Commit Graph

7 Commits

Author SHA1 Message Date
Trent Jaeger 5f8ac64b15 [LSM-IPSec]: Corrections to LSM-IPSec Nethooks
This patch contains two corrections to the LSM-IPsec Nethooks patches
previously applied.  

(1) free a security context on a failed insert via xfrm_user 
interface in xfrm_add_policy.  Memory leak.

(2) change the authorization of the allocation of a security context
in a xfrm_policy or xfrm_state from both relabelfrom and relabelto 
to setcontext.

Signed-off-by: Trent Jaeger <tjaeger@cse.psu.edu>
Signed-off-by: David S. Miller <davem@davemloft.net>
2006-01-06 13:22:39 -08:00
Trent Jaeger d28d1e0801 [LSM-IPSec]: Per-packet access control.
This patch series implements per packet access control via the
extension of the Linux Security Modules (LSM) interface by hooks in
the XFRM and pfkey subsystems that leverage IPSec security
associations to label packets.  Extensions to the SELinux LSM are
included that leverage the patch for this purpose.

This patch implements the changes necessary to the SELinux LSM to
create, deallocate, and use security contexts for policies
(xfrm_policy) and security associations (xfrm_state) that enable
control of a socket's ability to send and receive packets.

Patch purpose:

The patch is designed to enable the SELinux LSM to implement access
control on individual packets based on the strongly authenticated
IPSec security association.  Such access controls augment the existing
ones in SELinux based on network interface and IP address.  The former
are very coarse-grained, and the latter can be spoofed.  By using
IPSec, the SELinux can control access to remote hosts based on
cryptographic keys generated using the IPSec mechanism.  This enables
access control on a per-machine basis or per-application if the remote
machine is running the same mechanism and trusted to enforce the
access control policy.

Patch design approach:

The patch's main function is to authorize a socket's access to a IPSec
policy based on their security contexts.  Since the communication is
implemented by a security association, the patch ensures that the
security association's negotiated and used have the same security
context.  The patch enables allocation and deallocation of such
security contexts for policies and security associations.  It also
enables copying of the security context when policies are cloned.
Lastly, the patch ensures that packets that are sent without using a
IPSec security assocation with a security context are allowed to be
sent in that manner.

A presentation available at
www.selinux-symposium.org/2005/presentations/session2/2-3-jaeger.pdf
from the SELinux symposium describes the overall approach.

Patch implementation details:

The function which authorizes a socket to perform a requested
operation (send/receive) on a IPSec policy (xfrm_policy) is
selinux_xfrm_policy_lookup.  The Netfilter and rcv_skb hooks ensure
that if a IPSec SA with a securit y association has not been used,
then the socket is allowed to send or receive the packet,
respectively.

The patch implements SELinux function for allocating security contexts
when policies (xfrm_policy) are created via the pfkey or xfrm_user
interfaces via selinux_xfrm_policy_alloc.  When a security association
is built, SELinux allocates the security context designated by the
XFRM subsystem which is based on that of the authorized policy via
selinux_xfrm_state_alloc.

When a xfrm_policy is cloned, the security context of that policy, if
any, is copied to the clone via selinux_xfrm_policy_clone.

When a xfrm_policy or xfrm_state is freed, its security context, if
any is also freed at selinux_xfrm_policy_free or
selinux_xfrm_state_free.

Testing:

The SELinux authorization function is tested using ipsec-tools.  We
created policies and security associations with particular security
contexts and added SELinux access control policy entries to verify the
authorization decision.  We also made sure that packets for which no
security context was supplied (which either did or did not use
security associations) were authorized using an unlabelled context.

Signed-off-by: Trent Jaeger <tjaeger@cse.psu.edu>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
2006-01-03 13:10:25 -08:00
Lorenzo Hernández García-Hierro 09ffd94fb1 [PATCH] selinux: add executable heap check
This patch,based on sample code by Roland McGrath, adds an execheap
permission check that controls the ability to make the heap executable so
that this can be prevented in almost all cases (the X server is presently
an exception, but this will hopefully be resolved in the future) so that
even programs with execmem permission will need to have the anonymous
memory mapped in order to make it executable.

The only reason that we use a permission check for such restriction (vs.
making it unconditional) is that the X module loader presently needs it; it
could possibly be made unconditional in the future when X is changed.

The policy patch for the execheap permission is available at:
http://pearls.tuxedo-es.org/patches/selinux/policy-execheap.patch

Signed-off-by: Lorenzo Hernandez Garcia-Hierro <lorenzo@gnu.org>
Acked-by: James Morris <jmorris@redhat.com>
Acked-by:  Stephen Smalley <sds@tycho.nsa.gov>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-25 16:24:26 -07:00
Lorenzo Hernandez García-Hierro 6b9921976f [PATCH] selinux: add executable stack check
This patch adds an execstack permission check that controls the ability to
make the main process stack executable so that attempts to make the stack
executable can still be prevented even if the process is allowed the
existing execmem permission in order to e.g.  perform runtime code
generation.  Note that this does not yet address thread stacks.  Note also
that unlike the execmem check, the execstack check is only applied on
mprotect calls, not mmap calls, as the current security_file_mmap hook is
not passed the necessary information presently.

The original author of the code that makes the distinction of the stack
region, is Ingo Molnar, who wrote it within his patch for
/proc/<pid>/maps markers.
(http://marc.theaimsgroup.com/?l=linux-kernel&m=110719881508591&w=2)

The patches also can be found at:
http://pearls.tuxedo-es.org/patches/selinux/policy-execstack.patch
http://pearls.tuxedo-es.org/patches/selinux/kernel-execstack.patch

policy-execstack.patch is the patch that needs to be applied to the policy in
order to support the execstack permission and exclude it
from general_domain_access within macros/core_macros.te.

kernel-execstack.patch adds such permission to the SELinux code within
the kernel and adds the proper permission check to the selinux_file_mprotect() hook.

Signed-off-by: Lorenzo Hernandez Garcia-Hierro <lorenzo@gnu.org>
Acked-by: James Morris <jmorris@redhat.com>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-25 16:24:26 -07:00
James Morris b207a290ea [PATCH] SELinux: add finer grained permissions to Netlink audit processing
This patch provides finer grained permissions for the audit family of
Netlink sockets under SELinux.

1.  We need a way to differentiate between privileged and unprivileged
   reads of kernel data maintained by the audit subsystem.  The AUDIT_GET
   operation is unprivileged: it returns the current status of the audit
   subsystem (e.g.  whether it's enabled etc.).  The AUDIT_LIST operation
   however returns a list of the current audit ruleset, which is considered
   privileged by the audit folk.  To deal with this, a new SELinux
   permission has been implemented and applied to the operation:
   nlmsg_readpriv, which can be allocated to appropriately privileged
   domains.  Unprivileged domains would only be allocated nlmsg_read.

2.  There is a requirement for certain domains to generate audit events
   from userspace.  These events need to be collected by the kernel,
   collated and transmitted sequentially back to the audit daemon.  An
   example is user level login, an auditable event under CAPP, where
   login-related domains generate AUDIT_USER messages via PAM which are
   relayed back to auditd via the kernel.  To prevent handing out
   nlmsg_write permissions to such domains, a new permission has been
   added, nlmsg_relay, which is intended for this type of purpose: data is
   passed via the kernel back to userspace but no privileged information is
   written to the kernel.

Also, AUDIT_LOGIN messages are now valid only for kernel->user messaging,
so this value has been removed from the SELinux nlmsgtab (which is only
used to check user->kernel messages).

Signed-off-by: James Morris <jmorris@redhat.com>
Signed-off-by: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-05-01 08:58:40 -07:00
James Morris 0c9b79429c [PATCH] SELinux: add support for NETLINK_KOBJECT_UEVENT
This patch adds SELinux support for the KOBJECT_UEVENT Netlink family, so
that SELinux can apply finer grained controls to it.  For example, security
policy for hald can be locked down to the KOBJECT_UEVENT Netlink family
only.  Currently, this family simply defaults to the default Netlink socket
class.

Note that some new permission definitions are added to sync with changes in
the core userspace policy package, which auto-generates header files.

Signed-off-by: James Morris <jmorris@redhat.com>
Signed-off-by: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-16 15:24:13 -07:00
Linus Torvalds 1da177e4c3 Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
2005-04-16 15:20:36 -07:00