2031 Commits

Author SHA1 Message Date
Linus Torvalds
9732b61123 Merge git://git.kernel.org/pub/scm/linux/kernel/git/mingo/linux-2.6-kgdb
* git://git.kernel.org/pub/scm/linux/kernel/git/mingo/linux-2.6-kgdb:
  kgdb: always use icache flush for sw breakpoints
  kgdb: fix SMP NMI kgdb_handle_exception exit race
  kgdb: documentation fixes
  kgdb: allow static kgdbts boot configuration
  kgdb: add documentation
  kgdb: Kconfig fix
  kgdb: add kgdb internal test suite
  kgdb: fix several kgdb regressions
  kgdb: kgdboc pl011 I/O module
  kgdb: fix optional arch functions and probe_kernel_*
  kgdb: add x86 HW breakpoints
  kgdb: print breakpoint removed on exception
  kgdb: clocksource watchdog
  kgdb: fix NMI hangs
  kgdb: fix kgdboc dynamic module configuration
  kgdb: document parameters
  x86: kgdb support
  consoles: polling support, kgdboc
  kgdb: core
  uaccess: add probe_kernel_write()
2008-04-18 08:37:01 -07:00
Linus Torvalds
7d939fbdfe Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/slab-2.6
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/slab-2.6:
  slub: No need for per node slab counters if !SLUB_DEBUG
  slub: Move map/flag clearing to __free_slab
  slub: Fixes to per cpu stat output in sysfs
  slub: Deal with config variable dependencies
  slub: Reduce #ifdef ZONE_DMA by moving kmalloc_caches_dma near dma logic
  slub: Initialize per-cpu stats
2008-04-18 08:19:00 -07:00
Jason Wessel
b4b8ac524d kgdb: fix optional arch functions and probe_kernel_*
Fix two regressions dealing with the kgdb core.

1) kgdb_skipexception and kgdb_post_primary_code are optional
functions that are only required on archs that need special exception
fixups.

2) The kernel address space scope must be set on any probe_kernel_*
function or archs such as ARCH=arm will not allow access to the kernel
memory space.  As an example, it is required to allow the full kernel
address space is when you the kernel debugger to inspect a system
call.

Signed-off-by: Jason Wessel <jason.wessel@windriver.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-04-17 20:05:39 +02:00
Ingo Molnar
c33fa9f560 uaccess: add probe_kernel_write()
add probe_kernel_read() and probe_kernel_write().

Uninlined and restricted to kernel range memory only, as suggested
by Linus.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
2008-04-17 20:05:36 +02:00
KOSAKI Motohiro
91446b064c add "Isolate" migratetype name to /proc/pagetypeinfo
In a5d76b54a3f3a40385d7f76069a2feac9f1bad63 (memory unplug: page isolation by
KAMEZAWA Hiroyuki), "isolate" migratetype added.  but unfortunately, it
doesn't treat /proc/pagetypeinfo display logic.

this patch add "Isolate" to pagetype name field.

/proc/pagetype
before:
------------------------------------------------------------------------------------------------------------------------
Free pages count per migrate type at order       0      1      2      3      4      5      6      7      8      9     10
Node    0, zone      DMA, type    Unmovable      1      2      2      2      1      2      2      1      1      0      0
Node    0, zone      DMA, type  Reclaimable      0      0      0      0      0      0      0      0      0      0      0
Node    0, zone      DMA, type      Movable      2      3      3      1      3      3      2      0      0      0      0
Node    0, zone      DMA, type      Reserve      0      0      0      0      0      0      0      0      0      0      1
Node    0, zone      DMA, type       <NULL>      0      0      0      0      0      0      0      0      0      0      0
Node    0, zone   Normal, type    Unmovable      1      9      7      4      1      1      1      1      0      0      0
Node    0, zone   Normal, type  Reclaimable      5      2      0      0      1      1      0      0      0      1      0
Node    0, zone   Normal, type      Movable      0      1      1      0      0      0      1      0      0      1     60
Node    0, zone   Normal, type      Reserve      0      0      0      0      0      0      0      0      0      0      1
Node    0, zone   Normal, type       <NULL>      0      0      0      0      0      0      0      0      0      0      0
Node    0, zone  HighMem, type    Unmovable      0      0      1      1      1      0      1      1      2      2      0
Node    0, zone  HighMem, type  Reclaimable      0      0      0      0      0      0      0      0      0      0      0
Node    0, zone  HighMem, type      Movable    236     62      6      2      2      1      1      0      1      1     16
Node    0, zone  HighMem, type      Reserve      0      0      0      0      0      0      0      0      0      0      1
Node    0, zone  HighMem, type       <NULL>      0      0      0      0      0      0      0      0      0      0      0

Number of blocks type     Unmovable  Reclaimable      Movable      Reserve       <NULL>
Node 0, zone      DMA            1            0            2       1            0
Node 0, zone   Normal           10           40          169       1            0
Node 0, zone  HighMem            2            0          283       1            0

after:
------------------------------------------------------------------------------------------------------------------------
Free pages count per migrate type at order       0      1      2      3      4      5      6      7      8      9     10
Node    0, zone      DMA, type    Unmovable      1      2      2      2      1      2      2      1      1      0      0
Node    0, zone      DMA, type  Reclaimable      0      0      0      0      0      0      0      0      0      0      0
Node    0, zone      DMA, type      Movable      2      3      3      1      3      3      2      0      0      0      0
Node    0, zone      DMA, type      Reserve      0      0      0      0      0      0      0      0      0      0      1
Node    0, zone      DMA, type      Isolate      0      0      0      0      0      0      0      0      0      0      0
Node    0, zone   Normal, type    Unmovable      0      2      1      1      0      1      0      0      0      0      0
Node    0, zone   Normal, type  Reclaimable      1      1      1      1      1      0      1      1      1      0      0
Node    0, zone   Normal, type      Movable      0      1      1      1      0      1      0      1      0      0    196
Node    0, zone   Normal, type      Reserve      0      0      0      0      0      0      0      0      0      0      1
Node    0, zone   Normal, type      Isolate      0      0      0      0      0      0      0      0      0      0      0
Node    0, zone  HighMem, type    Unmovable      0      1      0      0      0      1      1      1      2      2      0
Node    0, zone  HighMem, type  Reclaimable      0      0      0      0      0      0      0      0      0      0      0
Node    0, zone  HighMem, type      Movable      1      0      1      1      0      0      0      0      1      0    200
Node    0, zone  HighMem, type      Reserve      0      0      0      0      0      0      0      0      0      0      1
Node    0, zone  HighMem, type      Isolate      0      0      0      0      0      0      0      0      0      0      0

Number of blocks type     Unmovable  Reclaimable      Movable      Reserve      Isolate
Node 0, zone      DMA            1            0            2       1            0
Node 0, zone   Normal            8            4          207       1            0
Node 0, zone  HighMem            2            0          283       1            0

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-15 19:35:41 -07:00
Li Zefan
e115f2d892 memcg: fix oops in oom handling
When I used a test program to fork mass processes and immediately move them to
a cgroup where the memory limit is low enough to trigger oom kill, I got oops:

BUG: unable to handle kernel NULL pointer dereference at 0000000000000808
IP: [<ffffffff8045c47f>] _spin_lock_irqsave+0x8/0x18
PGD 4c95f067 PUD 4406c067 PMD 0
Oops: 0002 [1] SMP
CPU 2
Modules linked in:

Pid: 11973, comm: a.out Not tainted 2.6.25-rc7 #5
RIP: 0010:[<ffffffff8045c47f>]  [<ffffffff8045c47f>] _spin_lock_irqsave+0x8/0x18
RSP: 0018:ffff8100448c7c30  EFLAGS: 00010002
RAX: 0000000000000202 RBX: 0000000000000009 RCX: 000000000001c9f3
RDX: 0000000000000100 RSI: 0000000000000001 RDI: 0000000000000808
RBP: ffff81007e444080 R08: 0000000000000000 R09: ffff8100448c7900
R10: ffff81000105f480 R11: 00000100ffffffff R12: ffff810067c84140
R13: 0000000000000001 R14: ffff8100441d0018 R15: ffff81007da56200
FS:  00007f70eb1856f0(0000) GS:ffff81007fbad3c0(0000) knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 000000008005003b
CR2: 0000000000000808 CR3: 000000004498a000 CR4: 00000000000006e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
Process a.out (pid: 11973, threadinfo ffff8100448c6000, task ffff81007da533e0)
Stack:  ffffffff8023ef5a 00000000000000d0 ffffffff80548dc0 00000000000000d0
 ffff810067c84140 ffff81007e444080 ffffffff8026cef9 00000000000000d0
 ffff8100441d0000 00000000000000d0 ffff8100441d0000 ffff8100505445c0
Call Trace:
 [<ffffffff8023ef5a>] ? force_sig_info+0x25/0xb9
 [<ffffffff8026cef9>] ? oom_kill_task+0x77/0xe2
 [<ffffffff8026d696>] ? mem_cgroup_out_of_memory+0x55/0x67
 [<ffffffff802910ad>] ? mem_cgroup_charge_common+0xec/0x202
 [<ffffffff8027997b>] ? handle_mm_fault+0x24e/0x77f
 [<ffffffff8022c4af>] ? default_wake_function+0x0/0xe
 [<ffffffff8027a17a>] ? get_user_pages+0x2ce/0x3af
 [<ffffffff80290fee>] ? mem_cgroup_charge_common+0x2d/0x202
 [<ffffffff8027a441>] ? make_pages_present+0x8e/0xa4
 [<ffffffff8027d1ab>] ? mmap_region+0x373/0x429
 [<ffffffff8027d7eb>] ? do_mmap_pgoff+0x2ff/0x364
 [<ffffffff80210471>] ? sys_mmap+0xe5/0x111
 [<ffffffff8020bfc9>] ? tracesys+0xdc/0xe1

Code: 00 00 01 48 8b 3c 24 e9 46 d4 dd ff f0 ff 07 48 8b 3c 24 e9 3a d4 dd ff fe 07 48 8b 3c 24 e9 2f d4 dd ff 9c 58 fa ba 00 01 00 00 <f0> 66 0f c1 17 38 f2 74 06 f3 90 8a 17 eb f6 c3 fa b8 00 01 00
RIP  [<ffffffff8045c47f>] _spin_lock_irqsave+0x8/0x18
 RSP <ffff8100448c7c30>
CR2: 0000000000000808
---[ end trace c3702fa668021ea4 ]---

It's reproducable in a x86_64 box, but doesn't happen in x86_32.

This is because tsk->sighand is not guarded by RCU, so we have to
hold tasklist_lock, just as what out_of_memory() does.

Signed-off-by: Li Zefan <lizf@cn.fujitsu>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Pavel Emelianov <xemul@openvz.org>
Cc: Paul Menage <menage@google.com>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Cc: David Rientjes <rientjes@cs.washington.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-15 19:35:40 -07:00
Ingo Molnar
bead9a3abd mm: sparsemem memory_present() fix
Fix memory corruption and crash on 32-bit x86 systems.

If a !PAE x86 kernel is booted on a 32-bit system with more than 4GB of
RAM, then we call memory_present() with a start/end that goes outside
the scope of MAX_PHYSMEM_BITS.

That causes this loop to happily walk over the limit of the sparse
memory section map:

    for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
                unsigned long section = pfn_to_section_nr(pfn);
                struct mem_section *ms;

                sparse_index_init(section, nid);
                set_section_nid(section, nid);

                ms = __nr_to_section(section);
                if (!ms->section_mem_map)
                        ms->section_mem_map = sparse_encode_early_nid(nid) |
			                                SECTION_MARKED_PRESENT;

'ms' will be out of bounds and we'll corrupt a small amount of memory by
encoding the node ID and writing SECTION_MARKED_PRESENT (==0x1) over it.

The corruption might happen when encoding a non-zero node ID, or due to
the SECTION_MARKED_PRESENT which is 0x1:

	mmzone.h:#define	SECTION_MARKED_PRESENT	(1UL<<0)

The fix is to sanity check anything the architecture passes to
sparsemem.

This bug seems to be rather old (as old as sparsemem support itself),
but the exact incarnation depended on random details like configs, which
made this bug more prominent in v2.6.25-to-be.

An additional enhancement might be to print a warning about ignored or
trimmed memory ranges.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Tested-by: Christoph Lameter <clameter@sgi.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Yinghai Lu <Yinghai.Lu@sun.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-15 19:30:19 -07:00
Christoph Lameter
0f389ec630 slub: No need for per node slab counters if !SLUB_DEBUG
The per node counters are used mainly for showing data through the sysfs API.
If that API is not compiled in then there is no point in keeping track of this
data. Disable counters for the number of slabs and the number of total slabs
if !SLUB_DEBUG. Incrementing the per node counters is also accessing a
potentially contended cacheline so this could actually be a performance
benefit to embedded systems.

SLABINFO support is also affected. It now must depends on SLUB_DEBUG (which
is on by default).

Patch also avoids a check for a NULL kmem_cache_node pointer in new_slab()
if the system is not compiled with NUMA support.

[penberg@cs.helsinki.fi: fix oops and move ->nr_slabs into CONFIG_SLUB_DEBUG]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
2008-04-14 18:53:02 +03:00
Christoph Lameter
49bd5221ce slub: Move map/flag clearing to __free_slab
__free_slab does some diagnostics. The resetting of mapcount etc
in discard_slab() can interfere with debug processing. So move
the reset immediately before the page is freed.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
2008-04-14 18:52:18 +03:00
Christoph Lameter
50ef37b96c slub: Fixes to per cpu stat output in sysfs
Only output per cpu stats if the kernel is build for SMP.

Use a capital "C" as a leading character for the processor number
(same as the numa statistics that also use a capital letter "N").

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
2008-04-14 18:52:05 +03:00
Christoph Lameter
5b06c853ad slub: Deal with config variable dependencies
count_partial() is used by both slabinfo and the sysfs proc support. Move
the function directly before the beginning of the sysfs code so that it can
be easily found. Rework the preprocessor conditional to take into account
that slub sysfs support depends on CONFIG_SYSFS *and* CONFIG_SLUB_DEBUG.

Make CONFIG_SLUB_STATS depend on CONFIG_SLUB_DEBUG and CONFIG_SYSFS. There
is no point of keeping statistics if no one can restrive them.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
2008-04-14 18:51:34 +03:00
Christoph Lameter
4097d60175 slub: Reduce #ifdef ZONE_DMA by moving kmalloc_caches_dma near dma logic
Move the definition of kmalloc_caches_dma() into a later #ifdef CONFIG_ZONE_DMA.
This saves one #ifdef and leaves us with a total of two #ifdefs for dma slab support.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
2008-04-14 18:51:18 +03:00
Pekka Enberg
62f75532b5 slub: Initialize per-cpu stats
As spotted by kmemcheck, we need to initialize the per-CPU ->stat array before
using it.

[kmem_cache_cpu structures are usually allocated from arrays defined via
DEFINE_PER_CPU that are zeroed so we have not noticed this so far --cl].

Reported-by: Vegard Nossum <vegard.nossum@gmail.com>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
2008-04-14 18:50:44 +03:00
KAMEZAWA Hiroyuki
41e3355de0 memcg: fix node_state handling
This should be N_NORMAL_MEMORY.

N_NORMAL_MEMORY is "true" if a node has memory for the kernel.  N_HIGH_MEMORY
is "true" if a node has memory for HIGHMEM.  (If CONFIG_HIGHMEM=n, always
"true")

This check is used for testing whether we can use kmalloc_node() on a node.
Then, if there is a node which only contains HIGHMEM, the system will call
kmalloc_node() which doesn't contain memory for the kernel.  If it happens
under SLUB, the kernel will panic.  I think this only happens on x86_32-numa.

Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-08 18:25:53 -07:00
Balbir Singh
4077960e2a memory controller: make memory resource control aware of boot options
A boot option for the memory controller was discussed on lkml.  It is a good
idea to add it, since it saves memory for people who want to turn off the
memory controller.

By default the option is on for the following two reasons:

1. It provides compatibility with the current scheme where the memory
   controller turns on if the config option is enabled
2. It allows for wider testing of the memory controller, once the config
   option is enabled

We still allow the create, destroy callbacks to succeed, since they are not
aware of boot options.  We do not populate the directory will memory resource
controller specific files.

Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Paul Menage <menage@google.com>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Sudhir Kumar <skumar@linux.vnet.ibm.com>
Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-04 14:46:26 -07:00
Christoph Lameter
00460dd5f4 Fix undefined count_partial if !CONFIG_SLABINFO
Small typo in the patch recently merged to avoid the unused symbol
message for count_partial(). Discussion thread with confirmation of fix at
http://marc.info/?t=120696854400001&r=1&w=2

Typo in the check if we need the count_partial function that was
introduced by 53625b4204753b904addd40ca96d9ba802e6977d

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-01 12:44:06 -07:00
Al Viro
9dce07f1a4 NULL noise: fs/*, mm/*, kernel/*
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-03-30 14:18:41 -07:00
Linus Torvalds
e72e9c23ee Revert "SLUB: remove useless masking of GFP_ZERO"
This reverts commit 3811dbf67162bd08412f1b0e02e554f353e93bdb.

The masking was not at all useless, and it was sensible.  We handle
GFP_ZERO in the caller, and passing it down to any page allocator logic
is buggy and wrong.

Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-03-27 20:56:33 -07:00
Nishanth Aravamudan
11320d17ce hugetlb: fix potential livelock in return_unused_surplus_hugepages()
Running the counters testcase from libhugetlbfs results in on 2.6.25-rc5
and 2.6.25-rc5-mm1:

    BUG: soft lockup - CPU#3 stuck for 61s! [counters:10531]
    NIP: c0000000000d1f3c LR: c0000000000d1f2c CTR: c0000000001b5088
    REGS: c000005db12cb360 TRAP: 0901   Not tainted  (2.6.25-rc5-autokern1)
    MSR: 8000000000009032 <EE,ME,IR,DR>  CR: 48008448  XER: 20000000
    TASK = c000005dbf3d6000[10531] 'counters' THREAD: c000005db12c8000 CPU: 3
    GPR00: 0000000000000004 c000005db12cb5e0 c000000000879228 0000000000000004
    GPR04: 0000000000000010 0000000000000000 0000000000200200 0000000000100100
    GPR08: c0000000008aba10 000000000000ffff 0000000000000004 0000000000000000
    GPR12: 0000000028000442 c000000000770080
    NIP [c0000000000d1f3c] .return_unused_surplus_pages+0x84/0x18c
    LR [c0000000000d1f2c] .return_unused_surplus_pages+0x74/0x18c
    Call Trace:
    [c000005db12cb5e0] [c000005db12cb670] 0xc000005db12cb670 (unreliable)
    [c000005db12cb670] [c0000000000d24c4] .hugetlb_acct_memory+0x2e0/0x354
    [c000005db12cb740] [c0000000001b5048] .truncate_hugepages+0x1d4/0x214
    [c000005db12cb890] [c0000000001b50a4] .hugetlbfs_delete_inode+0x1c/0x3c
    [c000005db12cb920] [c000000000103fd8] .generic_delete_inode+0xf8/0x1c0
    [c000005db12cb9b0] [c0000000001b5100] .hugetlbfs_drop_inode+0x3c/0x24c
    [c000005db12cba50] [c00000000010287c] .iput+0xdc/0xf8
    [c000005db12cbad0] [c0000000000fee54] .dentry_iput+0x12c/0x194
    [c000005db12cbb60] [c0000000000ff050] .d_kill+0x6c/0xa4
    [c000005db12cbbf0] [c0000000000ffb74] .dput+0x18c/0x1b0
    [c000005db12cbc70] [c0000000000e9e98] .__fput+0x1a4/0x1e8
    [c000005db12cbd10] [c0000000000e61ec] .filp_close+0xb8/0xe0
    [c000005db12cbda0] [c0000000000e62d0] .sys_close+0xbc/0x134
    [c000005db12cbe30] [c00000000000872c] syscall_exit+0x0/0x40
    Instruction dump:
    ebbe8038 38800010 e8bf0002 3bbd0008 7fa3eb78 38a50001 7ca507b4 4818df25
    60000000 38800010 38a00000 7c601b78 <7fa3eb78> 2f800010 409d0008 38000010

This was tracked down to a potential livelock in
return_unused_surplus_hugepages().  In the case where we have surplus
pages on some node, but no free pages on the same node, we may never
break out of the loop. To avoid this livelock, terminate the search if
we iterate a number of times equal to the number of online nodes without
freeing a page.

Thanks to Andy Whitcroft and Adam Litke for helping with debugging and
the patch.

Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-03-26 15:01:33 -07:00
Nishanth Aravamudan
a1de09195b hugetlb: indicate surplus huge page counts in per-node meminfo
Currently we show the surplus hugetlb pool state in /proc/meminfo, but
not in the per-node meminfo files, even though we track the information
on a per-node basis. Printing it there can help track down dynamic pool
bugs including the one in the follow-on patch.

Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-03-26 15:01:33 -07:00
Daniel Yeisley
ec1f5eeeb5 slab: fix cache_cache bootstrap in kmem_cache_init()
Commit 556a169dab38b5100df6f4a45b655dddd3db94c1 ("slab: fix bootstrap on
memoryless node") introduced bootstrap-time cache_cache list3s for all nodes
but forgot that initkmem_list3 needs to be accessed by [somevalue + node]. This
patch fixes list_add() corruption in mm/slab.c seen on the ES7000.

Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Olaf Hering <olaf@aepfle.de>
Cc: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Dan Yeisley <dan.yeisley@unisys.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
2008-03-26 10:44:17 -07:00
Christoph Lameter
53625b4204 count_partial() is not used if !SLUB_DEBUG and !CONFIG_SLABINFO
Avoid warnings about unused functions if neither SLUB_DEBUG nor CONFIG_SLABINFO
is defined. This patch will be reversed when slab defrag is merged since slab
defrag requires count_partial() to determine the fragmentation status of
slab caches.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
2008-03-26 10:42:28 -07:00
Linus Torvalds
7ed7fe5e82 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6:
  [PATCH] get stack footprint of pathname resolution back to relative sanity
  [PATCH] double iput() on failure exit in hugetlb
  [PATCH] double dput() on failure exit in tiny-shmem
  [PATCH] fix up new filp allocators
  [PATCH] check for null vfsmount in dentry_open()
  [PATCH] reiserfs: eliminate private use of struct file in xattr
  [PATCH] sanitize hppfs
  hppfs pass vfsmount to dentry_open()
  [PATCH] restore export of do_kern_mount()
2008-03-25 08:57:47 -07:00
Andrew Morton
4dd4b92021 revert "kswapd should only wait on IO if there is IO"
Revert commit f1a9ee758de7de1e040de849fdef46e6802ea117:

  Author: Rik van Riel <riel@redhat.com>
  Date:   Thu Feb 7 00:14:08 2008 -0800

    kswapd should only wait on IO if there is IO

    The current kswapd (and try_to_free_pages) code has an oddity where the
    code will wait on IO, even if there is no IO in flight.  This problem is
    notable especially when the system scans through many unfreeable pages,
    causing unnecessary stalls in the VM.

    Additionally, tasks without __GFP_FS or __GFP_IO in the direct reclaim path
    will sleep if a significant number of pages are encountered that should be
    written out.  This gives kswapd a chance to write out those pages, while
    the direct reclaim task sleeps.

    Signed-off-by: Rik van Riel <riel@redhat.com>
    Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
    Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>

Because of large latencies and interactivity problems reported by Carlos,
here: http://lkml.org/lkml/2008/3/22/211

Cc: Rik van Riel <riel@redhat.com>
Cc: "Carlos R.  Mafra" <crmafra2@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-03-24 19:22:19 -07:00
Yinghai Lu
5a982cbc7b mm: fix boundary checking in free_bootmem_core
With numa enabled, some callers could have a range of memory on one node
but try to free that on other node.  This can cause some pages to be
freed wrongly.

For example: when we try to allocate 128g boot ram early for
gart/swiotlb, and free that range later so gart/swiotlb can get some
range afterwards.

With this patch, we don't need to care which node holds the range, just
loop to call free_bootmem_node for all online nodes.

This patch makes free_bootmem_core() more robust by trimming the sidx
and eidx according the ram range that the node has.

And make the free_bootmem_core handle this out of range case.  We could
use bdata_list to make sure the range can be freed for sure.  So next
time, we don't need to loop online nodes and could use free_bootmem
directly.

Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com>
Cc: Andi Kleen <ak@suse.de>
Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Tested-by: Ingo Molnar <mingo@elte.hu>
Cc: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-03-24 19:22:19 -07:00
Randy Dunlap
f7850d932f mm/readahead: fix kernel-doc notation
Fix kernel-doc notation in mm/readahead.c.

Change ":" to ";" so that it doesn't get treated as a doc section heading.
Move the comment block ending "*/" to a line by itself so that the text on
that last line is not lost (dropped).

Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-03-19 18:53:37 -07:00
Pavel Emelyanov
52ea27eb4c memcgroup: fix check for thread being a group leader in memcgroup
The check t->pid == t->pid is not the blessed way to check whether a task is a
group leader.

This is not about the code beautifulness only, but about pid namespaces fixes
- both the tgid and the pid fields on the task_struct are (slowly :( )
becoming deprecated.

Besides, the thread_group_leader() macro makes only one dereference :)

Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Paul Menage <menage@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-03-19 18:53:35 -07:00
Randy Dunlap
43d8eac44f mm: rmap kernel-doc fixes
Correct kernel-doc function names and parameters in rmap.c.

Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-03-19 18:53:35 -07:00
Randy Dunlap
77f6078aa8 mm: highmem kernel-doc additions
Add kernel-doc comments to highmem.c.

Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-03-19 18:53:35 -07:00
Randy Dunlap
1b578df022 mm/oom_kill: fix kernel-doc
Fix kernel-doc notation in oom_kill.c.

Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-03-19 18:53:35 -07:00
Randy Dunlap
4671181020 mm/shmem and tiny-shmem: fix some kernel-doc
Convert tiny-shmem.c function comments to kernel-doc.  Add parameters and
convert/fix other kernel-doc in shmem.c.

Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-03-19 18:53:35 -07:00
Randy Dunlap
7682486b3e mm: fix various kernel-doc comments
Fix various kernel-doc notation in mm/:

filemap.c: add function short description; convert 2 to kernel-doc
fremap.c: change parameter 'prot' to @prot
pagewalk.c: change "-" in function parameters to ":"
slab.c: fix short description of kmem_ptr_validate()
swap.c: fix description & parameters of put_pages_list()
swap_state.c: fix function parameters
vmalloc.c: change "@returns" to "Returns:" since that is not a parameter

Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-03-19 18:53:35 -07:00
Al Viro
8a03feab32 [PATCH] double dput() on failure exit in tiny-shmem
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2008-03-19 06:54:36 -04:00
Christoph Lameter
caeab084de slub page alloc fallback: Enable interrupts for GFP_WAIT.
The fallback path needs to enable interrupts like done for
the other page allocator calls. This was not necessary with
the alternate fast path since we handled irq enable/disable in
the slow path. The regular fastpath handles irq enable/disable
around calls to the slow path so we need to restore the proper
status before calling the page allocator from the slowpath.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
2008-03-17 11:14:17 -07:00
Nick Piggin
f7009264c5 iov_iter_advance() fix
iov_iter_advance() skips over zero-length iovecs, however it does not properly
terminate at the end of the iovec array.  Fix this by checking against
i->count before we skip a zero-length iov.

The bug was reproduced with a test program that continually randomly creates
iovs to writev.  The fix was also verified with the same program and also it
could verify that the correct data was contained in the file after each
writev.

Signed-off-by: Nick Piggin <npiggin@suse.de>
Tested-by: "Kevin Coffman" <kwc@citi.umich.edu>
Cc: "Alexey Dobriyan" <adobriyan@gmail.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-03-10 18:01:20 -07:00
Adam Litke
2668db9111 hugetlb: correct page count for surplus huge pages
Free pages in the hugetlb pool are free and as such have a reference count of
zero.  Regular allocations into the pool from the buddy are "freed" into the
pool which results in their page_count dropping to zero.  However, surplus
pages can be directly utilized by the caller without first being freed to the
pool.  Therefore, a call to put_page_testzero() is in order so that such a
page will be handed to the caller with a correct count.

This has not affected end users because the bad page count is reset before the
page is handed off.  However, under CONFIG_DEBUG_VM this triggers a BUG when
the page count is validated.

Thanks go to Mel for first spotting this issue and providing an initial fix.

Signed-off-by: Adam Litke <agl@us.ibm.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-03-10 18:01:19 -07:00
Lee Schermerhorn
69682d852f mempolicy: fix reference counting bugs
Address 3 known bugs in the current memory policy reference counting method.
I have a series of patches to rework the reference counting to reduce overhead
in the allocation path.  However, that series will require testing in -mm once
I repost it.

1) alloc_page_vma() does not release the extra reference taken for
   vma/shared mempolicy when the mode == MPOL_INTERLEAVE.  This can result in
   leaking mempolicy structures.  This is probably occurring, but not being
   noticed.

   Fix:  add the conditional release of the reference.

2) hugezonelist unconditionally releases a reference on the mempolicy when
   mode == MPOL_INTERLEAVE.  This can result in decrementing the reference
   count for system default policy [should have no ill effect] or premature
   freeing of task policy.  If this occurred, the next allocation using task
   mempolicy would use the freed structure and probably BUG out.

   Fix:  add the necessary check to the release.

3) The current reference counting method assumes that vma 'get_policy()'
   methods automatically add an extra reference a non-NULL returned mempolicy.
    This is true for shmem_get_policy() used by tmpfs mappings, including
   regular page shm segments.  However, SHM_HUGETLB shm's, backed by
   hugetlbfs, just use the vma policy without the extra reference.  This
   results in freeing of the vma policy on the first allocation, with reuse of
   the freed mempolicy structure on subsequent allocations.

   Fix: Rather than add another condition to the conditional reference
   release, which occur in the allocation path, just add a reference when
   returning the vma policy in shm_get_policy() to match the assumptions.

Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Greg KH <greg@kroah.com>
Cc: Andi Kleen <ak@suse.de>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: David Rientjes <rientjes@google.com>
Cc: <eric.whitney@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-03-10 18:01:19 -07:00
Jesper Juhl
3426fadfa2 Do not include linux/backing-dev.h twice
Don't include linux/backing-dev.h twice in mm/filemap.c, it's pointless.

Signed-off-by: Jesper Juhl <jesper.juhl@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-03-09 22:21:52 -07:00
Joe Korty
6d2144d355 slab: NUMA slab allocator migration bugfix
NUMA slab allocator cpu migration bugfix

The NUMA slab allocator (specifically, cache_alloc_refill)
is not refreshing its local copies of what cpu and what
numa node it is on, when it drops and reacquires the irq
block that it inherited from its caller.  As a result
those values become invalid if an attempt to migrate the
process to another numa node occured while the irq block
had been dropped.

The solution is to make cache_alloc_refill reload these
variables whenever it drops and reacquires the irq block.

The error is very difficult to hit.  When it does occur,
one gets the following oops + stack traceback bits in
check_spinlock_acquired:

	kernel BUG at mm/slab.c:2417
	cache_alloc_refill+0xe6
	kmem_cache_alloc+0xd0
	...

This patch was developed against 2.6.23, ported to and
compiled-tested only against 2.6.25-rc4.

Signed-off-by: Joe Korty <joe.korty@ccur.com>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
2008-03-06 16:21:50 -08:00
Nick Piggin
b621038678 slub: Do not cross cacheline boundaries for very small objects
SLUB should pack even small objects nicely into cachelines if that is what
has been asked for. Use the same algorithm as SLAB for this.

The effect of this patch for a system with a cacheline size of 64
bytes is that the 24 byte sized slab caches will now put exactly
2 objects into a cacheline instead of 3 with some overlap into
the next cacheline. This reduces the object density in a 4k slab
from 170 to 128 objects (same as SLAB).

Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
2008-03-06 16:21:50 -08:00
Joe Perches
1c61fc40fc slab - use angle brackets for include of kmalloc_sizes.h
Make them all use angle brackets and the directory name.

Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
2008-03-06 16:21:49 -08:00
Christoph Lameter
9ac33b2b74 slab numa fallback logic: Do not pass unfiltered flags to page allocator
The NUMA fallback logic should be passing local_flags to kmem_get_pages() and not simply the
flags passed in.

Reviewed-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
2008-03-06 16:21:49 -08:00
Christoph Lameter
b773ad7369 slub statistics: Fix check for DEACTIVATE_REMOTE_FREES
The remote frees are in the freelist of the page and not in the
percpu freelist.

Reviewed-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
2008-03-06 16:21:49 -08:00
Nishanth Aravamudan
348e1e04b5 hugetlb: fix pool shrinking while in restricted cpuset
Adam Litke noticed that currently we grow the hugepage pool independent of any
cpuset the running process may be in, but when shrinking the pool, the cpuset
is checked.  This leads to inconsistency when shrinking the pool in a
restricted cpuset -- an administrator may have been able to grow the pool on a
node restricted by a containing cpuset, but they cannot shrink it there.

There are two options: either prevent growing of the pool outside of the
cpuset or allow shrinking outside of the cpuset.  >From previous discussions
on linux-mm, /proc/sys/vm/nr_hugepages is an administrative interface that
should not be restricted by cpusets.  So allow shrinking the pool by removing
pages from nodes outside of current's cpuset.

Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: William Irwin <wli@holomorphy.com>
Cc: Lee Schermerhorn <Lee.Schermerhonr@hp.com>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-03-04 16:35:18 -08:00
Adam Litke
ac09b3a151 hugetlb: close a difficult to trigger reservation race
A hugetlb reservation may be inadequately backed in the event of racing
allocations and frees when utilizing surplus huge pages.  Consider the
following series of events in processes A and B:

 A) Allocates some surplus pages to satisfy a reservation
 B) Frees some huge pages
 A) A notices the extra free pages and drops hugetlb_lock to free some of
    its surplus pages back to the buddy allocator.
 B) Allocates some huge pages
 A) Reacquires hugetlb_lock and returns from gather_surplus_huge_pages()

Avoid this by commiting the reservation after pages have been allocated but
before dropping the lock to free excess pages.  For parity, release the
reservation in return_unused_surplus_pages().

This patch also corrects the cpuset_mems_nr() error path in
hugetlb_acct_memory().  If the cpuset check fails, uncommit the
reservation, but also be sure to return any surplus huge pages that may
have been allocated to back the failed reservation.

Thanks to Andy Whitcroft for discovering this.

Signed-off-by: Adam Litke <agl@us.ibm.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-03-04 16:35:18 -08:00
Hugh Dickins
fb59e9f1e9 memcg: fix oops on NULL lru list
While testing force_empty, during an exit_mmap, __mem_cgroup_remove_list
called from mem_cgroup_uncharge_page oopsed on a NULL pointer in the lru list.
 I couldn't see what racing tasks on other cpus were doing, but surmise that
another must have been in mem_cgroup_charge_common on the same page, between
its unlock_page_cgroup and spin_lock_irqsave near done (thanks to that kzalloc
which I'd almost changed to a kmalloc).

Normally such a race cannot happen, the ref_cnt prevents it, the final
uncharge cannot race with the initial charge.  But force_empty buggers the
ref_cnt, that's what it's all about; and thereafter forced pages are
vulnerable to races such as this (just think of a shared page also mapped into
an mm of another mem_cgroup than that just emptied).  And remain vulnerable
until they're freed indefinitely later.

This patch just fixes the oops by moving the unlock_page_cgroups down below
adding to and removing from the list (only possible given the previous patch);
and while we're at it, we might as well make it an invariant that
page->page_cgroup is always set while pc is on lru.

But this behaviour of force_empty seems highly unsatisfactory to me: why have
a ref_cnt if we always have to cope with it being violated (as in the earlier
page migration patch).  We may prefer force_empty to move pages to an orphan
mem_cgroup (could be the root, but better not), from which other cgroups could
recover them; we might need to reverse the locking again; but no time now for
such concerns.

Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-03-04 16:35:15 -08:00
Hirokazu Takahashi
9b3c0a07e0 memcg: simplify force_empty and move_lists
As for force_empty, though this may not be the main topic here,
mem_cgroup_force_empty_list() can be implemented simpler.  It is possible to
make the function just call mem_cgroup_uncharge_page() instead of releasing
page_cgroups by itself.  The tip is to call get_page() before invoking
mem_cgroup_uncharge_page(), so the page won't be released during this
function.

Kamezawa-san points out that by the time mem_cgroup_uncharge_page() uncharges,
the page might have been reassigned to an lru of a different mem_cgroup, and
now be emptied from that; but Hugh claims that's okay, the end state is the
same as when it hasn't gone to another list.

And once force_empty stops taking lock_page_cgroup within mz->lru_lock,
mem_cgroup_move_lists() can be simplified to take mz->lru_lock directly while
holding page_cgroup lock (but still has to use try_lock_page_cgroup).

Signed-off-by: Hirokazu Takahashi <taka@valinux.co.jp>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp>
Cc: Paul Menage <menage@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-03-04 16:35:15 -08:00
Hugh Dickins
2680eed723 memcg: fix mem_cgroup_move_lists locking
Ever since the VM_BUG_ON(page_get_page_cgroup(page)) (now Bad page state) went
into page freeing, I've hit it from time to time in testing on some machines,
sometimes only after many days.  Recently found a machine which could usually
produce it within a few hours, which got me there at last.

The culprit is mem_cgroup_move_lists, whose locking is inadequate; and the
arrangement of structures was such that you got page_cgroups from the lru list
neatly put on to SLUB's freelist.  Kamezawa-san identified the same hole
independently.

The main problem was that it was missing the lock_page_cgroup it needs to
safely page_get_page_cgroup; but it's tricky to go beyond that too, and I
couldn't do it with SLAB_DESTROY_BY_RCU as I'd expected.  See the code for
comments on the constraints.

This patch immediately gets replaced by a simpler one from Hirokazu-san; but
is it just foolish pride that tells me to put this one on record, in case we
need to come back to it later?

Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hirokazu Takahashi <taka@valinux.co.jp>
Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp>
Cc: Paul Menage <menage@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-03-04 16:35:15 -08:00
Hugh Dickins
6d48ff8bcf memcg: css_put after remove_list
mem_cgroup_uncharge_page does css_put on the mem_cgroup before uncharging from
it, and before removing page_cgroup from one of its lru lists: isn't there a
danger that struct mem_cgroup memory could be freed and reused before
completing that, so corrupting something?  Never seen it, and for all I know
there may be other constraints which make it impossible; but let's be
defensive and reverse the ordering there.

mem_cgroup_force_empty_list is safe because there's an extra css_get around
all its works; but even so, change its ordering the same way round, to help
get in the habit of doing it like this.

Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hirokazu Takahashi <taka@valinux.co.jp>
Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp>
Cc: Paul Menage <menage@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-03-04 16:35:15 -08:00
Hugh Dickins
b9c565d5a2 memcg: remove clear_page_cgroup and atomics
Remove clear_page_cgroup: it's an unhelpful helper, see for example how
mem_cgroup_uncharge_page had to unlock_page_cgroup just in order to call it
(serious races from that?  I'm not sure).

Once that's gone, you can see it's pointless for page_cgroup's ref_cnt to be
atomic: it's always manipulated under lock_page_cgroup, except where
force_empty unilaterally reset it to 0 (and how does uncharge's
atomic_dec_and_test protect against that?).

Simplify this page_cgroup locking: if you've got the lock and the pc is
attached, then the ref_cnt must be positive: VM_BUG_ONs to check that, and to
check that pc->page matches page (we're on the way to finding why sometimes it
doesn't, but this patch doesn't fix that).

Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hirokazu Takahashi <taka@valinux.co.jp>
Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp>
Cc: Paul Menage <menage@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-03-04 16:35:15 -08:00