bit(s) and userspace has to know this anyways to be able to
expose the feature to the guest.

Add KVM_GET_SUPPORTED_HV_CPUID ioctl (backed by KVM_CAP_HYPERV_CPUID, "one
cap to rule them all!") returning all Hyper-V CPUID feature leaves.

Using the existing KVM_GET_SUPPORTED_CPUID doesn't seem to be possible:
Hyper-V CPUID feature leaves intersect with KVM's (e.g. 0x40000000,
0x40000001) and we would probably confuse userspace in case we decide to
return these twice.

KVM_CAP_HYPERV_CPUID's number is interim: we're intended to drop
KVM_CAP_HYPERV_STIMER_DIRECT and use its number instead.

Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14 17:59:54 +01:00
Vitaly Kuznetsov e2e871ab2f x86/kvm/hyper-v: Introduce nested_get_evmcs_version() helper
The upcoming KVM_GET_SUPPORTED_HV_CPUID ioctl will need to return
Enlightened VMCS version in HYPERV_CPUID_NESTED_FEATURES.EAX when
it was enabled.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14 17:59:54 +01:00
Vitaly Kuznetsov a4987defc1 x86/hyper-v: Do some housekeeping in hyperv-tlfs.h
hyperv-tlfs.h is a bit messy: CPUID feature bits are not always sorted,
it's hard to get which CPUID they belong to, some items are duplicated
(e.g. HV_X64_MSR_CRASH_CTL_NOTIFY/HV_CRASH_CTL_CRASH_NOTIFY).

Do some housekeeping work. While on it, replace all (1 << X) with BIT(X)
macro.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14 17:59:53 +01:00
Roman Kagan 7deec5e0df x86: kvm: hyperv: don't retry message delivery for periodic timers
The SynIC message delivery protocol allows the message originator to
request, should the message slot be busy, to be notified when it's free.

However, this is unnecessary and even undesirable for messages generated
by SynIC timers in periodic mode: if the period is short enough compared
to the time the guest spends in the timer interrupt handler, so the
timer ticks start piling up, the excessive interactions due to this
notification and retried message delivery only makes the things worse.

[This was observed, in particular, with Windows L2 guests setting
(temporarily) the periodic timer to 2 kHz, and spending hundreds of
microseconds in the timer interrupt handler due to several L2->L1 exits;
under some load in L0 this could exceed 500 us so the timer ticks
started to pile up and the guest livelocked.]

Relieve the situation somewhat by not retrying message delivery for
periodic SynIC timers.  This appears to remain within the "lazy" lost
ticks policy for SynIC timers as implemented in KVM.

Note that it doesn't solve the fundamental problem of livelocking the
guest with a periodic timer whose period is smaller than the time needed
to process a tick, but it makes it a bit less likely to be triggered.

Signed-off-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14 17:59:51 +01:00
Roman Kagan 3a0e773172 x86: kvm: hyperv: simplify SynIC message delivery
SynIC message delivery is somewhat overengineered: it pretends to follow
the ordering rules when grabbing the message slot, using atomic
operations and all that, but does it incorrectly and unnecessarily.

The correct order would be to first set .msg_pending, then atomically
replace .message_type if it was zero, and then clear .msg_pending if
the previous step was successful.  But this all is done in vcpu context
so the whole update looks atomic to the guest (it's assumed to only
access the message page from this cpu), and therefore can be done in
whatever order is most convenient (and is also the reason why the
incorrect order didn't trigger any bugs so far).

While at this, also switch to kvm_vcpu_{read,write}_guest_page, and drop
the no longer needed synic_clear_sint_msg_pending.

Signed-off-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14 17:59:51 +01:00
Peng Hao eb1ff0a913 kvm: x86: remove unnecessary recalculate_apic_map
In the previous code, the variable apic_sw_disabled influences
recalculate_apic_map. But in "KVM: x86: simplify kvm_apic_map"
(commit: 3b5a5ffa92),
the access to apic_sw_disabled in recalculate_apic_map has been
deleted.

Signed-off-by: Peng Hao <peng.hao2@zte.com.cn>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14 17:59:50 +01:00
Peng Hao b2227ddec1 kvm: svm: remove unused struct definition
structure svm_init_data is never used. So remove it.

Signed-off-by: Peng Hao <peng.hao2@zte.com.cn>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14 17:59:50 +01:00
Jim Mattson 84c8c5b8f8 kvm: vmx: Skip all SYSCALL MSRs in setup_msrs() when !EFER.SCE
Like IA32_STAR, IA32_LSTAR and IA32_FMASK only need to contain guest
values on VM-entry when the guest is in long mode and EFER.SCE is set.

Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Reviewed-by: Marc Orr <marcorr@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14 17:59:49 +01:00
Jim Mattson db31c8f5af kvm: vmx: Don't set hardware IA32_CSTAR MSR on VM-entry
SYSCALL raises #UD in compatibility mode on Intel CPUs, so it's
pointless to load the guest's IA32_CSTAR value into the hardware MSR.

IA32_CSTAR still provides 48 bits of storage on Intel CPUs that have
CPUID.80000001:EDX.LM[bit 29] set, so we cannot remove it from the
vmx_msr_index[] array.

Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14 17:59:48 +01:00
Jim Mattson 898a811f14 kvm: vmx: Document the need for MSR_STAR in i386 builds
Add a comment explaining why MSR_STAR must be included in
vmx_msr_index[] even for i386 builds.

The elided comment has not been relevant since move_msr_up() was
introduced in commit a75beee6e4 ("KVM: VMX: Avoid saving and
restoring msrs on lightweight vmexit").

Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14 17:59:48 +01:00
Jim Mattson 0023ef39dc kvm: vmx: Set IA32_TSC_AUX for legacy mode guests
RDTSCP is supported in legacy mode as well as long mode. The
IA32_TSC_AUX MSR should be set to the correct guest value before
entering any guest that supports RDTSCP.

Fixes: 4e47c7a6d7 ("KVM: VMX: Add instruction rdtscp support for guest")
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Reviewed-by: Marc Orr <marcorr@google.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14 17:59:47 +01:00
Sean Christopherson 55d2375e58 KVM: nVMX: Move nested code to dedicated files
From a functional perspective, this is (supposed to be) a straight
copy-paste of code.  Code was moved piecemeal to nested.c as not all
code that could/should be moved was obviously nested-only.  The nested
code was then re-ordered as needed to compile, i.e. stats may not show
this is being a "pure" move despite there not being any intended changes
in functionality.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14 17:59:46 +01:00
Sean Christopherson 7c97fcb3b6 KVM: VMX: Expose nested_vmx_allowed() to nested VMX as a non-inline
Exposing only the function allows @nested, i.e. the module param, to be
statically defined in vmx.c, ensuring we aren't unnecessarily checking
said variable in the nested code.  nested_vmx_allowed() is exposed due
to the need to verify nested support in vmx_{get,set}_nested_state().
The downside is that nested_vmx_allowed() likely won't be inlined in
vmx_{get,set}_nested_state(), but that should be a non-issue as they're
not a hot path.  Keeping vmx_{get,set}_nested_state() in vmx.c isn't a
viable option as they need access to several nested-only functions.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14 17:59:45 +01:00
Sean Christopherson 97b7ead392 KVM: VMX: Expose various getters and setters to nested VMX
...as they're used directly by the nested code.  This will allow
moving the bulk of the nested code out of vmx.c without concurrent
changes to vmx.h.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14 17:18:01 +01:00
Sean Christopherson cf3646eb3a KVM: VMX: Expose misc variables needed for nested VMX
Exposed vmx_msr_index, vmx_return and host_efer via vmx.h so that the
nested code can be moved out of vmx.c.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14 17:18:01 +01:00
Sean Christopherson ff241486ac KVM: nVMX: Move "vmcs12 to shadow/evmcs sync" to helper function
...so that the function doesn't need to be created when moving the
nested code out of vmx.c.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14 17:18:00 +01:00
Sean Christopherson 3e8eacccae KVM: nVMX: Call nested_vmx_setup_ctls_msrs() iff @nested is true
...so that it doesn't need access to @nested. The only case where the
provided struct isn't already zeroed is the call from vmx_create_vcpu()
as setup_vmcs_config() zeroes the struct in the other use cases.  This
will allow @nested to be statically defined in vmx.c, i.e. this removes
the last direct reference from nested code.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14 17:17:59 +01:00
Sean Christopherson e4027cfafd KVM: nVMX: Set callbacks for nested functions during hardware setup
...in nested-specific code so that they can eventually be moved out of
vmx.c, e.g. into nested.c.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14 17:17:58 +01:00
Sean Christopherson a3203381ca KVM: VMX: Move the hardware {un}setup functions to the bottom
...so that future patches can reference e.g. @kvm_vmx_exit_handlers
without having to simultaneously move a big chunk of code.  Speaking
from experience, resolving merge conflicts is an absolute nightmare
without pre-moving the code.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14 17:17:58 +01:00
Sean Christopherson 5158917c7b KVM: x86: nVMX: Allow nested_enable_evmcs to be NULL
...so that it can conditionally set by the VMX code, i.e. iff @nested is
true.  This will in turn allow it to be moved out of vmx.c and into a
nested-specified file.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14 17:17:57 +01:00
Sean Christopherson 944c346453 KVM: VMX: Move nested hardware/vcpu {un}setup to helper functions
Eventually this will allow us to move the nested VMX code out of vmx.c.
Note that this also effectively wraps @enable_shadow_vmcs with @nested
so that it too can be moved out of vmx.c.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14 17:17:56 +01:00
Sean Christopherson 89b0c9f583 KVM: VMX: Move VMX instruction wrappers to a dedicated header file
VMX has a few hundred lines of code just to wrap various VMX specific
instructions, e.g. VMWREAD, INVVPID, etc...  Move them to a dedicated
header so it's easier to find/isolate the boilerplate.

With this change, more inlines can be moved from vmx.c to vmx.h.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14 17:17:27 +01:00
Sean Christopherson 75edce8a45 KVM: VMX: Move eVMCS code to dedicated files
The header, evmcs.h, already exists and contains a fair amount of code,
but there are a few pieces in vmx.c that can be moved verbatim.  In
addition, move an array definition to evmcs.c to prepare for multiple
consumers of evmcs.h.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14 14:00:06 +01:00
Sean Christopherson 8373d25d25 KVM: VMX: Add vmx.h to hold VMX definitions
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14 14:00:01 +01:00