Commit Graph

154 Commits

Author SHA1 Message Date
Paul Mackerras 3c31352460 KVM: PPC: Book3S HV: Allow userspace to set the desired SMT mode
This allows userspace to set the desired virtual SMT (simultaneous
multithreading) mode for a VM, that is, the number of VCPUs that
get assigned to each virtual core.  Previously, the virtual SMT mode
was fixed to the number of threads per subcore, and if userspace
wanted to have fewer vcpus per vcore, then it would achieve that by
using a sparse CPU numbering.  This had the disadvantage that the
vcpu numbers can get quite large, particularly for SMT1 guests on
a POWER8 with 8 threads per core.  With this patch, userspace can
set its desired virtual SMT mode and then use contiguous vcpu
numbering.

On POWER8, where the threading mode is "strict", the virtual SMT mode
must be less than or equal to the number of threads per subcore.  On
POWER9, which implements a "loose" threading mode, the virtual SMT
mode can be any power of 2 between 1 and 8, even though there is
effectively one thread per subcore, since the threads are independent
and can all be in different partitions.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2017-06-19 14:34:20 +10:00
Paul Mackerras fb7dcf723d Merge remote-tracking branch 'remotes/powerpc/topic/xive' into kvm-ppc-next
This merges in the powerpc topic/xive branch to bring in the code for
the in-kernel XICS interrupt controller emulation to use the new XIVE
(eXternal Interrupt Virtualization Engine) hardware in the POWER9 chip
directly, rather than via a XICS emulation in firmware.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2017-04-28 08:23:16 +10:00
Benjamin Herrenschmidt 5af5099385 KVM: PPC: Book3S HV: Native usage of the XIVE interrupt controller
This patch makes KVM capable of using the XIVE interrupt controller
to provide the standard PAPR "XICS" style hypercalls. It is necessary
for proper operations when the host uses XIVE natively.

This has been lightly tested on an actual system, including PCI
pass-through with a TG3 device.

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
[mpe: Cleanup pr_xxx(), unsplit pr_xxx() strings, etc., fix build
 failures by adding KVM_XIVE which depends on KVM_XICS and XIVE, and
 adding empty stubs for the kvm_xive_xxx() routines, fixup subject,
 integrate fixes from Paul for building PR=y HV=n]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-04-27 21:37:29 +10:00
Alexey Kardashevskiy 121f80ba68 KVM: PPC: VFIO: Add in-kernel acceleration for VFIO
This allows the host kernel to handle H_PUT_TCE, H_PUT_TCE_INDIRECT
and H_STUFF_TCE requests targeted an IOMMU TCE table used for VFIO
without passing them to user space which saves time on switching
to user space and back.

This adds H_PUT_TCE/H_PUT_TCE_INDIRECT/H_STUFF_TCE handlers to KVM.
KVM tries to handle a TCE request in the real mode, if failed
it passes the request to the virtual mode to complete the operation.
If it a virtual mode handler fails, the request is passed to
the user space; this is not expected to happen though.

To avoid dealing with page use counters (which is tricky in real mode),
this only accelerates SPAPR TCE IOMMU v2 clients which are required
to pre-register the userspace memory. The very first TCE request will
be handled in the VFIO SPAPR TCE driver anyway as the userspace view
of the TCE table (iommu_table::it_userspace) is not allocated till
the very first mapping happens and we cannot call vmalloc in real mode.

If we fail to update a hardware IOMMU table unexpected reason, we just
clear it and move on as there is nothing really we can do about it -
for example, if we hot plug a VFIO device to a guest, existing TCE tables
will be mirrored automatically to the hardware and there is no interface
to report to the guest about possible failures.

This adds new attribute - KVM_DEV_VFIO_GROUP_SET_SPAPR_TCE - to
the VFIO KVM device. It takes a VFIO group fd and SPAPR TCE table fd
and associates a physical IOMMU table with the SPAPR TCE table (which
is a guest view of the hardware IOMMU table). The iommu_table object
is cached and referenced so we do not have to look up for it in real mode.

This does not implement the UNSET counterpart as there is no use for it -
once the acceleration is enabled, the existing userspace won't
disable it unless a VFIO container is destroyed; this adds necessary
cleanup to the KVM_DEV_VFIO_GROUP_DEL handler.

This advertises the new KVM_CAP_SPAPR_TCE_VFIO capability to the user
space.

This adds real mode version of WARN_ON_ONCE() as the generic version
causes problems with rcu_sched. Since we testing what vmalloc_to_phys()
returns in the code, this also adds a check for already existing
vmalloc_to_phys() call in kvmppc_rm_h_put_tce_indirect().

This finally makes use of vfio_external_user_iommu_id() which was
introduced quite some time ago and was considered for removal.

Tests show that this patch increases transmission speed from 220MB/s
to 750..1020MB/s on 10Gb network (Chelsea CXGB3 10Gb ethernet card).

Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Acked-by: Alex Williamson <alex.williamson@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2017-04-20 11:39:26 +10:00
Alexey Kardashevskiy b1af23d836 KVM: PPC: iommu: Unify TCE checking
This reworks helpers for checking TCE update parameters in way they
can be used in KVM.

This should cause no behavioral change.

Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2017-04-20 11:39:21 +10:00
Alexey Kardashevskiy 503bfcbe18 KVM: PPC: Pass kvm* to kvmppc_find_table()
The guest view TCE tables are per KVM anyway (not per VCPU) so pass kvm*
there. This will be used in the following patches where we will be
attaching VFIO containers to LIOBNs via ioctl() to KVM (rather than
to VCPU).

Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2017-04-20 11:39:12 +10:00
Bin Lu 6f63e81bda KVM: PPC: Book3S: Add MMIO emulation for FP and VSX instructions
This patch provides the MMIO load/store emulation for instructions
of 'double & vector unsigned char & vector signed char & vector
unsigned short & vector signed short & vector unsigned int & vector
signed int & vector double '.

The instructions that this adds emulation for are:

- ldx, ldux, lwax,
- lfs, lfsx, lfsu, lfsux, lfd, lfdx, lfdu, lfdux,
- stfs, stfsx, stfsu, stfsux, stfd, stfdx, stfdu, stfdux, stfiwx,
- lxsdx, lxsspx, lxsiwax, lxsiwzx, lxvd2x, lxvw4x, lxvdsx,
- stxsdx, stxsspx, stxsiwx, stxvd2x, stxvw4x

[paulus@ozlabs.org - some cleanups, fixes and rework, make it
 compile for Book E, fix build when PR KVM is built in]

Signed-off-by: Bin Lu <lblulb@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2017-04-20 11:36:41 +10:00
Paul Mackerras 307d927967 KVM: PPC: Provide functions for queueing up FP/VEC/VSX unavailable interrupts
This provides functions that can be used for generating interrupts
indicating that a given functional unit (floating point, vector, or
VSX) is unavailable.  These functions will be used in instruction
emulation code.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2017-04-20 10:39:50 +10:00
Benjamin Herrenschmidt d381d7caf8 powerpc: Consolidate variants of real-mode MMIOs
We have all sort of variants of MMIO accessors for the real mode
instructions. This creates a clean set of accessors based on
Linux normal naming conventions, replacing all occurrences of
the old ones in the tree.

I have purposefully removed the "out/in" variants in favor of
only including __raw variants. Any code using these is already
pretty much hand tuned to operate in a very specific environment.
I've fixed up the 2 users (only one of them actually needed
a barrier in the first place).

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-04-10 21:43:16 +10:00
Benjamin Herrenschmidt f50d6bd344 powerpc/kvm: Remove obsolete kvm_vm_ioctl_xics_irq declaration
The function doesn't exist anymore

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-04-10 21:43:16 +10:00
Benjamin Herrenschmidt 936774cd3f powerpc/kvm: Make kvmppc_xics_create_icp static
It's only used within the same file it's defined

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-04-10 21:43:15 +10:00
David Gibson 5e9859699a KVM: PPC: Book3S HV: Outline of KVM-HV HPT resizing implementation
This adds a not yet working outline of the HPT resizing PAPR
extension.  Specifically it adds the necessary ioctl() functions,
their basic steps, the work function which will handle preparation for
the resize, and synchronization between these, the guest page fault
path and guest HPT update path.

The actual guts of the implementation isn't here yet, so for now the
calls will always fail.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2017-01-31 21:59:56 +11:00
David Gibson f98a8bf9ee KVM: PPC: Book3S HV: Allow KVM_PPC_ALLOCATE_HTAB ioctl() to change HPT size
The KVM_PPC_ALLOCATE_HTAB ioctl() is used to set the size of hashed page
table (HPT) that userspace expects a guest VM to have, and is also used to
clear that HPT when necessary (e.g. guest reboot).

At present, once the ioctl() is called for the first time, the HPT size can
never be changed thereafter - it will be cleared but always sized as from
the first call.

With upcoming HPT resize implementation, we're going to need to allow
userspace to resize the HPT at reset (to change it back to the default size
if the guest changed it).

So, we need to allow this ioctl() to change the HPT size.

This patch also updates Documentation/virtual/kvm/api.txt to reflect
the new behaviour.  In fact the documentation was already slightly
incorrect since 572abd5 "KVM: PPC: Book3S HV: Don't fall back to
smaller HPT size in allocation ioctl"

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2017-01-31 21:59:45 +11:00
David Gibson aae0777f1e KVM: PPC: Book3S HV: Split HPT allocation from activation
Currently, kvmppc_alloc_hpt() both allocates a new hashed page table (HPT)
and sets it up as the active page table for a VM.  For the upcoming HPT
resize implementation we're going to want to allocate HPTs separately from
activating them.

So, split the allocation itself out into kvmppc_allocate_hpt() and perform
the activation with a new kvmppc_set_hpt() function.  Likewise we split
kvmppc_free_hpt(), which just frees the HPT, from kvmppc_release_hpt()
which unsets it as an active HPT, then frees it.

We also move the logic to fall back to smaller HPT sizes if the first try
fails into the single caller which used that behaviour,
kvmppc_hv_setup_htab_rma().  This introduces a slight semantic change, in
that previously if the initial attempt at CMA allocation failed, we would
fall back to attempting smaller sizes with the page allocator.  Now, we
try first CMA, then the page allocator at each size.  As far as I can tell
this change should be harmless.

To match, we make kvmppc_free_hpt() just free the actual HPT itself.  The
call to kvmppc_free_lpid() that was there, we move to the single caller.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2017-01-31 21:59:39 +11:00
David Gibson db9a290d9c KVM: PPC: Book3S HV: Rename kvm_alloc_hpt() for clarity
The difference between kvm_alloc_hpt() and kvmppc_alloc_hpt() is not at
all obvious from the name.  In practice kvmppc_alloc_hpt() allocates an HPT
by whatever means, and calls kvm_alloc_hpt() which will attempt to allocate
it with CMA only.

To make this less confusing, rename kvm_alloc_hpt() to kvm_alloc_hpt_cma().
Similarly, kvm_release_hpt() is renamed kvm_free_hpt_cma().

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2017-01-31 21:59:23 +11:00
Paul Mackerras c927013227 KVM: PPC: Book3S HV: Add userspace interfaces for POWER9 MMU
This adds two capabilities and two ioctls to allow userspace to
find out about and configure the POWER9 MMU in a guest.  The two
capabilities tell userspace whether KVM can support a guest using
the radix MMU, or using the hashed page table (HPT) MMU with a
process table and segment tables.  (Note that the MMUs in the
POWER9 processor cores do not use the process and segment tables
when in HPT mode, but the nest MMU does).

The KVM_PPC_CONFIGURE_V3_MMU ioctl allows userspace to specify
whether a guest will use the radix MMU or the HPT MMU, and to
specify the size and location (in guest space) of the process
table.

The KVM_PPC_GET_RMMU_INFO ioctl gives userspace information about
the radix MMU.  It returns a list of supported radix tree geometries
(base page size and number of bits indexed at each level of the
radix tree) and the encoding used to specify the various page
sizes for the TLB invalidate entry instruction.

Initially, both capabilities return 0 and the ioctls return -EINVAL,
until the necessary infrastructure for them to operate correctly
is added.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-01-31 19:11:47 +11:00
Paul Mackerras e34af78490 KVM: PPC: Book3S: Move prototypes for KVM functions into kvm_ppc.h
This moves the prototypes for functions that are only called from
assembler code out of asm/asm-prototypes.h into asm/kvm_ppc.h.
The prototypes were added in commit ebe4535fbe ("KVM: PPC:
Book3S HV: sparse: prototypes for functions called from assembler",
2016-10-10), but given that the functions are KVM functions,
having them in a KVM header will be better for long-term
maintenance.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2016-12-01 14:03:46 +11:00
Paul Mackerras f725758b89 KVM: PPC: Book3S HV: Use OPAL XICS emulation on POWER9
POWER9 includes a new interrupt controller, called XIVE, which is
quite different from the XICS interrupt controller on POWER7 and
POWER8 machines.  KVM-HV accesses the XICS directly in several places
in order to send and clear IPIs and handle interrupts from PCI
devices being passed through to the guest.

In order to make the transition to XIVE easier, OPAL firmware will
include an emulation of XICS on top of XIVE.  Access to the emulated
XICS is via OPAL calls.  The one complication is that the EOI
(end-of-interrupt) function can now return a value indicating that
another interrupt is pending; in this case, the XIVE will not signal
an interrupt in hardware to the CPU, and software is supposed to
acknowledge the new interrupt without waiting for another interrupt
to be delivered in hardware.

This adapts KVM-HV to use the OPAL calls on machines where there is
no XICS hardware.  When there is no XICS, we look for a device-tree
node with "ibm,opal-intc" in its compatible property, which is how
OPAL indicates that it provides XICS emulation.

In order to handle the EOI return value, kvmppc_read_intr() has
become kvmppc_read_one_intr(), with a boolean variable passed by
reference which can be set by the EOI functions to indicate that
another interrupt is pending.  The new kvmppc_read_intr() keeps
calling kvmppc_read_one_intr() until there are no more interrupts
to process.  The return value from kvmppc_read_intr() is the
largest non-zero value of the returns from kvmppc_read_one_intr().

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2016-11-24 09:24:23 +11:00
Paul Mackerras 5d375199ea KVM: PPC: Book3S HV: Set server for passed-through interrupts
When a guest has a PCI pass-through device with an interrupt, it
will direct the interrupt to a particular guest VCPU.  In fact the
physical interrupt might arrive on any CPU, and then get
delivered to the target VCPU in the emulated XICS (guest interrupt
controller), and eventually delivered to the target VCPU.

Now that we have code to handle device interrupts in real mode
without exiting to the host kernel, there is an advantage to having
the device interrupt arrive on the same sub(core) as the target
VCPU is running on.  In this situation, the interrupt can be
delivered to the target VCPU without any exit to the host kernel
(using a hypervisor doorbell interrupt between threads if
necessary).

This patch aims to get passed-through device interrupts arriving
on the correct core by setting the interrupt server in the real
hardware XICS for the interrupt to the first thread in the (sub)core
where its target VCPU is running.  We do this in the real-mode H_EOI
code because the H_EOI handler already needs to look at the
emulated ICS state for the interrupt (whereas the H_XIRR handler
doesn't), and we know we are running in the target VCPU context
at that point.

We set the server CPU in hardware using an OPAL call, regardless of
what the IRQ affinity mask for the interrupt says, and without
updating the affinity mask.  This amounts to saying that when an
interrupt is passed through to a guest, as a matter of policy we
allow the guest's affinity for the interrupt to override the host's.

This is inspired by an earlier patch from Suresh Warrier, although
none of this code came from that earlier patch.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2016-09-12 10:12:28 +10:00
Suresh Warrier 644abbb254 KVM: PPC: Book3S HV: Tunable to disable KVM IRQ bypass
Add a  module parameter kvm_irq_bypass for kvm_hv.ko to
disable IRQ bypass for passthrough interrupts. The default
value of this tunable is 1 - that is enable the feature.

Since the tunable is used by built-in kernel code, we use
the module_param_cb macro to achieve this.

Signed-off-by: Suresh Warrier <warrier@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2016-09-12 10:12:18 +10:00
Suresh Warrier f7af5209b8 KVM: PPC: Book3S HV: Complete passthrough interrupt in host
In existing real mode ICP code, when updating the virtual ICP
state, if there is a required action that cannot be completely
handled in real mode, as for instance, a VCPU needs to be woken
up, flags are set in the ICP to indicate the required action.
This is checked when returning from hypercalls to decide whether
the call needs switch back to the host where the action can be
performed in virtual mode. Note that if h_ipi_redirect is enabled,
real mode code will first try to message a free host CPU to
complete this job instead of returning the host to do it ourselves.

Currently, the real mode PCI passthrough interrupt handling code
checks if any of these flags are set and simply returns to the host.
This is not good enough as the trap value (0x500) is treated as an
external interrupt by the host code. It is only when the trap value
is a hypercall that the host code searches for and acts on unfinished
work by calling kvmppc_xics_rm_complete.

This patch introduces a special trap BOOK3S_INTERRUPT_HV_RM_HARD
which is returned by KVM if there is unfinished business to be
completed in host virtual mode after handling a PCI passthrough
interrupt. The host checks for this special interrupt condition
and calls into the kvmppc_xics_rm_complete, which is made an
exported function for this reason.

[paulus@ozlabs.org - moved logic to set r12 to BOOK3S_INTERRUPT_HV_RM_HARD
 in book3s_hv_rmhandlers.S into the end of kvmppc_check_wake_reason.]

Signed-off-by: Suresh Warrier <warrier@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2016-09-12 10:12:07 +10:00
Suresh Warrier e3c13e56a4 KVM: PPC: Book3S HV: Handle passthrough interrupts in guest
Currently, KVM switches back to the host to handle any external
interrupt (when the interrupt is received while running in the
guest). This patch updates real-mode KVM to check if an interrupt
is generated by a passthrough adapter that is owned by this guest.
If so, the real mode KVM will directly inject the corresponding
virtual interrupt to the guest VCPU's ICS and also EOI the interrupt
in hardware. In short, the interrupt is handled entirely in real
mode in the guest context without switching back to the host.

In some rare cases, the interrupt cannot be completely handled in
real mode, for instance, a VCPU that is sleeping needs to be woken
up. In this case, KVM simply switches back to the host with trap
reason set to 0x500. This works, but it is clearly not very efficient.
A following patch will distinguish this case and handle it
correctly in the host. Note that we can use the existing
check_too_hard() routine even though we are not in a hypercall to
determine if there is unfinished business that needs to be
completed in host virtual mode.

The patch assumes that the mapping between hardware interrupt IRQ
and virtual IRQ to be injected to the guest already exists for the
PCI passthrough interrupts that need to be handled in real mode.
If the mapping does not exist, KVM falls back to the default
existing behavior.

The KVM real mode code reads mappings from the mapped array in the
passthrough IRQ map without taking any lock.  We carefully order the
loads and stores of the fields in the kvmppc_irq_map data structure
using memory barriers to avoid an inconsistent mapping being seen by
the reader. Thus, although it is possible to miss a map entry, it is
not possible to read a stale value.

[paulus@ozlabs.org - get irq_chip from irq_map rather than pimap,
 pulled out powernv eoi change into a separate patch, made
 kvmppc_read_intr get the vcpu from the paca rather than being
 passed in, rewrote the logic at the end of kvmppc_read_intr to
 avoid deep indentation, simplified logic in book3s_hv_rmhandlers.S
 since we were always restoring SRR0/1 anyway, get rid of the cached
 array (just use the mapped array), removed the kick_all_cpus_sync()
 call, clear saved_xirr PACA field when we handle the interrupt in
 real mode, fix compilation with CONFIG_KVM_XICS=n.]

Signed-off-by: Suresh Warrier <warrier@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2016-09-12 10:11:00 +10:00
Suresh Warrier 8daaafc88b KVM: PPC: Book3S HV: Introduce kvmppc_passthru_irqmap
This patch introduces an IRQ mapping structure, the
kvmppc_passthru_irqmap structure that is to be used
to map the real hardware IRQ in the host with the virtual
hardware IRQ (gsi) that is injected into a guest by KVM for
passthrough adapters.

Currently, we assume a separate IRQ mapping structure for
each guest. Each kvmppc_passthru_irqmap has a mapping arrays,
containing all defined real<->virtual IRQs.

[paulus@ozlabs.org - removed irq_chip field from struct
 kvmppc_passthru_irqmap; changed parameter for
 kvmppc_get_passthru_irqmap from struct kvm_vcpu * to struct
 kvm *, removed small cached array.]

Signed-off-by: Suresh Warrier <warrier@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2016-09-09 16:26:19 +10:00
Suresh Warrier 9576730d0e KVM: PPC: select IRQ_BYPASS_MANAGER
Select IRQ_BYPASS_MANAGER for PPC when CONFIG_KVM is set.
Add the PPC producer functions for add and del producer.

[paulus@ozlabs.org - Moved new functions from book3s.c to powerpc.c
 so booke compiles; added kvm_arch_has_irq_bypass implementation.]

Signed-off-by: Suresh Warrier <warrier@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2016-09-09 16:26:19 +10:00
Alexey Kardashevskiy 58ded4201f KVM: PPC: Add support for 64bit TCE windows
The existing KVM_CREATE_SPAPR_TCE only supports 32bit windows which is not
enough for directly mapped windows as the guest can get more than 4GB.

This adds KVM_CREATE_SPAPR_TCE_64 ioctl and advertises it
via KVM_CAP_SPAPR_TCE_64 capability. The table size is checked against
the locked memory limit.

Since 64bit windows are to support Dynamic DMA windows (DDW), let's add
@bus_offset and @page_shift which are also required by DDW.

Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2016-03-02 09:56:50 +11:00
Suresh E. Warrier 520fe9c607 KVM: PPC: Book3S HV: Add tunable to control H_IPI redirection
Redirecting the wakeup of a VCPU from the H_IPI hypercall to
a core running in the host is usually a good idea, most workloads
seemed to benefit. However, in one heavily interrupt-driven SMT1
workload, some regression was observed. This patch adds a kvm_hv
module parameter called h_ipi_redirect to control this feature.

The default value for this tunable is 1 - that is enable the feature.

Signed-off-by: Suresh Warrier <warrier@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2016-02-29 16:25:06 +11:00
Suresh Warrier 0c2a660624 KVM: PPC: Book3S HV: Host side kick VCPU when poked by real-mode KVM
This patch adds the support for the kick VCPU operation for
kvmppc_host_rm_ops. The kvmppc_xics_ipi_action() function
provides the function to be invoked for a host side operation
when poked by the real mode KVM. This is initiated by KVM by
sending an IPI to any free host core.

KVM real mode must set the rm_action to XICS_RM_KICK_VCPU and
rm_data to point to the VCPU to be woken up before sending the IPI.
Note that we have allocated one kvmppc_host_rm_core structure
per core. The above values need to be set in the structure
corresponding to the core to which the IPI will be sent.

Signed-off-by: Suresh Warrier <warrier@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2016-02-29 16:25:06 +11:00
Suresh Warrier 79b6c247e9 KVM: PPC: Book3S HV: Host-side RM data structures
This patch defines the data structures to support the setting up
of host side operations while running in real mode in the guest,
and also the functions to allocate and free it.

The operations are for now limited to virtual XICS operations.
Currently, we have only defined one operation in the data
structure:
         - Wake up a VCPU sleeping in the host when it
           receives a virtual interrupt

The operations are assigned at the core level because PowerKVM
requires that the host run in SMT off mode. For each core,
we will need to manage its state atomically - where the state
is defined by:
1. Is the core running in the host?
2. Is there a Real Mode (RM) operation pending on the host?

Currently, core state is only managed at the whole-core level
even when the system is in split-core mode. This just limits
the number of free or "available" cores in the host to perform
any host-side operations.

The kvmppc_host_rm_core.rm_data allows any data to be passed by
KVM in real mode to the host core along with the operation to
be performed.

The kvmppc_host_rm_ops structure is allocated the very first time
a guest VM is started. Initial core state is also set - all online
cores are in the host. This structure is never deleted, not even
when there are no active guests. However, it needs to be freed
when the module is unloaded because the kvmppc_host_rm_ops_hv
can contain function pointers to kvm-hv.ko functions for the
different supported host operations.

Signed-off-by: Suresh Warrier <warrier@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2016-02-29 16:25:06 +11:00
Alexey Kardashevskiy d3695aa4f4 KVM: PPC: Add support for multiple-TCE hcalls
This adds real and virtual mode handlers for the H_PUT_TCE_INDIRECT and
H_STUFF_TCE hypercalls for user space emulated devices such as IBMVIO
devices or emulated PCI. These calls allow adding multiple entries
(up to 512) into the TCE table in one call which saves time on
transition between kernel and user space.

The current implementation of kvmppc_h_stuff_tce() allows it to be
executed in both real and virtual modes so there is one helper.
The kvmppc_rm_h_put_tce_indirect() needs to translate the guest address
to the host address and since the translation is different, there are
2 helpers - one for each mode.

This implements the KVM_CAP_PPC_MULTITCE capability. When present,
the kernel will try handling H_PUT_TCE_INDIRECT and H_STUFF_TCE if these
are enabled by the userspace via KVM_CAP_PPC_ENABLE_HCALL.
If they can not be handled by the kernel, they are passed on to
the user space. The user space still has to have an implementation
for these.

Both HV and PR-syle KVM are supported.

Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2016-02-16 13:44:26 +11:00
Alexey Kardashevskiy 5ee7af1864 KVM: PPC: Move reusable bits of H_PUT_TCE handler to helpers
Upcoming multi-tce support (H_PUT_TCE_INDIRECT/H_STUFF_TCE hypercalls)
will validate TCE (not to have unexpected bits) and IO address
(to be within the DMA window boundaries).

This introduces helpers to validate TCE and IO address. The helpers are
exported as they compile into vmlinux (to work in realmode) and will be
used later by KVM kernel module in virtual mode.

Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2016-02-16 13:44:26 +11:00
Dan Williams ba049e93ae kvm: rename pfn_t to kvm_pfn_t
To date, we have implemented two I/O usage models for persistent memory,
PMEM (a persistent "ram disk") and DAX (mmap persistent memory into
userspace).  This series adds a third, DAX-GUP, that allows DAX mappings
to be the target of direct-i/o.  It allows userspace to coordinate
DMA/RDMA from/to persistent memory.

The implementation leverages the ZONE_DEVICE mm-zone that went into
4.3-rc1 (also discussed at kernel summit) to flag pages that are owned
and dynamically mapped by a device driver.  The pmem driver, after
mapping a persistent memory range into the system memmap via
devm_memremap_pages(), arranges for DAX to distinguish pfn-only versus
page-backed pmem-pfns via flags in the new pfn_t type.

The DAX code, upon seeing a PFN_DEV+PFN_MAP flagged pfn, flags the
resulting pte(s) inserted into the process page tables with a new
_PAGE_DEVMAP flag.  Later, when get_user_pages() is walking ptes it keys
off _PAGE_DEVMAP to pin the device hosting the page range active.
Finally, get_page() and put_page() are modified to take references
against the device driver established page mapping.

Finally, this need for "struct page" for persistent memory requires
memory capacity to store the memmap array.  Given the memmap array for a
large pool of persistent may exhaust available DRAM introduce a
mechanism to allocate the memmap from persistent memory.  The new
"struct vmem_altmap *" parameter to devm_memremap_pages() enables
arch_add_memory() to use reserved pmem capacity rather than the page
allocator.

This patch (of 18):

The core has developed a need for a "pfn_t" type [1].  Move the existing
pfn_t in KVM to kvm_pfn_t [2].

[1]: https://lists.01.org/pipermail/linux-nvdimm/2015-September/002199.html
[2]: https://lists.01.org/pipermail/linux-nvdimm/2015-September/002218.html

Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Paolo Bonzini f36f3f2846 KVM: add "new" argument to kvm_arch_commit_memory_region
This lets the function access the new memory slot without going through
kvm_memslots and id_to_memslot.  It will simplify the code when more
than one address space will be supported.

Unfortunately, the "const"ness of the new argument must be casted
away in two places.  Fixing KVM to accept const struct kvm_memory_slot
pointers would require modifications in pretty much all architectures,
and is left for later.

Reviewed-by: Radim Krcmar <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-05-28 10:42:58 +02:00
Paolo Bonzini 09170a4942 KVM: const-ify uses of struct kvm_userspace_memory_region
Architecture-specific helpers are not supposed to muck with
struct kvm_userspace_memory_region contents.  Add const to
enforce this.

In order to eliminate the only write in __kvm_set_memory_region,
the cleaning of deleted slots is pulled up from update_memslots
to __kvm_set_memory_region.

Reviewed-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp>
Reviewed-by: Radim Krcmar <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-05-26 12:40:13 +02:00
Michael Ellerman e928e9cb36 KVM: PPC: Book3S HV: Add fast real-mode H_RANDOM implementation.
Some PowerNV systems include a hardware random-number generator.
This HWRNG is present on POWER7+ and POWER8 chips and is capable of
generating one 64-bit random number every microsecond.  The random
numbers are produced by sampling a set of 64 unstable high-frequency
oscillators and are almost completely entropic.

PAPR defines an H_RANDOM hypercall which guests can use to obtain one
64-bit random sample from the HWRNG.  This adds a real-mode
implementation of the H_RANDOM hypercall.  This hypercall was
implemented in real mode because the latency of reading the HWRNG is
generally small compared to the latency of a guest exit and entry for
all the threads in the same virtual core.

Userspace can detect the presence of the HWRNG and the H_RANDOM
implementation by querying the KVM_CAP_PPC_HWRNG capability.  The
H_RANDOM hypercall implementation will only be invoked when the guest
does an H_RANDOM hypercall if userspace first enables the in-kernel
H_RANDOM implementation using the KVM_CAP_PPC_ENABLE_HCALL capability.

Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2015-04-21 15:21:29 +02:00
Paul Mackerras c17b98cf60 KVM: PPC: Book3S HV: Remove code for PPC970 processors
This removes the code that was added to enable HV KVM to work
on PPC970 processors.  The PPC970 is an old CPU that doesn't
support virtualizing guest memory.  Removing PPC970 support also
lets us remove the code for allocating and managing contiguous
real-mode areas, the code for the !kvm->arch.using_mmu_notifiers
case, the code for pinning pages of guest memory when first
accessed and keeping track of which pages have been pinned, and
the code for handling H_ENTER hypercalls in virtual mode.

Book3S HV KVM is now supported only on POWER7 and POWER8 processors.
The KVM_CAP_PPC_RMA capability now always returns 0.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-12-17 13:44:03 +01:00
Paolo Bonzini 00c027db0c Patch queue for ppc - 2014-09-24
New awesome things in this release:
 
   - E500: e6500 core support
   - E500: guest and remote debug support
   - Book3S: remote sw breakpoint support
   - Book3S: HV: Minor bugfixes
 
 Alexander Graf (1):
       KVM: PPC: Pass enum to kvmppc_get_last_inst
 
 Bharat Bhushan (8):
       KVM: PPC: BOOKE: allow debug interrupt at "debug level"
       KVM: PPC: BOOKE : Emulate rfdi instruction
       KVM: PPC: BOOKE: Allow guest to change MSR_DE
       KVM: PPC: BOOKE: Clear guest dbsr in userspace exit KVM_EXIT_DEBUG
       KVM: PPC: BOOKE: Guest and hardware visible debug registers are same
       KVM: PPC: BOOKE: Add one reg interface for DBSR
       KVM: PPC: BOOKE: Add one_reg documentation of SPRG9 and DBSR
       KVM: PPC: BOOKE: Emulate debug registers and exception
 
 Madhavan Srinivasan (2):
       powerpc/kvm: support to handle sw breakpoint
       powerpc/kvm: common sw breakpoint instr across ppc
 
 Michael Neuling (1):
       KVM: PPC: Book3S HV: Add register name when loading toc
 
 Mihai Caraman (10):
       powerpc/booke: Restrict SPE exception handlers to e200/e500 cores
       powerpc/booke: Revert SPE/AltiVec common defines for interrupt numbers
       KVM: PPC: Book3E: Increase FPU laziness
       KVM: PPC: Book3e: Add AltiVec support
       KVM: PPC: Make ONE_REG powerpc generic
       KVM: PPC: Move ONE_REG AltiVec support to powerpc
       KVM: PPC: Remove the tasklet used by the hrtimer
       KVM: PPC: Remove shared defines for SPE and AltiVec interrupts
       KVM: PPC: e500mc: Add support for single threaded vcpus on e6500 core
       KVM: PPC: Book3E: Enable e6500 core
 
 Paul Mackerras (2):
       KVM: PPC: Book3S HV: Increase timeout for grabbing secondary threads
       KVM: PPC: Book3S HV: Only accept host PVR value for guest PVR
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.19 (GNU/Linux)
 
 iQIcBAABAgAGBQJUIyyEAAoJECszeR4D/txgiV8P/AnSRcjxrlW+ITsimZezDaj5
 MfFv2ZyQKlVjp4cfzfCTW5otQT/K2rSfJzB/V6l1xGcM/UEO+snmPddokvFLMsp9
 dLvPjZI6ivZu/rjRZ8eqnTQIAwid0K5Yss870Y8YWfRBByKVDs7rRx75gj6q8kek
 jG3wLQQxDYEapkGXiaIcX2Mbf6GAZKNhGf6M5Khn/v3RE0+mNg9J+nffBZXOxEYo
 WDe20KNSuDqDEnWIc82uibTbH1Wnxmetc5jf21DWaquLs9VGbON1X9Myl+aBNQuP
 wDt6D04rgtBZbwyHKsSO/0poK0eIms+5jiW8c+XPO2QOLXQwwNKBNmRKePyk1bt5
 gRxd+u9OGzRGHKwIS1vqHLKCdr5HiTN0uE+nZ+oDWjXVJQRMc8HCx0tWxzZg46yd
 kIIRuDrIQQUH3j2L/PnY3Nx3yKNhg97Ysek0ToIsxlkqczrAUewnXuOj9Ijf+/Cz
 Y3cVsQEhepcO3xyz5uyWJQwmFZkwJVOclzGaNgXKeKl5fkpXwLPxc6vmI2K+hnU9
 TRFoQgbknPxQe2qv9cXeMBFhZwNRKpcYW7w3G81ko/7foVmwP3CjnNulXMKiNuVH
 i8pVd8zxiJuTWVQSksGWuWCxueLmc86L4khSF5YBzg9pid7ajmxcfEDWCQGdN+Fe
 Oh4HUW0860IJYOQRIKJv
 =CR/Z
 -----END PGP SIGNATURE-----

Merge tag 'signed-kvm-ppc-next' of git://github.com/agraf/linux-2.6 into kvm-next

Patch queue for ppc - 2014-09-24

New awesome things in this release:

  - E500: e6500 core support
  - E500: guest and remote debug support
  - Book3S: remote sw breakpoint support
  - Book3S: HV: Minor bugfixes

Alexander Graf (1):
      KVM: PPC: Pass enum to kvmppc_get_last_inst

Bharat Bhushan (8):
      KVM: PPC: BOOKE: allow debug interrupt at "debug level"
      KVM: PPC: BOOKE : Emulate rfdi instruction
      KVM: PPC: BOOKE: Allow guest to change MSR_DE
      KVM: PPC: BOOKE: Clear guest dbsr in userspace exit KVM_EXIT_DEBUG
      KVM: PPC: BOOKE: Guest and hardware visible debug registers are same
      KVM: PPC: BOOKE: Add one reg interface for DBSR
      KVM: PPC: BOOKE: Add one_reg documentation of SPRG9 and DBSR
      KVM: PPC: BOOKE: Emulate debug registers and exception

Madhavan Srinivasan (2):
      powerpc/kvm: support to handle sw breakpoint
      powerpc/kvm: common sw breakpoint instr across ppc

Michael Neuling (1):
      KVM: PPC: Book3S HV: Add register name when loading toc

Mihai Caraman (10):
      powerpc/booke: Restrict SPE exception handlers to e200/e500 cores
      powerpc/booke: Revert SPE/AltiVec common defines for interrupt numbers
      KVM: PPC: Book3E: Increase FPU laziness
      KVM: PPC: Book3e: Add AltiVec support
      KVM: PPC: Make ONE_REG powerpc generic
      KVM: PPC: Move ONE_REG AltiVec support to powerpc
      KVM: PPC: Remove the tasklet used by the hrtimer
      KVM: PPC: Remove shared defines for SPE and AltiVec interrupts
      KVM: PPC: e500mc: Add support for single threaded vcpus on e6500 core
      KVM: PPC: Book3E: Enable e6500 core

Paul Mackerras (2):
      KVM: PPC: Book3S HV: Increase timeout for grabbing secondary threads
      KVM: PPC: Book3S HV: Only accept host PVR value for guest PVR
2014-09-24 23:19:45 +02:00
Andres Lagar-Cavilla 5712846808 kvm: Fix page ageing bugs
1. We were calling clear_flush_young_notify in unmap_one, but we are
within an mmu notifier invalidate range scope. The spte exists no more
(due to range_start) and the accessed bit info has already been
propagated (due to kvm_pfn_set_accessed). Simply call
clear_flush_young.

2. We clear_flush_young on a primary MMU PMD, but this may be mapped
as a collection of PTEs by the secondary MMU (e.g. during log-dirty).
This required expanding the interface of the clear_flush_young mmu
notifier, so a lot of code has been trivially touched.

3. In the absence of shadow_accessed_mask (e.g. EPT A bit), we emulate
the access bit by blowing the spte. This requires proper synchronizing
with MMU notifier consumers, like every other removal of spte's does.

Signed-off-by: Andres Lagar-Cavilla <andreslc@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-09-24 14:07:58 +02:00
Madhavan Srinivasan a59c1d9e60 powerpc/kvm: support to handle sw breakpoint
This patch adds kernel side support for software breakpoint.
Design is that, by using an illegal instruction, we trap to hypervisor
via Emulation Assistance interrupt, where we check for the illegal instruction
and accordingly we return to Host or Guest. Patch also adds support for
software breakpoint in PR KVM.

Signed-off-by: Madhavan Srinivasan <maddy@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-09-22 10:11:35 +02:00
Mihai Caraman d02d4d156e KVM: PPC: Remove the tasklet used by the hrtimer
Powerpc timer implementation is a copycat version of s390. Now that they removed
the tasklet with commit ea74c0ea1b follow this
optimization.

Signed-off-by: Mihai Caraman <mihai.caraman@freescale.com>
Signed-off-by: Bogdan Purcareata <bogdan.purcareata@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-09-22 10:11:34 +02:00
Bharat Bhushan 2f699a59f3 KVM: PPC: BOOKE: Emulate debug registers and exception
This patch emulates debug registers and debug exception
to support guest using debug resource. This enables running
gdb/kgdb etc in guest.

On BOOKE architecture we cannot share debug resources between QEMU and
guest because:
    When QEMU is using debug resources then debug exception must
    be always enabled. To achieve this we set MSR_DE and also set
    MSRP_DEP so guest cannot change MSR_DE.

    When emulating debug resource for guest we want guest
    to control MSR_DE (enable/disable debug interrupt on need).

    So above mentioned two configuration cannot be supported
    at the same time. So the result is that we cannot share
    debug resources between QEMU and Guest on BOOKE architecture.

In the current design QEMU gets priority over guest, this means that if
QEMU is using debug resources then guest cannot use them and if guest is
using debug resource then QEMU can overwrite them.

Signed-off-by: Bharat Bhushan <Bharat.Bhushan@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-09-22 10:11:33 +02:00
Bharat Bhushan 5a484c7c1e KVM: PPC: BOOKEHV: rename e500hv_spr to bookehv_spr
This are not specific to e500hv but applicable for bookehv
(As per comment from Scott Wood on my patch
"kvm: ppc: bookehv: Added wrapper macros for shadow registers")

Signed-off-by: Bharat Bhushan <Bharat.Bhushan@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-30 11:39:52 +02:00
Alexander Graf ce91ddc471 KVM: PPC: Remove DCR handling
DCR handling was only needed for 440 KVM. Since we removed it, we can also
remove handling of DCR accesses.

Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 19:29:15 +02:00
Alexander Graf 8de12015ff KVM: PPC: Expose helper functions for data/inst faults
We're going to implement guest code interpretation in KVM for some rare
corner cases. This code needs to be able to inject data and instruction
faults into the guest when it encounters them.

Expose generic APIs to do this in a reasonably subarch agnostic fashion.

Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 18:30:18 +02:00
Alexander Graf d69614a295 KVM: PPC: Separate loadstore emulation from priv emulation
Today the instruction emulator can get called via 2 separate code paths. It
can either be called by MMIO emulation detection code or by privileged
instruction traps.

This is bad, as both code paths prepare the environment differently. For MMIO
emulation we already know the virtual address we faulted on, so instructions
there don't have to actually fetch that information.

Split out the two separate use cases into separate files.

Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 18:30:10 +02:00
Alexander Graf 35c4a7330d KVM: PPC: Move kvmppc_ld/st to common code
We have enough common infrastructure now to resolve GVA->GPA mappings at
runtime. With this we can move our book3s specific helpers to load / store
in guest virtual address space to common code as well.

Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 16:27:12 +02:00
Alexander Graf 7d15c06f1a KVM: PPC: Implement kvmppc_xlate for all targets
We have a nice API to find the translated GPAs of a GVA including protection
flags. So far we only use it on Book3S, but there's no reason the same shouldn't
be used on BookE as well.

Implement a kvmppc_xlate() version for BookE and clean it up to make it more
readable in general.

Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 16:15:50 +02:00
Mihai Caraman 51f047261e KVM: PPC: Allow kvmppc_get_last_inst() to fail
On book3e, guest last instruction is read on the exit path using load
external pid (lwepx) dedicated instruction. This load operation may fail
due to TLB eviction and execute-but-not-read entries.

This patch lay down the path for an alternative solution to read the guest
last instruction, by allowing kvmppc_get_lat_inst() function to fail.
Architecture specific implmentations of kvmppc_load_last_inst() may read
last guest instruction and instruct the emulation layer to re-execute the
guest in case of failure.

Make kvmppc_get_last_inst() definition common between architectures.

Signed-off-by: Mihai Caraman <mihai.caraman@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 15:23:14 +02:00
Bharat Bhushan 34f754b99e kvm: ppc: Add SPRN_EPR get helper function
kvmppc_set_epr() is already defined in asm/kvm_ppc.h, So
rename and move get_epr helper function to same file.

Signed-off-by: Bharat Bhushan <Bharat.Bhushan@freescale.com>
[agraf: remove duplicate return]
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 15:23:13 +02:00
Bharat Bhushan dc168549d9 kvm: ppc: booke: Add shared struct helpers of SPRN_ESR
Add and use kvmppc_set_esr() and kvmppc_get_esr() helper functions

Signed-off-by: Bharat Bhushan <Bharat.Bhushan@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 15:23:12 +02:00
Bharat Bhushan 1dc0c5b88c kvm: ppc: bookehv: Added wrapper macros for shadow registers
There are shadow registers like, GSPRG[0-3], GSRR0, GSRR1 etc on
BOOKE-HV and these shadow registers are guest accessible.
So these shadow registers needs to be updated on BOOKE-HV.
This patch adds new macro for get/set helper of shadow register .

Signed-off-by: Bharat Bhushan <Bharat.Bhushan@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 15:23:11 +02:00