Commit Graph

4 Commits

Author SHA1 Message Date
Matthew Leach 710be9ac4e arm64: big-endian: write CPU holding pen address as LE
Currently when CPUs are brought online via a spin-table, the address
they should jump to is written to the cpu-release-addr in the kernel's
native endianness. As the kernel may switch endianness, secondaries
might read the value byte-reversed from what was intended, and they
would jump to the wrong address.

As the only current arm64 spin-table implementations are
little-endian, stricten up the arm64 spin-table definition such that
the value written to cpu-release-addr is _always_ little-endian
regardless of the endianness of any CPU. If a spinning CPU is
operating big-endian, it must byte-reverse the value before jumping to
handle this.

Signed-off-by: Matthew Leach <matthew.leach@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2013-10-25 15:59:42 +01:00
Mark Rutland 652af89979 arm64: factor out spin-table boot method
The arm64 kernel has an internal holding pen, which is necessary for
some systems where we can't bring CPUs online individually and must hold
multiple CPUs in a safe area until the kernel is able to handle them.
The current SMP infrastructure for arm64 is closely coupled to this
holding pen, and alternative boot methods must launch CPUs into the pen,
where they sit before they are launched into the kernel proper.

With PSCI (and possibly other future boot methods), we can bring CPUs
online individually, and need not perform the secondary_holding_pen
dance. Instead, this patch factors the holding pen management code out
to the spin-table boot method code, as it is the only boot method
requiring the pen.

A new entry point for secondaries, secondary_entry is added for other
boot methods to use, which bypasses the holding pen and its associated
overhead when bringing CPUs online. The smp.pen.text section is also
removed, as the pen can live in head.text without problem.

The cpu_operations structure is extended with two new functions,
cpu_boot and cpu_postboot, for bringing a cpu into the kernel and
performing any post-boot cleanup required by a bootmethod (e.g.
resetting the secondary_holding_pen_release to INVALID_HWID).
Documentation is added for cpu_operations.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2013-10-25 11:33:20 +01:00
Mark Rutland cd1aebf527 arm64: reorganise smp_enable_ops
For hotplug support, we're going to want a place to store operations
that do more than bring CPUs online, and it makes sense to group these
with our current smp_enable_ops. For cpuidle support, we'll want to
group additional functions, and we may want them even for UP kernels.

This patch renames smp_enable_ops to the more general cpu_operations,
and pulls the definitions out of smp code such that they can be used in
UP kernels. While we're at it, fix up instances of the cpu parameter to
be an unsigned int, drop the init markings and rename the *_cpu
functions to cpu_* to reduce future churn when cpu_operations is
extended.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2013-10-25 11:33:20 +01:00
Marc Zyngier d329de3f2a arm64: SMP: rework the SMP code to be enabling method agnostic
In order to introduce PSCI support, let the SMP code handle
multiple enabling methods. This also allow CPUs to be booted
using different methods (though this feels a bit weird...).

In the process, move the spin-table code to its own file.

Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2013-01-29 16:56:37 +00:00