Try this, and you'll get oops immediately:
# cd Documentation/accounting/
# gcc -o getdelays getdelays.c
# mount -t cgroup -o debug xxx /mnt
# ./getdelays -C /mnt/tasks
Because a normal file's dentry->d_fsdata is a pointer to struct cftype,
not struct cgroup.
After the patch, it returns EINVAL if we try to get cgroupstats
from a normal file.
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Acked-by: Paul Menage <menage@google.com>
Cc: <stable@kernel.org> [2.6.25.x, 2.6.26.x, 2.6.27.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
sprint_symbol(), itself used when dumping stacks, has been wasting 128
bytes of stack: lookup the symbol directly into the buffer supplied by the
caller, instead of using a locally declared namebuf.
I believe the name != buffer strcpy() is obsolete: the design here dates
from when module symbol lookup pointed into a supposedly const but sadly
volatile table; nowadays it copies, but an uncalled strcpy() looks better
here than the risk of a recursive BUG_ON().
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As Balbir pointed out, memcg's pre_destroy handler has potential deadlock.
It has following lock sequence.
cgroup_mutex (cgroup_rmdir)
-> pre_destroy -> mem_cgroup_pre_destroy-> force_empty
-> cpu_hotplug.lock. (lru_add_drain_all->
schedule_work->
get_online_cpus)
But, cpuset has following.
cpu_hotplug.lock (call notifier)
-> cgroup_mutex. (within notifier)
Then, this lock sequence should be fixed.
Considering how pre_destroy works, it's not necessary to holding
cgroup_mutex() while calling it.
As a side effect, we don't have to wait at this mutex while memcg's
force_empty works.(it can be long when there are tons of pages.)
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Paul Menage <menage@google.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After adding a node into the machine, top cpuset's mems isn't updated.
By reviewing the code, we found that the update function
cpuset_track_online_nodes()
was invoked after node_states[N_ONLINE] changes. It is wrong because
N_ONLINE just means node has pgdat, and if node has/added memory, we use
N_HIGH_MEMORY. So, We should invoke the update function after
node_states[N_HIGH_MEMORY] changes, just like its commit says.
This patch fixes it. And we use notifier of memory hotplug instead of
direct calling of cpuset_track_online_nodes().
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Acked-by: Yasunori Goto <y-goto@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Paul Menage <menage@google.com
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce a new accept4() system call. The addition of this system call
matches analogous changes in 2.6.27 (dup3(), evenfd2(), signalfd4(),
inotify_init1(), epoll_create1(), pipe2()) which added new system calls
that differed from analogous traditional system calls in adding a flags
argument that can be used to access additional functionality.
The accept4() system call is exactly the same as accept(), except that
it adds a flags bit-mask argument. Two flags are initially implemented.
(Most of the new system calls in 2.6.27 also had both of these flags.)
SOCK_CLOEXEC causes the close-on-exec (FD_CLOEXEC) flag to be enabled
for the new file descriptor returned by accept4(). This is a useful
security feature to avoid leaking information in a multithreaded
program where one thread is doing an accept() at the same time as
another thread is doing a fork() plus exec(). More details here:
http://udrepper.livejournal.com/20407.html "Secure File Descriptor Handling",
Ulrich Drepper).
The other flag is SOCK_NONBLOCK, which causes the O_NONBLOCK flag
to be enabled on the new open file description created by accept4().
(This flag is merely a convenience, saving the use of additional calls
fcntl(F_GETFL) and fcntl (F_SETFL) to achieve the same result.
Here's a test program. Works on x86-32. Should work on x86-64, but
I (mtk) don't have a system to hand to test with.
It tests accept4() with each of the four possible combinations of
SOCK_CLOEXEC and SOCK_NONBLOCK set/clear in 'flags', and verifies
that the appropriate flags are set on the file descriptor/open file
description returned by accept4().
I tested Ulrich's patch in this thread by applying against 2.6.28-rc2,
and it passes according to my test program.
/* test_accept4.c
Copyright (C) 2008, Linux Foundation, written by Michael Kerrisk
<mtk.manpages@gmail.com>
Licensed under the GNU GPLv2 or later.
*/
#define _GNU_SOURCE
#include <unistd.h>
#include <sys/syscall.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdlib.h>
#include <fcntl.h>
#include <stdio.h>
#include <string.h>
#define PORT_NUM 33333
#define die(msg) do { perror(msg); exit(EXIT_FAILURE); } while (0)
/**********************************************************************/
/* The following is what we need until glibc gets a wrapper for
accept4() */
/* Flags for socket(), socketpair(), accept4() */
#ifndef SOCK_CLOEXEC
#define SOCK_CLOEXEC O_CLOEXEC
#endif
#ifndef SOCK_NONBLOCK
#define SOCK_NONBLOCK O_NONBLOCK
#endif
#ifdef __x86_64__
#define SYS_accept4 288
#elif __i386__
#define USE_SOCKETCALL 1
#define SYS_ACCEPT4 18
#else
#error "Sorry -- don't know the syscall # on this architecture"
#endif
static int
accept4(int fd, struct sockaddr *sockaddr, socklen_t *addrlen, int flags)
{
printf("Calling accept4(): flags = %x", flags);
if (flags != 0) {
printf(" (");
if (flags & SOCK_CLOEXEC)
printf("SOCK_CLOEXEC");
if ((flags & SOCK_CLOEXEC) && (flags & SOCK_NONBLOCK))
printf(" ");
if (flags & SOCK_NONBLOCK)
printf("SOCK_NONBLOCK");
printf(")");
}
printf("\n");
#if USE_SOCKETCALL
long args[6];
args[0] = fd;
args[1] = (long) sockaddr;
args[2] = (long) addrlen;
args[3] = flags;
return syscall(SYS_socketcall, SYS_ACCEPT4, args);
#else
return syscall(SYS_accept4, fd, sockaddr, addrlen, flags);
#endif
}
/**********************************************************************/
static int
do_test(int lfd, struct sockaddr_in *conn_addr,
int closeonexec_flag, int nonblock_flag)
{
int connfd, acceptfd;
int fdf, flf, fdf_pass, flf_pass;
struct sockaddr_in claddr;
socklen_t addrlen;
printf("=======================================\n");
connfd = socket(AF_INET, SOCK_STREAM, 0);
if (connfd == -1)
die("socket");
if (connect(connfd, (struct sockaddr *) conn_addr,
sizeof(struct sockaddr_in)) == -1)
die("connect");
addrlen = sizeof(struct sockaddr_in);
acceptfd = accept4(lfd, (struct sockaddr *) &claddr, &addrlen,
closeonexec_flag | nonblock_flag);
if (acceptfd == -1) {
perror("accept4()");
close(connfd);
return 0;
}
fdf = fcntl(acceptfd, F_GETFD);
if (fdf == -1)
die("fcntl:F_GETFD");
fdf_pass = ((fdf & FD_CLOEXEC) != 0) ==
((closeonexec_flag & SOCK_CLOEXEC) != 0);
printf("Close-on-exec flag is %sset (%s); ",
(fdf & FD_CLOEXEC) ? "" : "not ",
fdf_pass ? "OK" : "failed");
flf = fcntl(acceptfd, F_GETFL);
if (flf == -1)
die("fcntl:F_GETFD");
flf_pass = ((flf & O_NONBLOCK) != 0) ==
((nonblock_flag & SOCK_NONBLOCK) !=0);
printf("nonblock flag is %sset (%s)\n",
(flf & O_NONBLOCK) ? "" : "not ",
flf_pass ? "OK" : "failed");
close(acceptfd);
close(connfd);
printf("Test result: %s\n", (fdf_pass && flf_pass) ? "PASS" : "FAIL");
return fdf_pass && flf_pass;
}
static int
create_listening_socket(int port_num)
{
struct sockaddr_in svaddr;
int lfd;
int optval;
memset(&svaddr, 0, sizeof(struct sockaddr_in));
svaddr.sin_family = AF_INET;
svaddr.sin_addr.s_addr = htonl(INADDR_ANY);
svaddr.sin_port = htons(port_num);
lfd = socket(AF_INET, SOCK_STREAM, 0);
if (lfd == -1)
die("socket");
optval = 1;
if (setsockopt(lfd, SOL_SOCKET, SO_REUSEADDR, &optval,
sizeof(optval)) == -1)
die("setsockopt");
if (bind(lfd, (struct sockaddr *) &svaddr,
sizeof(struct sockaddr_in)) == -1)
die("bind");
if (listen(lfd, 5) == -1)
die("listen");
return lfd;
}
int
main(int argc, char *argv[])
{
struct sockaddr_in conn_addr;
int lfd;
int port_num;
int passed;
passed = 1;
port_num = (argc > 1) ? atoi(argv[1]) : PORT_NUM;
memset(&conn_addr, 0, sizeof(struct sockaddr_in));
conn_addr.sin_family = AF_INET;
conn_addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
conn_addr.sin_port = htons(port_num);
lfd = create_listening_socket(port_num);
if (!do_test(lfd, &conn_addr, 0, 0))
passed = 0;
if (!do_test(lfd, &conn_addr, SOCK_CLOEXEC, 0))
passed = 0;
if (!do_test(lfd, &conn_addr, 0, SOCK_NONBLOCK))
passed = 0;
if (!do_test(lfd, &conn_addr, SOCK_CLOEXEC, SOCK_NONBLOCK))
passed = 0;
close(lfd);
exit(passed ? EXIT_SUCCESS : EXIT_FAILURE);
}
[mtk.manpages@gmail.com: rewrote changelog, updated test program]
Signed-off-by: Ulrich Drepper <drepper@redhat.com>
Tested-by: Michael Kerrisk <mtk.manpages@gmail.com>
Acked-by: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: <linux-api@vger.kernel.org>
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Impact: clean up and fix for dyn ftrace filter selection
The previous logic of the dynamic ftrace selection of enabling
or disabling functions was complex and incorrect. This patch simplifies
the code and corrects the usage. This simplification also makes the
code more robust.
Here is the correct logic:
Given a function that can be traced by dynamic ftrace:
If the function is not to be traced, disable it if it was enabled.
(this is if the function is in the set_ftrace_notrace file)
(filter is on if there exists any functions in set_ftrace_filter file)
If the filter is on, and we are enabling functions:
If the function is in set_ftrace_filter, enable it if it is not
already enabled.
If the function is not in set_ftrace_filter, disable it if it is not
already disabled.
Otherwise, if the filter is off and we are enabling function tracing:
Enable the function if it is not already enabled.
Otherwise, if we are disabling function tracing:
Disable the function if it is not already disabled.
This code now sets or clears the ENABLED flag in the record, and at the
end it will enable the function if the flag is set, or disable the function
if the flag is cleared.
The parameters for the function that does the above logic is also
simplified. Instead of passing in confusing "new" and "old" where
they might be swapped if the "enabled" flag is not set. The old logic
even had one of the above always NULL and had to be filled in. The new
logic simply passes in one parameter called "nop". A "call" is calculated
in the code, and at the end of the logic, when we know we need to either
disable or enable the function, we can then use the "nop" and "call"
properly.
This code is more robust than the previous version.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: fix filter selection to apply when set
It can be confusing when the set_filter_functions is set (or cleared)
and the functions being recorded by the dynamic tracer does not
match.
This patch causes the code to be updated if the function tracer is
enabled and the filter is changed.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: fix of output of set_ftrace_filter
The commit "ftrace: do not show freed records in
available_filter_functions"
Removed a bit too much from the set_ftrace_filter code, where we now see
all functions in the set_ftrace_filter file even when we set a filter.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: fix tracing buffer mutex leak in case of allocation failure
This error was spotted by this semantic patch:
http://www.emn.fr/x-info/coccinelle/mut.html
It looks correct as far as I can tell. Please review.
Signed-off-by: Vegard Nossum <vegard.nossum@gmail.com>
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'for-linus' of git://git.kernel.dk/linux-2.6-block:
block: hold extra reference to bio in blk_rq_map_user_iov()
relay: fix cpu offline problem
Release old elevator on change elevator
block: fix boot failure with CONFIG_DEBUG_BLOCK_EXT_DEVT=y and nash
block/md: fix md autodetection
block: make add_partition() return pointer to hd_struct
block: fix add_partition() error path
By using WARN(), kerneloops.org can collect which component is causing
the delay and make statistics about that. suspend_test_finish() is
currently the number 2 item but unless we can collect who's causing
it we're not going to be able to fix the hot topic ones..
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'tracing-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
kernel/profile.c: fix section mismatch warning
function tracing: fix wrong pos computing when read buffer has been fulfilled
tracing: fix mmiotrace resizing crash
ring-buffer: no preempt for sched_clock()
ring-buffer: buffer record on/off switch
* 'sched-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
cpuset: fix regression when failed to generate sched domains
sched, signals: fix the racy usage of ->signal in account_group_xxx/run_posix_cpu_timers
sched: fix kernel warning on /proc/sched_debug access
sched: correct sched-rt-group.txt pathname in init/Kconfig
Impact: fix memory leak
Error handling code following a kzalloc should free the allocated data.
The semantic match that finds the problem is as follows:
(http://www.emn.fr/x-info/coccinelle/)
// <smpl>
@r exists@
local idexpression x;
statement S;
expression E;
identifier f,l;
position p1,p2;
expression *ptr != NULL;
@@
(
if ((x@p1 = \(kmalloc\|kzalloc\|kcalloc\)(...)) == NULL) S
|
x@p1 = \(kmalloc\|kzalloc\|kcalloc\)(...);
...
if (x == NULL) S
)
<... when != x
when != if (...) { <+...x...+> }
x->f = E
...>
(
return \(0\|<+...x...+>\|ptr\);
|
return@p2 ...;
)
@script:python@
p1 << r.p1;
p2 << r.p2;
@@
print "* file: %s kmalloc %s return %s" % (p1[0].file,p1[0].line,p2[0].line)
// </smpl>
Signed-off-by: Julia Lawall <julia@diku.dk>
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
relay_open() will close allocated buffers when failed.
but if cpu offlined, some buffer will not be closed.
this patch fixed it.
and did cleanup for relay_reset() too.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Impact: fix section mismatch warning in kernel/profile.c
Here, profile_nop function has been called from a non-init function
create_hash_tables(void). Which generetes a section mismatch warning.
Previously, create_hash_tables(void) was a init function. So, removing
__init from create_hash_tables(void) requires profile_nop to be
non-init.
This patch makes profile_nop function inline and fixes the
following warning:
WARNING: vmlinux.o(.text+0x6ebb6): Section mismatch in reference from
the function create_hash_tables() to the function
.init.text:profile_nop()
The function create_hash_tables() references
the function __init profile_nop().
This is often because create_hash_tables lacks a __init
annotation or the annotation of profile_nop is wrong.
Signed-off-by: Rakib Mullick <rakib.mullick@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: properly rebuild sched-domains on kmalloc() failure
When cpuset failed to generate sched domains due to kmalloc()
failure, the scheduler should fallback to the single partition
'fallback_doms' and rebuild sched domains, but now it only
destroys but not rebuilds sched domains.
The regression was introduced by:
| commit dfb512ec48
| Author: Max Krasnyansky <maxk@qualcomm.com>
| Date: Fri Aug 29 13:11:41 2008 -0700
|
| sched: arch_reinit_sched_domains() must destroy domains to force rebuild
After the above commit, partition_sched_domains(0, NULL, NULL) will
only destroy sched domains and partition_sched_domains(1, NULL, NULL)
will create the default sched domain.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Cc: Max Krasnyansky <maxk@qualcomm.com>
Cc: <stable@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
For some unknown reason at Steven Rostedt added in disabling of the SPE
instruction generation for e500 based PPC cores in commit
6ec562328f.
We are removing it because:
1. It generates e500 kernels that don't work
2. its not the correct set of flags to do this
3. we handle this in the arch/powerpc/Makefile already
4. its unknown in talking to Steven why he did this
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Tested-and-Acked-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Impact: fix potential NULL dereference
Contrary to ad474caca3 changelog, other
acct_group_xxx() helpers can be called after exit_notify() by timer tick.
Thanks to Roland for pointing out this. Somehow I missed this simple fact
when I read the original patch, and I am afraid I confused Frank during
the discussion. Sorry.
Fortunately, these helpers work with current, we can check ->exit_state
to ensure that ->signal can't go away under us.
Also, add the comment and compiler barrier to account_group_exec_runtime(),
to make sure we load ->signal only once.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Bug #11989: Suspend failure on NForce4-based boards due to chanes in
stop_machine
We should not access active.fnret outside the lock; in theory the next
stop_machine could overwrite it.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Tested-by: "Rafael J. Wysocki" <rjw@sisk.pl>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Impact: make output of available_filter_functions complete
phenomenon:
The first value of dyn_ftrace_total_info is not equal with
`cat available_filter_functions | wc -l`, but they should be equal.
root cause:
When printing functions with seq_printf in t_show, if the read buffer
is just overflowed by current function record, then this function
won't be printed to user space through read buffer, it will
just be dropped. So we can't see this function printing.
So, every time the last function to fill the read buffer, if overflowed,
will be dropped.
This also applies to set_ftrace_filter if set_ftrace_filter has
more bytes than read buffer.
fix:
Through checking return value of seq_printf, if less than 0, we know
this function doesn't be printed. Then we decrease position to force
this function to be printed next time, in next read buffer.
Another little fix is to show correct allocating pages count.
Signed-off-by: walimis <walimisdev@gmail.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Inotify watch removals suck violently.
To kick the watch out we need (in this order) inode->inotify_mutex and
ih->mutex. That's fine if we have a hold on inode; however, for all
other cases we need to make damn sure we don't race with umount. We can
*NOT* just grab a reference to a watch - inotify_unmount_inodes() will
happily sail past it and we'll end with reference to inode potentially
outliving its superblock.
Ideally we just want to grab an active reference to superblock if we
can; that will make sure we won't go into inotify_umount_inodes() until
we are done. Cleanup is just deactivate_super().
However, that leaves a messy case - what if we *are* racing with
umount() and active references to superblock can't be acquired anymore?
We can bump ->s_count, grab ->s_umount, which will almost certainly wait
until the superblock is shut down and the watch in question is pining
for fjords. That's fine, but there is a problem - we might have hit the
window between ->s_active getting to 0 / ->s_count - below S_BIAS (i.e.
the moment when superblock is past the point of no return and is heading
for shutdown) and the moment when deactivate_super() acquires
->s_umount.
We could just do drop_super() yield() and retry, but that's rather
antisocial and this stuff is luser-triggerable. OTOH, having grabbed
->s_umount and having found that we'd got there first (i.e. that
->s_root is non-NULL) we know that we won't race with
inotify_umount_inodes().
So we could grab a reference to watch and do the rest as above, just
with drop_super() instead of deactivate_super(), right? Wrong. We had
to drop ih->mutex before we could grab ->s_umount. So the watch
could've been gone already.
That still can be dealt with - we need to save watch->wd, do idr_find()
and compare its result with our pointer. If they match, we either have
the damn thing still alive or we'd lost not one but two races at once,
the watch had been killed and a new one got created with the same ->wd
at the same address. That couldn't have happened in inotify_destroy(),
but inotify_rm_wd() could run into that. Still, "new one got created"
is not a problem - we have every right to kill it or leave it alone,
whatever's more convenient.
So we can use idr_find(...) == watch && watch->inode->i_sb == sb as
"grab it and kill it" check. If it's been our original watch, we are
fine, if it's a newcomer - nevermind, just pretend that we'd won the
race and kill the fscker anyway; we are safe since we know that its
superblock won't be going away.
And yes, this is far beyond mere "not very pretty"; so's the entire
concept of inotify to start with.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Acked-by: Greg KH <greg@kroah.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We don't want to get rid of the futexes just at exit() time, we want to
drop them when doing an execve() too, since that gets rid of the
previous VM image too.
Doing it at mm_release() time means that we automatically always do it
when we disassociate a VM map from the task.
Reported-by: pageexec@freemail.hu
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Brad Spengler <spender@grsecurity.net>
Cc: Alex Efros <powerman@powerman.name>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pekka reported a crash when resizing the mmiotrace tracer (if only
mmiotrace is enabled).
This happens because in that case we do not allocate the max buffer,
but we try to use it.
Make ring_buffer_resize() idempotent against NULL buffers.
Reported-by: Pekka Paalanen <pq@iki.fi>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'sched-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
sched: fix init_idle()'s use of sched_clock()
sched: fix stale value in average load per task
We only need the cacheline padding on SMP kernels. Saves 6k:
text data bss dec hex filename
5713 388 8840 14941 3a5d kernel/kprobes.o
5713 388 2632 8733 221d kernel/kprobes.o
Acked-by: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__register_kprobe() can be preempted after checking probing address but
before module_text_address() or try_module_get(), and in this interval
the module can be unloaded. In that case, try_module_get(probed_mod)
will access to invalid address, or kprobe will probe invalid address.
This patch uses preempt_disable() to protect it and uses
__module_text_address() and __kernel_text_address().
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Cc: Hiroshi Shimamoto <h-shimamoto@ct.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With this change, control file 'freezer.state' doesn't exist in root
cgroup, making root cgroup unfreezable.
I think it's reasonable to disallow freeze tasks in the root cgroup. And
then we can avoid fork overhead when freezer subsystem is compiled but not
used.
Also make writing invalid value to freezer.state returns EINVAL rather
than EIO. This is more consistent with other cgroup subsystem.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Acked-by: Paul Menage <menage@google.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Cc: Paul Menage <menage@google.com>
Cc: Matt Helsley <matthltc@us.ibm.com>
Cc: "Serge E. Hallyn" <serue@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In theory the task can be moved to another cgroup and the freezer will be
freed right after task_lock is dropped, so the lock results in zero
protection.
But in the case of freezer_fork() no lock is needed, since the task is not
in tasklist yet so it won't be moved to another cgroup, so task->cgroups
won't be changed or invalidated.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Cc: Matt Helsley <matthltc@us.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Cc: "Serge E. Hallyn" <serue@us.ibm.com>
Cc: Paul Menage <menage@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Maciej Rutecki reported:
> I have this bug during suspend to disk:
>
> [ 188.592151] Enabling non-boot CPUs ...
> [ 188.592151] SMP alternatives: switching to SMP code
> [ 188.666058] BUG: using smp_processor_id() in preemptible
> [00000000]
> code: suspend_to_disk/2934
> [ 188.666064] caller is native_sched_clock+0x2b/0x80
Which, as noted by Linus, was caused by me, via:
7cbaef9c "sched: optimize sched_clock() a bit"
Move the rq locking a bit earlier in the initialization sequence,
that will make the sched_clock() call in init_idle() non-preemptible.
Reported-by: Maciej Rutecki <maciej.rutecki@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: fix load balancer load average calculation accuracy
cpu_avg_load_per_task() returns a stale value when nr_running is 0.
It returns an older stale (caculated when nr_running was non zero) value.
This patch returns and sets rq->avg_load_per_task to zero when nr_running
is 0.
Compile and boot tested on a x86_64 box.
Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: disable preemption when calling sched_clock()
The ring_buffer_time_stamp still uses sched_clock as its counter.
But it is a bug to call it with preemption enabled. This requirement
should not be pushed to the ring_buffer_time_stamp callers, so
the ring_buffer_time_stamp needs to disable preemption when calling
sched_clock.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: enable/disable ring buffer recording API added
Several kernel developers have requested that there be a way to stop
recording into the ring buffers with a simple switch that can also
be enabled from userspace. This patch addes a new kernel API to the
ring buffers called:
tracing_on()
tracing_off()
When tracing_off() is called, all ring buffers will not be able to record
into their buffers.
tracing_on() will enable the ring buffers again.
These two act like an on/off switch. That is, there is no counting of the
number of times tracing_off or tracing_on has been called.
A new file is added to the debugfs/tracing directory called
tracing_on
This allows for userspace applications to also flip the switch.
echo 0 > debugfs/tracing/tracing_on
disables the tracing.
echo 1 > /debugfs/tracing/tracing_on
enables it.
Note, this does not disable or enable any tracers. It only sets or clears
a flag that needs to be set in order for the ring buffers to write to
their buffers. It is a global flag, and affects all ring buffers.
The buffers start out with tracing_on enabled.
There are now three flags that control recording into the buffers:
tracing_on: which affects all ring buffer tracers.
buffer->record_disabled: which affects an allocated buffer, which may be set
if an anomaly is detected, and tracing is disabled.
cpu_buffer->record_disabled: which is set by tracing_stop() or if an
anomaly is detected. tracing_start can not reenable this if
an anomaly occurred.
The userspace debugfs/tracing/tracing_enabled is implemented with
tracing_stop() but the user space code can not enable it if the kernel
called tracing_stop().
Userspace can enable the tracing_on even if the kernel disabled it.
It is just a switch used to stop tracing if a condition was hit.
tracing_on is not for protecting critical areas in the kernel nor is
it for stopping tracing if an anomaly occurred. This is because userspace
can reenable it at any time.
Side effect: With this patch, I discovered a dead variable in ftrace.c
called tracing_on. This patch removes it.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
* 'timers-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
timers: handle HRTIMER_CB_IRQSAFE_UNLOCKED correctly from softirq context
nohz: disable tick_nohz_kick_tick() for now
irq: call __irq_enter() before calling the tick_idle_check
x86: HPET: enter hpet_interrupt_handler with interrupts disabled
x86: HPET: read from HPET_Tn_CMP() not HPET_T0_CMP
x86: HPET: convert WARN_ON to WARN_ON_ONCE
* 'sched-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
sched: release buddies on yield
fix for account_group_exec_runtime(), make sure ->signal can't be freed under rq->lock
sched: clean up debug info
Clear buddies on yield, so that the buddy rules don't schedule them
despite them being placed right-most.
This fixed a performance regression with yield-happy binary JVMs.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Tested-by: Lin Ming <ming.m.lin@intel.com>
Impact: fix incorrect locking triggered during hotplug-intense stress-tests
While migrating the the CB_IRQSAFE_UNLOCKED timers during a cpu-offline,
we queue them on the cb_pending list, so that they won't go
stale.
Thus, when the callbacks of the timers run from the softirq context,
they could run into potential deadlocks, since these callbacks
assume that they're running with irq's disabled, thereby annoying
lockdep!
Fix this by emulating hardirq context while running these callbacks from
the hrtimer softirq.
=================================
[ INFO: inconsistent lock state ]
2.6.27 #2
--------------------------------
inconsistent {in-hardirq-W} -> {hardirq-on-W} usage.
ksoftirqd/0/4 [HC0[0]:SC1[1]:HE1:SE0] takes:
(&rq->lock){++..}, at: [<c011db84>] sched_rt_period_timer+0x9e/0x1fc
{in-hardirq-W} state was registered at:
[<c014103c>] __lock_acquire+0x549/0x121e
[<c0107890>] native_sched_clock+0x88/0x99
[<c013aa12>] clocksource_get_next+0x39/0x3f
[<c0139abc>] update_wall_time+0x616/0x7df
[<c0141d6b>] lock_acquire+0x5a/0x74
[<c0121724>] scheduler_tick+0x3a/0x18d
[<c047ed45>] _spin_lock+0x1c/0x45
[<c0121724>] scheduler_tick+0x3a/0x18d
[<c0121724>] scheduler_tick+0x3a/0x18d
[<c012c436>] update_process_times+0x3a/0x44
[<c013c044>] tick_periodic+0x63/0x6d
[<c013c062>] tick_handle_periodic+0x14/0x5e
[<c010568c>] timer_interrupt+0x44/0x4a
[<c0150c9f>] handle_IRQ_event+0x13/0x3d
[<c0151c14>] handle_level_irq+0x79/0xbd
[<c0105634>] do_IRQ+0x69/0x7d
[<c01041e4>] common_interrupt+0x28/0x30
[<c047007b>] aac_probe_one+0x1a3/0x3f3
[<c047ec2d>] _spin_unlock_irqrestore+0x36/0x39
[<c01512b4>] setup_irq+0x1be/0x1f9
[<c065d70b>] start_kernel+0x259/0x2c5
[<ffffffff>] 0xffffffff
irq event stamp: 50102
hardirqs last enabled at (50102): [<c047ebf4>] _spin_unlock_irq+0x20/0x23
hardirqs last disabled at (50101): [<c047edc2>] _spin_lock_irq+0xa/0x4b
softirqs last enabled at (50088): [<c0128ba6>] do_softirq+0x37/0x4d
softirqs last disabled at (50099): [<c0128ba6>] do_softirq+0x37/0x4d
other info that might help us debug this:
no locks held by ksoftirqd/0/4.
stack backtrace:
Pid: 4, comm: ksoftirqd/0 Not tainted 2.6.27 #2
[<c013f6cb>] print_usage_bug+0x13e/0x147
[<c013fef5>] mark_lock+0x493/0x797
[<c01410b1>] __lock_acquire+0x5be/0x121e
[<c0141d6b>] lock_acquire+0x5a/0x74
[<c011db84>] sched_rt_period_timer+0x9e/0x1fc
[<c047ed45>] _spin_lock+0x1c/0x45
[<c011db84>] sched_rt_period_timer+0x9e/0x1fc
[<c011db84>] sched_rt_period_timer+0x9e/0x1fc
[<c01210fd>] finish_task_switch+0x41/0xbd
[<c0107890>] native_sched_clock+0x88/0x99
[<c011dae6>] sched_rt_period_timer+0x0/0x1fc
[<c0136dda>] run_hrtimer_pending+0x54/0xe5
[<c011dae6>] sched_rt_period_timer+0x0/0x1fc
[<c0128afb>] __do_softirq+0x7b/0xef
[<c0128ba6>] do_softirq+0x37/0x4d
[<c0128c12>] ksoftirqd+0x56/0xc5
[<c0128bbc>] ksoftirqd+0x0/0xc5
[<c0134649>] kthread+0x38/0x5d
[<c0134611>] kthread+0x0/0x5d
[<c0104477>] kernel_thread_helper+0x7/0x10
=======================
Signed-off-by: Gautham R Shenoy <ego@in.ibm.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: fix hang/crash on ia64 under high load
This is ugly, but the simplest patch by far.
Unlike other similar routines, account_group_exec_runtime() could be
called "implicitly" from within scheduler after exit_notify(). This
means we can race with the parent doing release_task(), we can't just
check ->signal != NULL.
Change __exit_signal() to do spin_unlock_wait(&task_rq(tsk)->lock)
before __cleanup_signal() to make sure ->signal can't be freed under
task_rq(tsk)->lock. Note that task_rq_unlock_wait() doesn't care
about the case when tsk changes cpu/rq under us, this should be OK.
Thanks to Ingo who nacked my previous buggy patch.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Reported-by: Doug Chapman <doug.chapman@hp.com>
Impact: removal of unnecessary looping
The lockless part of the ring buffer allows for reentry into the code
from interrupts. A timestamp is taken, a test is preformed and if it
detects that an interrupt occurred that did tracing, it tries again.
The problem arises if the timestamp code itself causes a trace.
The detection will detect this and loop again. The difference between
this and an interrupt doing tracing, is that this will fail every time,
and cause an infinite loop.
Currently, we test if the loop happens 1000 times, and if so, it will
produce a warning and disable the ring buffer.
The problem with this approach is that it makes it difficult to perform
some types of tracing (tracing the timestamp code itself).
Each trace entry has a delta timestamp from the previous entry.
If a trace entry is reserved but and interrupt occurs and traces before
the previous entry is commited, the delta timestamp for that entry will
be zero. This actually makes sense in terms of tracing, because the
interrupt entry happened before the preempted entry was commited, so
one may consider the two happening at the same time. The order is
still preserved in the buffer.
With this idea, instead of trying to get a new timestamp if an interrupt
made it in between the timestamp and the test, the entry could simply
make the delta zero and continue. This will prevent interrupts or
tracers in the timer code from causing the above loop.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Impact: fix for bug on resize
This patch addresses the bug found here:
http://bugzilla.kernel.org/show_bug.cgi?id=11996
When ftrace converted to the new unified trace buffer, the resizing of
the buffer was not protected as much as it was originally. If tracing
is performed while the resize occurs, then the buffer can be corrupted.
This patch disables all ftrace buffer modifications before a resize
takes place.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Impact: nohz powersavings and wakeup regression
commit fb02fbc14d (NOHZ: restart tick
device from irq_enter()) causes a serious wakeup regression.
While the patch is correct it does not take into account that spurious
wakeups happen on x86. A fix for this issue is available, but we just
revert to the .27 behaviour and let long running softirqs screw
themself.
Disable it for now.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Impact: avoid spurious ksoftirqd wakeups
The tick idle check which is called from irq_enter() was run before
the call to __irq_enter() which did not set the in_interrupt() bits in
preempt_count. That way the raise of a softirq woke up softirqd for
nothing as the softirq was handled on return from interrupt.
Call __irq_enter() before calling into the tick idle check code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: clean up and fix debug info printout
While looking over the sched_debug code I noticed that we printed the rq
schedstats for every cfs_rq, ammend this.
Also change nr_spead_over into an int, and fix a little buglet in
min_vruntime printing.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>