Commit Graph

189 Commits

Author SHA1 Message Date
Paul Mackerras c927013227 KVM: PPC: Book3S HV: Add userspace interfaces for POWER9 MMU
This adds two capabilities and two ioctls to allow userspace to
find out about and configure the POWER9 MMU in a guest.  The two
capabilities tell userspace whether KVM can support a guest using
the radix MMU, or using the hashed page table (HPT) MMU with a
process table and segment tables.  (Note that the MMUs in the
POWER9 processor cores do not use the process and segment tables
when in HPT mode, but the nest MMU does).

The KVM_PPC_CONFIGURE_V3_MMU ioctl allows userspace to specify
whether a guest will use the radix MMU or the HPT MMU, and to
specify the size and location (in guest space) of the process
table.

The KVM_PPC_GET_RMMU_INFO ioctl gives userspace information about
the radix MMU.  It returns a list of supported radix tree geometries
(base page size and number of bits indexed at each level of the
radix tree) and the encoding used to specify the various page
sizes for the TLB invalidate entry instruction.

Initially, both capabilities return 0 and the ioctls return -EINVAL,
until the necessary infrastructure for them to operate correctly
is added.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-01-31 19:11:47 +11:00
Paul Mackerras e34af78490 KVM: PPC: Book3S: Move prototypes for KVM functions into kvm_ppc.h
This moves the prototypes for functions that are only called from
assembler code out of asm/asm-prototypes.h into asm/kvm_ppc.h.
The prototypes were added in commit ebe4535fbe ("KVM: PPC:
Book3S HV: sparse: prototypes for functions called from assembler",
2016-10-10), but given that the functions are KVM functions,
having them in a KVM header will be better for long-term
maintenance.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2016-12-01 14:03:46 +11:00
Paul Mackerras f725758b89 KVM: PPC: Book3S HV: Use OPAL XICS emulation on POWER9
POWER9 includes a new interrupt controller, called XIVE, which is
quite different from the XICS interrupt controller on POWER7 and
POWER8 machines.  KVM-HV accesses the XICS directly in several places
in order to send and clear IPIs and handle interrupts from PCI
devices being passed through to the guest.

In order to make the transition to XIVE easier, OPAL firmware will
include an emulation of XICS on top of XIVE.  Access to the emulated
XICS is via OPAL calls.  The one complication is that the EOI
(end-of-interrupt) function can now return a value indicating that
another interrupt is pending; in this case, the XIVE will not signal
an interrupt in hardware to the CPU, and software is supposed to
acknowledge the new interrupt without waiting for another interrupt
to be delivered in hardware.

This adapts KVM-HV to use the OPAL calls on machines where there is
no XICS hardware.  When there is no XICS, we look for a device-tree
node with "ibm,opal-intc" in its compatible property, which is how
OPAL indicates that it provides XICS emulation.

In order to handle the EOI return value, kvmppc_read_intr() has
become kvmppc_read_one_intr(), with a boolean variable passed by
reference which can be set by the EOI functions to indicate that
another interrupt is pending.  The new kvmppc_read_intr() keeps
calling kvmppc_read_one_intr() until there are no more interrupts
to process.  The return value from kvmppc_read_intr() is the
largest non-zero value of the returns from kvmppc_read_one_intr().

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2016-11-24 09:24:23 +11:00
Paul Mackerras 5d375199ea KVM: PPC: Book3S HV: Set server for passed-through interrupts
When a guest has a PCI pass-through device with an interrupt, it
will direct the interrupt to a particular guest VCPU.  In fact the
physical interrupt might arrive on any CPU, and then get
delivered to the target VCPU in the emulated XICS (guest interrupt
controller), and eventually delivered to the target VCPU.

Now that we have code to handle device interrupts in real mode
without exiting to the host kernel, there is an advantage to having
the device interrupt arrive on the same sub(core) as the target
VCPU is running on.  In this situation, the interrupt can be
delivered to the target VCPU without any exit to the host kernel
(using a hypervisor doorbell interrupt between threads if
necessary).

This patch aims to get passed-through device interrupts arriving
on the correct core by setting the interrupt server in the real
hardware XICS for the interrupt to the first thread in the (sub)core
where its target VCPU is running.  We do this in the real-mode H_EOI
code because the H_EOI handler already needs to look at the
emulated ICS state for the interrupt (whereas the H_XIRR handler
doesn't), and we know we are running in the target VCPU context
at that point.

We set the server CPU in hardware using an OPAL call, regardless of
what the IRQ affinity mask for the interrupt says, and without
updating the affinity mask.  This amounts to saying that when an
interrupt is passed through to a guest, as a matter of policy we
allow the guest's affinity for the interrupt to override the host's.

This is inspired by an earlier patch from Suresh Warrier, although
none of this code came from that earlier patch.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2016-09-12 10:12:28 +10:00
Suresh Warrier 644abbb254 KVM: PPC: Book3S HV: Tunable to disable KVM IRQ bypass
Add a  module parameter kvm_irq_bypass for kvm_hv.ko to
disable IRQ bypass for passthrough interrupts. The default
value of this tunable is 1 - that is enable the feature.

Since the tunable is used by built-in kernel code, we use
the module_param_cb macro to achieve this.

Signed-off-by: Suresh Warrier <warrier@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2016-09-12 10:12:18 +10:00
Suresh Warrier f7af5209b8 KVM: PPC: Book3S HV: Complete passthrough interrupt in host
In existing real mode ICP code, when updating the virtual ICP
state, if there is a required action that cannot be completely
handled in real mode, as for instance, a VCPU needs to be woken
up, flags are set in the ICP to indicate the required action.
This is checked when returning from hypercalls to decide whether
the call needs switch back to the host where the action can be
performed in virtual mode. Note that if h_ipi_redirect is enabled,
real mode code will first try to message a free host CPU to
complete this job instead of returning the host to do it ourselves.

Currently, the real mode PCI passthrough interrupt handling code
checks if any of these flags are set and simply returns to the host.
This is not good enough as the trap value (0x500) is treated as an
external interrupt by the host code. It is only when the trap value
is a hypercall that the host code searches for and acts on unfinished
work by calling kvmppc_xics_rm_complete.

This patch introduces a special trap BOOK3S_INTERRUPT_HV_RM_HARD
which is returned by KVM if there is unfinished business to be
completed in host virtual mode after handling a PCI passthrough
interrupt. The host checks for this special interrupt condition
and calls into the kvmppc_xics_rm_complete, which is made an
exported function for this reason.

[paulus@ozlabs.org - moved logic to set r12 to BOOK3S_INTERRUPT_HV_RM_HARD
 in book3s_hv_rmhandlers.S into the end of kvmppc_check_wake_reason.]

Signed-off-by: Suresh Warrier <warrier@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2016-09-12 10:12:07 +10:00
Suresh Warrier e3c13e56a4 KVM: PPC: Book3S HV: Handle passthrough interrupts in guest
Currently, KVM switches back to the host to handle any external
interrupt (when the interrupt is received while running in the
guest). This patch updates real-mode KVM to check if an interrupt
is generated by a passthrough adapter that is owned by this guest.
If so, the real mode KVM will directly inject the corresponding
virtual interrupt to the guest VCPU's ICS and also EOI the interrupt
in hardware. In short, the interrupt is handled entirely in real
mode in the guest context without switching back to the host.

In some rare cases, the interrupt cannot be completely handled in
real mode, for instance, a VCPU that is sleeping needs to be woken
up. In this case, KVM simply switches back to the host with trap
reason set to 0x500. This works, but it is clearly not very efficient.
A following patch will distinguish this case and handle it
correctly in the host. Note that we can use the existing
check_too_hard() routine even though we are not in a hypercall to
determine if there is unfinished business that needs to be
completed in host virtual mode.

The patch assumes that the mapping between hardware interrupt IRQ
and virtual IRQ to be injected to the guest already exists for the
PCI passthrough interrupts that need to be handled in real mode.
If the mapping does not exist, KVM falls back to the default
existing behavior.

The KVM real mode code reads mappings from the mapped array in the
passthrough IRQ map without taking any lock.  We carefully order the
loads and stores of the fields in the kvmppc_irq_map data structure
using memory barriers to avoid an inconsistent mapping being seen by
the reader. Thus, although it is possible to miss a map entry, it is
not possible to read a stale value.

[paulus@ozlabs.org - get irq_chip from irq_map rather than pimap,
 pulled out powernv eoi change into a separate patch, made
 kvmppc_read_intr get the vcpu from the paca rather than being
 passed in, rewrote the logic at the end of kvmppc_read_intr to
 avoid deep indentation, simplified logic in book3s_hv_rmhandlers.S
 since we were always restoring SRR0/1 anyway, get rid of the cached
 array (just use the mapped array), removed the kick_all_cpus_sync()
 call, clear saved_xirr PACA field when we handle the interrupt in
 real mode, fix compilation with CONFIG_KVM_XICS=n.]

Signed-off-by: Suresh Warrier <warrier@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2016-09-12 10:11:00 +10:00
Suresh Warrier 8daaafc88b KVM: PPC: Book3S HV: Introduce kvmppc_passthru_irqmap
This patch introduces an IRQ mapping structure, the
kvmppc_passthru_irqmap structure that is to be used
to map the real hardware IRQ in the host with the virtual
hardware IRQ (gsi) that is injected into a guest by KVM for
passthrough adapters.

Currently, we assume a separate IRQ mapping structure for
each guest. Each kvmppc_passthru_irqmap has a mapping arrays,
containing all defined real<->virtual IRQs.

[paulus@ozlabs.org - removed irq_chip field from struct
 kvmppc_passthru_irqmap; changed parameter for
 kvmppc_get_passthru_irqmap from struct kvm_vcpu * to struct
 kvm *, removed small cached array.]

Signed-off-by: Suresh Warrier <warrier@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2016-09-09 16:26:19 +10:00
Suresh Warrier 9576730d0e KVM: PPC: select IRQ_BYPASS_MANAGER
Select IRQ_BYPASS_MANAGER for PPC when CONFIG_KVM is set.
Add the PPC producer functions for add and del producer.

[paulus@ozlabs.org - Moved new functions from book3s.c to powerpc.c
 so booke compiles; added kvm_arch_has_irq_bypass implementation.]

Signed-off-by: Suresh Warrier <warrier@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2016-09-09 16:26:19 +10:00
Alexey Kardashevskiy 58ded4201f KVM: PPC: Add support for 64bit TCE windows
The existing KVM_CREATE_SPAPR_TCE only supports 32bit windows which is not
enough for directly mapped windows as the guest can get more than 4GB.

This adds KVM_CREATE_SPAPR_TCE_64 ioctl and advertises it
via KVM_CAP_SPAPR_TCE_64 capability. The table size is checked against
the locked memory limit.

Since 64bit windows are to support Dynamic DMA windows (DDW), let's add
@bus_offset and @page_shift which are also required by DDW.

Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2016-03-02 09:56:50 +11:00
Suresh E. Warrier 520fe9c607 KVM: PPC: Book3S HV: Add tunable to control H_IPI redirection
Redirecting the wakeup of a VCPU from the H_IPI hypercall to
a core running in the host is usually a good idea, most workloads
seemed to benefit. However, in one heavily interrupt-driven SMT1
workload, some regression was observed. This patch adds a kvm_hv
module parameter called h_ipi_redirect to control this feature.

The default value for this tunable is 1 - that is enable the feature.

Signed-off-by: Suresh Warrier <warrier@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2016-02-29 16:25:06 +11:00
Suresh Warrier 0c2a660624 KVM: PPC: Book3S HV: Host side kick VCPU when poked by real-mode KVM
This patch adds the support for the kick VCPU operation for
kvmppc_host_rm_ops. The kvmppc_xics_ipi_action() function
provides the function to be invoked for a host side operation
when poked by the real mode KVM. This is initiated by KVM by
sending an IPI to any free host core.

KVM real mode must set the rm_action to XICS_RM_KICK_VCPU and
rm_data to point to the VCPU to be woken up before sending the IPI.
Note that we have allocated one kvmppc_host_rm_core structure
per core. The above values need to be set in the structure
corresponding to the core to which the IPI will be sent.

Signed-off-by: Suresh Warrier <warrier@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2016-02-29 16:25:06 +11:00
Suresh Warrier 79b6c247e9 KVM: PPC: Book3S HV: Host-side RM data structures
This patch defines the data structures to support the setting up
of host side operations while running in real mode in the guest,
and also the functions to allocate and free it.

The operations are for now limited to virtual XICS operations.
Currently, we have only defined one operation in the data
structure:
         - Wake up a VCPU sleeping in the host when it
           receives a virtual interrupt

The operations are assigned at the core level because PowerKVM
requires that the host run in SMT off mode. For each core,
we will need to manage its state atomically - where the state
is defined by:
1. Is the core running in the host?
2. Is there a Real Mode (RM) operation pending on the host?

Currently, core state is only managed at the whole-core level
even when the system is in split-core mode. This just limits
the number of free or "available" cores in the host to perform
any host-side operations.

The kvmppc_host_rm_core.rm_data allows any data to be passed by
KVM in real mode to the host core along with the operation to
be performed.

The kvmppc_host_rm_ops structure is allocated the very first time
a guest VM is started. Initial core state is also set - all online
cores are in the host. This structure is never deleted, not even
when there are no active guests. However, it needs to be freed
when the module is unloaded because the kvmppc_host_rm_ops_hv
can contain function pointers to kvm-hv.ko functions for the
different supported host operations.

Signed-off-by: Suresh Warrier <warrier@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2016-02-29 16:25:06 +11:00
Alexey Kardashevskiy d3695aa4f4 KVM: PPC: Add support for multiple-TCE hcalls
This adds real and virtual mode handlers for the H_PUT_TCE_INDIRECT and
H_STUFF_TCE hypercalls for user space emulated devices such as IBMVIO
devices or emulated PCI. These calls allow adding multiple entries
(up to 512) into the TCE table in one call which saves time on
transition between kernel and user space.

The current implementation of kvmppc_h_stuff_tce() allows it to be
executed in both real and virtual modes so there is one helper.
The kvmppc_rm_h_put_tce_indirect() needs to translate the guest address
to the host address and since the translation is different, there are
2 helpers - one for each mode.

This implements the KVM_CAP_PPC_MULTITCE capability. When present,
the kernel will try handling H_PUT_TCE_INDIRECT and H_STUFF_TCE if these
are enabled by the userspace via KVM_CAP_PPC_ENABLE_HCALL.
If they can not be handled by the kernel, they are passed on to
the user space. The user space still has to have an implementation
for these.

Both HV and PR-syle KVM are supported.

Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2016-02-16 13:44:26 +11:00
Alexey Kardashevskiy 5ee7af1864 KVM: PPC: Move reusable bits of H_PUT_TCE handler to helpers
Upcoming multi-tce support (H_PUT_TCE_INDIRECT/H_STUFF_TCE hypercalls)
will validate TCE (not to have unexpected bits) and IO address
(to be within the DMA window boundaries).

This introduces helpers to validate TCE and IO address. The helpers are
exported as they compile into vmlinux (to work in realmode) and will be
used later by KVM kernel module in virtual mode.

Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2016-02-16 13:44:26 +11:00
Dan Williams ba049e93ae kvm: rename pfn_t to kvm_pfn_t
To date, we have implemented two I/O usage models for persistent memory,
PMEM (a persistent "ram disk") and DAX (mmap persistent memory into
userspace).  This series adds a third, DAX-GUP, that allows DAX mappings
to be the target of direct-i/o.  It allows userspace to coordinate
DMA/RDMA from/to persistent memory.

The implementation leverages the ZONE_DEVICE mm-zone that went into
4.3-rc1 (also discussed at kernel summit) to flag pages that are owned
and dynamically mapped by a device driver.  The pmem driver, after
mapping a persistent memory range into the system memmap via
devm_memremap_pages(), arranges for DAX to distinguish pfn-only versus
page-backed pmem-pfns via flags in the new pfn_t type.

The DAX code, upon seeing a PFN_DEV+PFN_MAP flagged pfn, flags the
resulting pte(s) inserted into the process page tables with a new
_PAGE_DEVMAP flag.  Later, when get_user_pages() is walking ptes it keys
off _PAGE_DEVMAP to pin the device hosting the page range active.
Finally, get_page() and put_page() are modified to take references
against the device driver established page mapping.

Finally, this need for "struct page" for persistent memory requires
memory capacity to store the memmap array.  Given the memmap array for a
large pool of persistent may exhaust available DRAM introduce a
mechanism to allocate the memmap from persistent memory.  The new
"struct vmem_altmap *" parameter to devm_memremap_pages() enables
arch_add_memory() to use reserved pmem capacity rather than the page
allocator.

This patch (of 18):

The core has developed a need for a "pfn_t" type [1].  Move the existing
pfn_t in KVM to kvm_pfn_t [2].

[1]: https://lists.01.org/pipermail/linux-nvdimm/2015-September/002199.html
[2]: https://lists.01.org/pipermail/linux-nvdimm/2015-September/002218.html

Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Paolo Bonzini f36f3f2846 KVM: add "new" argument to kvm_arch_commit_memory_region
This lets the function access the new memory slot without going through
kvm_memslots and id_to_memslot.  It will simplify the code when more
than one address space will be supported.

Unfortunately, the "const"ness of the new argument must be casted
away in two places.  Fixing KVM to accept const struct kvm_memory_slot
pointers would require modifications in pretty much all architectures,
and is left for later.

Reviewed-by: Radim Krcmar <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-05-28 10:42:58 +02:00
Paolo Bonzini 09170a4942 KVM: const-ify uses of struct kvm_userspace_memory_region
Architecture-specific helpers are not supposed to muck with
struct kvm_userspace_memory_region contents.  Add const to
enforce this.

In order to eliminate the only write in __kvm_set_memory_region,
the cleaning of deleted slots is pulled up from update_memslots
to __kvm_set_memory_region.

Reviewed-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp>
Reviewed-by: Radim Krcmar <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-05-26 12:40:13 +02:00
Michael Ellerman e928e9cb36 KVM: PPC: Book3S HV: Add fast real-mode H_RANDOM implementation.
Some PowerNV systems include a hardware random-number generator.
This HWRNG is present on POWER7+ and POWER8 chips and is capable of
generating one 64-bit random number every microsecond.  The random
numbers are produced by sampling a set of 64 unstable high-frequency
oscillators and are almost completely entropic.

PAPR defines an H_RANDOM hypercall which guests can use to obtain one
64-bit random sample from the HWRNG.  This adds a real-mode
implementation of the H_RANDOM hypercall.  This hypercall was
implemented in real mode because the latency of reading the HWRNG is
generally small compared to the latency of a guest exit and entry for
all the threads in the same virtual core.

Userspace can detect the presence of the HWRNG and the H_RANDOM
implementation by querying the KVM_CAP_PPC_HWRNG capability.  The
H_RANDOM hypercall implementation will only be invoked when the guest
does an H_RANDOM hypercall if userspace first enables the in-kernel
H_RANDOM implementation using the KVM_CAP_PPC_ENABLE_HCALL capability.

Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2015-04-21 15:21:29 +02:00
Paul Mackerras c17b98cf60 KVM: PPC: Book3S HV: Remove code for PPC970 processors
This removes the code that was added to enable HV KVM to work
on PPC970 processors.  The PPC970 is an old CPU that doesn't
support virtualizing guest memory.  Removing PPC970 support also
lets us remove the code for allocating and managing contiguous
real-mode areas, the code for the !kvm->arch.using_mmu_notifiers
case, the code for pinning pages of guest memory when first
accessed and keeping track of which pages have been pinned, and
the code for handling H_ENTER hypercalls in virtual mode.

Book3S HV KVM is now supported only on POWER7 and POWER8 processors.
The KVM_CAP_PPC_RMA capability now always returns 0.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-12-17 13:44:03 +01:00
Paolo Bonzini 00c027db0c Patch queue for ppc - 2014-09-24
New awesome things in this release:
 
   - E500: e6500 core support
   - E500: guest and remote debug support
   - Book3S: remote sw breakpoint support
   - Book3S: HV: Minor bugfixes
 
 Alexander Graf (1):
       KVM: PPC: Pass enum to kvmppc_get_last_inst
 
 Bharat Bhushan (8):
       KVM: PPC: BOOKE: allow debug interrupt at "debug level"
       KVM: PPC: BOOKE : Emulate rfdi instruction
       KVM: PPC: BOOKE: Allow guest to change MSR_DE
       KVM: PPC: BOOKE: Clear guest dbsr in userspace exit KVM_EXIT_DEBUG
       KVM: PPC: BOOKE: Guest and hardware visible debug registers are same
       KVM: PPC: BOOKE: Add one reg interface for DBSR
       KVM: PPC: BOOKE: Add one_reg documentation of SPRG9 and DBSR
       KVM: PPC: BOOKE: Emulate debug registers and exception
 
 Madhavan Srinivasan (2):
       powerpc/kvm: support to handle sw breakpoint
       powerpc/kvm: common sw breakpoint instr across ppc
 
 Michael Neuling (1):
       KVM: PPC: Book3S HV: Add register name when loading toc
 
 Mihai Caraman (10):
       powerpc/booke: Restrict SPE exception handlers to e200/e500 cores
       powerpc/booke: Revert SPE/AltiVec common defines for interrupt numbers
       KVM: PPC: Book3E: Increase FPU laziness
       KVM: PPC: Book3e: Add AltiVec support
       KVM: PPC: Make ONE_REG powerpc generic
       KVM: PPC: Move ONE_REG AltiVec support to powerpc
       KVM: PPC: Remove the tasklet used by the hrtimer
       KVM: PPC: Remove shared defines for SPE and AltiVec interrupts
       KVM: PPC: e500mc: Add support for single threaded vcpus on e6500 core
       KVM: PPC: Book3E: Enable e6500 core
 
 Paul Mackerras (2):
       KVM: PPC: Book3S HV: Increase timeout for grabbing secondary threads
       KVM: PPC: Book3S HV: Only accept host PVR value for guest PVR
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.19 (GNU/Linux)
 
 iQIcBAABAgAGBQJUIyyEAAoJECszeR4D/txgiV8P/AnSRcjxrlW+ITsimZezDaj5
 MfFv2ZyQKlVjp4cfzfCTW5otQT/K2rSfJzB/V6l1xGcM/UEO+snmPddokvFLMsp9
 dLvPjZI6ivZu/rjRZ8eqnTQIAwid0K5Yss870Y8YWfRBByKVDs7rRx75gj6q8kek
 jG3wLQQxDYEapkGXiaIcX2Mbf6GAZKNhGf6M5Khn/v3RE0+mNg9J+nffBZXOxEYo
 WDe20KNSuDqDEnWIc82uibTbH1Wnxmetc5jf21DWaquLs9VGbON1X9Myl+aBNQuP
 wDt6D04rgtBZbwyHKsSO/0poK0eIms+5jiW8c+XPO2QOLXQwwNKBNmRKePyk1bt5
 gRxd+u9OGzRGHKwIS1vqHLKCdr5HiTN0uE+nZ+oDWjXVJQRMc8HCx0tWxzZg46yd
 kIIRuDrIQQUH3j2L/PnY3Nx3yKNhg97Ysek0ToIsxlkqczrAUewnXuOj9Ijf+/Cz
 Y3cVsQEhepcO3xyz5uyWJQwmFZkwJVOclzGaNgXKeKl5fkpXwLPxc6vmI2K+hnU9
 TRFoQgbknPxQe2qv9cXeMBFhZwNRKpcYW7w3G81ko/7foVmwP3CjnNulXMKiNuVH
 i8pVd8zxiJuTWVQSksGWuWCxueLmc86L4khSF5YBzg9pid7ajmxcfEDWCQGdN+Fe
 Oh4HUW0860IJYOQRIKJv
 =CR/Z
 -----END PGP SIGNATURE-----

Merge tag 'signed-kvm-ppc-next' of git://github.com/agraf/linux-2.6 into kvm-next

Patch queue for ppc - 2014-09-24

New awesome things in this release:

  - E500: e6500 core support
  - E500: guest and remote debug support
  - Book3S: remote sw breakpoint support
  - Book3S: HV: Minor bugfixes

Alexander Graf (1):
      KVM: PPC: Pass enum to kvmppc_get_last_inst

Bharat Bhushan (8):
      KVM: PPC: BOOKE: allow debug interrupt at "debug level"
      KVM: PPC: BOOKE : Emulate rfdi instruction
      KVM: PPC: BOOKE: Allow guest to change MSR_DE
      KVM: PPC: BOOKE: Clear guest dbsr in userspace exit KVM_EXIT_DEBUG
      KVM: PPC: BOOKE: Guest and hardware visible debug registers are same
      KVM: PPC: BOOKE: Add one reg interface for DBSR
      KVM: PPC: BOOKE: Add one_reg documentation of SPRG9 and DBSR
      KVM: PPC: BOOKE: Emulate debug registers and exception

Madhavan Srinivasan (2):
      powerpc/kvm: support to handle sw breakpoint
      powerpc/kvm: common sw breakpoint instr across ppc

Michael Neuling (1):
      KVM: PPC: Book3S HV: Add register name when loading toc

Mihai Caraman (10):
      powerpc/booke: Restrict SPE exception handlers to e200/e500 cores
      powerpc/booke: Revert SPE/AltiVec common defines for interrupt numbers
      KVM: PPC: Book3E: Increase FPU laziness
      KVM: PPC: Book3e: Add AltiVec support
      KVM: PPC: Make ONE_REG powerpc generic
      KVM: PPC: Move ONE_REG AltiVec support to powerpc
      KVM: PPC: Remove the tasklet used by the hrtimer
      KVM: PPC: Remove shared defines for SPE and AltiVec interrupts
      KVM: PPC: e500mc: Add support for single threaded vcpus on e6500 core
      KVM: PPC: Book3E: Enable e6500 core

Paul Mackerras (2):
      KVM: PPC: Book3S HV: Increase timeout for grabbing secondary threads
      KVM: PPC: Book3S HV: Only accept host PVR value for guest PVR
2014-09-24 23:19:45 +02:00
Andres Lagar-Cavilla 5712846808 kvm: Fix page ageing bugs
1. We were calling clear_flush_young_notify in unmap_one, but we are
within an mmu notifier invalidate range scope. The spte exists no more
(due to range_start) and the accessed bit info has already been
propagated (due to kvm_pfn_set_accessed). Simply call
clear_flush_young.

2. We clear_flush_young on a primary MMU PMD, but this may be mapped
as a collection of PTEs by the secondary MMU (e.g. during log-dirty).
This required expanding the interface of the clear_flush_young mmu
notifier, so a lot of code has been trivially touched.

3. In the absence of shadow_accessed_mask (e.g. EPT A bit), we emulate
the access bit by blowing the spte. This requires proper synchronizing
with MMU notifier consumers, like every other removal of spte's does.

Signed-off-by: Andres Lagar-Cavilla <andreslc@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-09-24 14:07:58 +02:00
Madhavan Srinivasan a59c1d9e60 powerpc/kvm: support to handle sw breakpoint
This patch adds kernel side support for software breakpoint.
Design is that, by using an illegal instruction, we trap to hypervisor
via Emulation Assistance interrupt, where we check for the illegal instruction
and accordingly we return to Host or Guest. Patch also adds support for
software breakpoint in PR KVM.

Signed-off-by: Madhavan Srinivasan <maddy@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-09-22 10:11:35 +02:00
Mihai Caraman d02d4d156e KVM: PPC: Remove the tasklet used by the hrtimer
Powerpc timer implementation is a copycat version of s390. Now that they removed
the tasklet with commit ea74c0ea1b follow this
optimization.

Signed-off-by: Mihai Caraman <mihai.caraman@freescale.com>
Signed-off-by: Bogdan Purcareata <bogdan.purcareata@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-09-22 10:11:34 +02:00
Bharat Bhushan 2f699a59f3 KVM: PPC: BOOKE: Emulate debug registers and exception
This patch emulates debug registers and debug exception
to support guest using debug resource. This enables running
gdb/kgdb etc in guest.

On BOOKE architecture we cannot share debug resources between QEMU and
guest because:
    When QEMU is using debug resources then debug exception must
    be always enabled. To achieve this we set MSR_DE and also set
    MSRP_DEP so guest cannot change MSR_DE.

    When emulating debug resource for guest we want guest
    to control MSR_DE (enable/disable debug interrupt on need).

    So above mentioned two configuration cannot be supported
    at the same time. So the result is that we cannot share
    debug resources between QEMU and Guest on BOOKE architecture.

In the current design QEMU gets priority over guest, this means that if
QEMU is using debug resources then guest cannot use them and if guest is
using debug resource then QEMU can overwrite them.

Signed-off-by: Bharat Bhushan <Bharat.Bhushan@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-09-22 10:11:33 +02:00
Bharat Bhushan 5a484c7c1e KVM: PPC: BOOKEHV: rename e500hv_spr to bookehv_spr
This are not specific to e500hv but applicable for bookehv
(As per comment from Scott Wood on my patch
"kvm: ppc: bookehv: Added wrapper macros for shadow registers")

Signed-off-by: Bharat Bhushan <Bharat.Bhushan@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-30 11:39:52 +02:00
Alexander Graf ce91ddc471 KVM: PPC: Remove DCR handling
DCR handling was only needed for 440 KVM. Since we removed it, we can also
remove handling of DCR accesses.

Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 19:29:15 +02:00
Alexander Graf 8de12015ff KVM: PPC: Expose helper functions for data/inst faults
We're going to implement guest code interpretation in KVM for some rare
corner cases. This code needs to be able to inject data and instruction
faults into the guest when it encounters them.

Expose generic APIs to do this in a reasonably subarch agnostic fashion.

Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 18:30:18 +02:00
Alexander Graf d69614a295 KVM: PPC: Separate loadstore emulation from priv emulation
Today the instruction emulator can get called via 2 separate code paths. It
can either be called by MMIO emulation detection code or by privileged
instruction traps.

This is bad, as both code paths prepare the environment differently. For MMIO
emulation we already know the virtual address we faulted on, so instructions
there don't have to actually fetch that information.

Split out the two separate use cases into separate files.

Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 18:30:10 +02:00
Alexander Graf 35c4a7330d KVM: PPC: Move kvmppc_ld/st to common code
We have enough common infrastructure now to resolve GVA->GPA mappings at
runtime. With this we can move our book3s specific helpers to load / store
in guest virtual address space to common code as well.

Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 16:27:12 +02:00
Alexander Graf 7d15c06f1a KVM: PPC: Implement kvmppc_xlate for all targets
We have a nice API to find the translated GPAs of a GVA including protection
flags. So far we only use it on Book3S, but there's no reason the same shouldn't
be used on BookE as well.

Implement a kvmppc_xlate() version for BookE and clean it up to make it more
readable in general.

Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 16:15:50 +02:00
Mihai Caraman 51f047261e KVM: PPC: Allow kvmppc_get_last_inst() to fail
On book3e, guest last instruction is read on the exit path using load
external pid (lwepx) dedicated instruction. This load operation may fail
due to TLB eviction and execute-but-not-read entries.

This patch lay down the path for an alternative solution to read the guest
last instruction, by allowing kvmppc_get_lat_inst() function to fail.
Architecture specific implmentations of kvmppc_load_last_inst() may read
last guest instruction and instruct the emulation layer to re-execute the
guest in case of failure.

Make kvmppc_get_last_inst() definition common between architectures.

Signed-off-by: Mihai Caraman <mihai.caraman@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 15:23:14 +02:00
Bharat Bhushan 34f754b99e kvm: ppc: Add SPRN_EPR get helper function
kvmppc_set_epr() is already defined in asm/kvm_ppc.h, So
rename and move get_epr helper function to same file.

Signed-off-by: Bharat Bhushan <Bharat.Bhushan@freescale.com>
[agraf: remove duplicate return]
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 15:23:13 +02:00
Bharat Bhushan dc168549d9 kvm: ppc: booke: Add shared struct helpers of SPRN_ESR
Add and use kvmppc_set_esr() and kvmppc_get_esr() helper functions

Signed-off-by: Bharat Bhushan <Bharat.Bhushan@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 15:23:12 +02:00
Bharat Bhushan 1dc0c5b88c kvm: ppc: bookehv: Added wrapper macros for shadow registers
There are shadow registers like, GSPRG[0-3], GSRR0, GSRR1 etc on
BOOKE-HV and these shadow registers are guest accessible.
So these shadow registers needs to be updated on BOOKE-HV.
This patch adds new macro for get/set helper of shadow register .

Signed-off-by: Bharat Bhushan <Bharat.Bhushan@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 15:23:11 +02:00
Paul Mackerras ae2113a4f1 KVM: PPC: Book3S: Allow only implemented hcalls to be enabled or disabled
This adds code to check that when the KVM_CAP_PPC_ENABLE_HCALL
capability is used to enable or disable in-kernel handling of an
hcall, that the hcall is actually implemented by the kernel.
If not an EINVAL error is returned.

This also checks the default-enabled list of hcalls and prints a
warning if any hcall there is not actually implemented.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 15:22:18 +02:00
Linus Torvalds c5aec4c76a Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc
Pull powerpc updates from Ben Herrenschmidt:
 "Here is the bulk of the powerpc changes for this merge window.  It got
  a bit delayed in part because I wasn't paying attention, and in part
  because I discovered I had a core PCI change without a PCI maintainer
  ack in it.  Bjorn eventually agreed it was ok to merge it though we'll
  probably improve it later and I didn't want to rebase to add his ack.

  There is going to be a bit more next week, essentially fixes that I
  still want to sort through and test.

  The biggest item this time is the support to build the ppc64 LE kernel
  with our new v2 ABI.  We previously supported v2 userspace but the
  kernel itself was a tougher nut to crack.  This is now sorted mostly
  thanks to Anton and Rusty.

  We also have a fairly big series from Cedric that add support for
  64-bit LE zImage boot wrapper.  This was made harder by the fact that
  traditionally our zImage wrapper was always 32-bit, but our new LE
  toolchains don't really support 32-bit anymore (it's somewhat there
  but not really "supported") so we didn't want to rely on it.  This
  meant more churn that just endian fixes.

  This brings some more LE bits as well, such as the ability to run in
  LE mode without a hypervisor (ie. under OPAL firmware) by doing the
  right OPAL call to reinitialize the CPU to take HV interrupts in the
  right mode and the usual pile of endian fixes.

  There's another series from Gavin adding EEH improvements (one day we
  *will* have a release with less than 20 EEH patches, I promise!).

  Another highlight is the support for the "Split core" functionality on
  P8 by Michael.  This allows a P8 core to be split into "sub cores" of
  4 threads which allows the subcores to run different guests under KVM
  (the HW still doesn't support a partition per thread).

  And then the usual misc bits and fixes ..."

[ Further delayed by gmail deciding that BenH is a dirty spammer.
  Google knows.  ]

* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc: (155 commits)
  powerpc/powernv: Add missing include to LPC code
  selftests/powerpc: Test the THP bug we fixed in the previous commit
  powerpc/mm: Check paca psize is up to date for huge mappings
  powerpc/powernv: Pass buffer size to OPAL validate flash call
  powerpc/pseries: hcall functions are exported to modules, need _GLOBAL_TOC()
  powerpc: Exported functions __clear_user and copy_page use r2 so need _GLOBAL_TOC()
  powerpc/powernv: Set memory_block_size_bytes to 256MB
  powerpc: Allow ppc_md platform hook to override memory_block_size_bytes
  powerpc/powernv: Fix endian issues in memory error handling code
  powerpc/eeh: Skip eeh sysfs when eeh is disabled
  powerpc: 64bit sendfile is capped at 2GB
  powerpc/powernv: Provide debugfs access to the LPC bus via OPAL
  powerpc/serial: Use saner flags when creating legacy ports
  powerpc: Add cpu family documentation
  powerpc/xmon: Fix up xmon format strings
  powerpc/powernv: Add calls to support little endian host
  powerpc: Document sysfs DSCR interface
  powerpc: Fix regression of per-CPU DSCR setting
  powerpc: Split __SYSFS_SPRSETUP macro
  arch: powerpc/fadump: Cleaning up inconsistent NULL checks
  ...
2014-06-10 18:54:22 -07:00
Alexander Graf 5deb8e7ad8 KVM: PPC: Make shared struct aka magic page guest endian
The shared (magic) page is a data structure that contains often used
supervisor privileged SPRs accessible via memory to the user to reduce
the number of exits we have to take to read/write them.

When we actually share this structure with the guest we have to maintain
it in guest endianness, because some of the patch tricks only work with
native endian load/store operations.

Since we only share the structure with either host or guest in little
endian on book3s_64 pr mode, we don't have to worry about booke or book3s hv.

For booke, the shared struct stays big endian. For book3s_64 hv we maintain
the struct in host native endian, since it never gets shared with the guest.

For book3s_64 pr we introduce a variable that tells us which endianness the
shared struct is in and route every access to it through helper inline
functions that evaluate this variable.

Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-30 14:26:21 +02:00
Michael Ellerman 441c19c8a2 powerpc/kvm/book3s_hv: Rework the secondary inhibit code
As part of the support for split core on POWER8, we want to be able to
block splitting of the core while KVM VMs are active.

The logic to do that would be exactly the same as the code we currently
have for inhibiting onlining of secondaries.

Instead of adding an identical mechanism to block split core, rework the
secondary inhibit code to be a "HV KVM is active" check. We can then use
that in both the cpu hotplug code and the upcoming split core code.

Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Michael Neuling <mikey@neuling.org>
Acked-by: Alexander Graf <agraf@suse.de>
Acked-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2014-05-28 13:35:34 +10:00
Laurent Dufour 69e9fbb278 KVM: PPC: Book3S: Introduce hypervisor call H_GET_TCE
This introduces the H_GET_TCE hypervisor call, which is basically the
reverse of H_PUT_TCE, as defined in the Power Architecture Platform
Requirements (PAPR).

The hcall H_GET_TCE is required by the kdump kernel, which uses it to
retrieve TCEs set up by the previous (panicked) kernel.

Signed-off-by: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2014-03-26 23:34:27 +11:00
Scott Wood 6c85f52b10 kvm/ppc: IRQ disabling cleanup
Simplify the handling of lazy EE by going directly from fully-enabled
to hard-disabled.  This replaces the lazy_irq_pending() check
(including its misplaced kvm_guest_exit() call).

As suggested by Tiejun Chen, move the interrupt disabling into
kvmppc_prepare_to_enter() rather than have each caller do it.  Also
move the IRQ enabling on heavyweight exit into
kvmppc_prepare_to_enter().

Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-27 16:00:55 +01:00
Cédric Le Goater 736017752d KVM: PPC: Book3S: MMIO emulation support for little endian guests
MMIO emulation reads the last instruction executed by the guest
and then emulates. If the guest is running in Little Endian order,
or more generally in a different endian order of the host, the
instruction needs to be byte-swapped before being emulated.

This patch adds a helper routine which tests the endian order of
the host and the guest in order to decide whether a byteswap is
needed or not. It is then used to byteswap the last instruction
of the guest in the endian order of the host before MMIO emulation
is performed.

Finally, kvmppc_handle_load() of kvmppc_handle_store() are modified
to reverse the endianness of the MMIO if required.

Signed-off-by: Cédric Le Goater <clg@fr.ibm.com>
[agraf: add booke handling]
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-27 16:00:39 +01:00
Aneesh Kumar K.V a78b55d1c0 kvm: powerpc: book3s: drop is_hv_enabled
drop is_hv_enabled, because that should not be a callback property

Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-10-17 18:43:34 +02:00
Aneesh Kumar K.V cbbc58d4fd kvm: powerpc: book3s: Allow the HV and PR selection per virtual machine
This moves the kvmppc_ops callbacks to be a per VM entity. This
enables us to select HV and PR mode when creating a VM. We also
allow both kvm-hv and kvm-pr kernel module to be loaded. To
achieve this we move /dev/kvm ownership to kvm.ko module. Depending on
which KVM mode we select during VM creation we take a reference
count on respective module

Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
[agraf: fix coding style]
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-10-17 18:42:36 +02:00
Aneesh Kumar K.V 5587027ce9 kvm: Add struct kvm arg to memslot APIs
We will use that in the later patch to find the kvm ops handler

Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-10-17 15:49:23 +02:00
Aneesh Kumar K.V 699cc87641 kvm: powerpc: book3s: Add is_hv_enabled to kvmppc_ops
This help us to identify whether we are running with hypervisor mode KVM
enabled. The change is needed so that we can have both HV and PR kvm
enabled in the same kernel.

If both HV and PR KVM are included, interrupts come in to the HV version
of the kvmppc_interrupt code, which then jumps to the PR handler,
renamed to kvmppc_interrupt_pr, if the guest is a PR guest.

Allowing both PR and HV in the same kernel required some changes to
kvm_dev_ioctl_check_extension(), since the values returned now can't
be selected with #ifdefs as much as previously. We look at is_hv_enabled
to return the right value when checking for capabilities.For capabilities that
are only provided by HV KVM, we return the HV value only if
is_hv_enabled is true. For capabilities provided by PR KVM but not HV,
we return the PR value only if is_hv_enabled is false.

NOTE: in later patch we replace is_hv_enabled with a static inline
function comparing kvm_ppc_ops

Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-10-17 15:29:09 +02:00
Aneesh Kumar K.V 3a167beac0 kvm: powerpc: Add kvmppc_ops callback
This patch add a new callback kvmppc_ops. This will help us in enabling
both HV and PR KVM together in the same kernel. The actual change to
enable them together is done in the later patch in the series.

Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
[agraf: squash in booke changes]
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-10-17 15:24:26 +02:00
Aneesh Kumar K.V 9975f5e369 kvm: powerpc: book3s: Add a new config variable CONFIG_KVM_BOOK3S_HV_POSSIBLE
This help ups to select the relevant code in the kernel code
when we later move HV and PR bits as seperate modules. The patch
also makes the config options for PR KVM selectable

Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-10-17 15:18:28 +02:00
Scott Wood 5f1c248f52 kvm/ppc: Call trace_hardirqs_on before entry
Currently this is only being done on 64-bit.  Rather than just move it
out of the 64-bit ifdef, move it to kvm_lazy_ee_enable() so that it is
consistent with lazy ee state, and so that we don't track more host
code as interrupts-enabled than necessary.

Rename kvm_lazy_ee_enable() to kvm_fix_ee_before_entry() to reflect
that this function now has a role on 32-bit as well.

Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-07-11 00:51:28 +02:00
Aneesh Kumar K.V 6c45b81098 powerpc/kvm: Contiguous memory allocator based RMA allocation
Older version of power architecture use Real Mode Offset register and Real Mode Limit
Selector for mapping guest Real Mode Area. The guest RMA should be physically
contigous since we use the range when address translation is not enabled.

This patch switch RMA allocation code to use contigous memory allocator. The patch
also remove the the linear allocator which not used any more

Acked-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-07-08 16:20:20 +02:00
Aneesh Kumar K.V fa61a4e376 powerpc/kvm: Contiguous memory allocator based hash page table allocation
Powerpc architecture uses a hash based page table mechanism for mapping virtual
addresses to physical address. The architecture require this hash page table to
be physically contiguous. With KVM on Powerpc currently we use early reservation
mechanism for allocating guest hash page table. This implies that we need to
reserve a big memory region to ensure we can create large number of guest
simultaneously with KVM on Power. Another disadvantage is that the reserved memory
is not available to rest of the subsystems and and that implies we limit the total
available memory in the host.

This patch series switch the guest hash page table allocation to use
contiguous memory allocator.

Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-07-08 16:19:58 +02:00
Paul Mackerras 5975a2e095 KVM: PPC: Book3S: Add API for in-kernel XICS emulation
This adds the API for userspace to instantiate an XICS device in a VM
and connect VCPUs to it.  The API consists of a new device type for
the KVM_CREATE_DEVICE ioctl, a new capability KVM_CAP_IRQ_XICS, which
functions similarly to KVM_CAP_IRQ_MPIC, and the KVM_IRQ_LINE ioctl,
which is used to assert and deassert interrupt inputs of the XICS.

The XICS device has one attribute group, KVM_DEV_XICS_GRP_SOURCES.
Each attribute within this group corresponds to the state of one
interrupt source.  The attribute number is the same as the interrupt
source number.

This does not support irq routing or irqfd yet.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-05-02 15:28:36 +02:00
Paul Mackerras 8b78645c93 KVM: PPC: Book3S: Facilities to save/restore XICS presentation ctrler state
This adds the ability for userspace to save and restore the state
of the XICS interrupt presentation controllers (ICPs) via the
KVM_GET/SET_ONE_REG interface.  Since there is one ICP per vcpu, we
simply define a new 64-bit register in the ONE_REG space for the ICP
state.  The state includes the CPU priority setting, the pending IPI
priority, and the priority and source number of any pending external
interrupt.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-04-26 20:27:34 +02:00
Paul Mackerras d19bd86204 KVM: PPC: Book3S: Add support for ibm,int-on/off RTAS calls
This adds support for the ibm,int-on and ibm,int-off RTAS calls to the
in-kernel XICS emulation and corrects the handling of the saved
priority by the ibm,set-xive RTAS call.  With this, ibm,int-off sets
the specified interrupt's priority in its saved_priority field and
sets the priority to 0xff (the least favoured value).  ibm,int-on
restores the saved_priority to the priority field, and ibm,set-xive
sets both the priority and the saved_priority to the specified
priority value.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-04-26 20:27:33 +02:00
Benjamin Herrenschmidt 54695c3088 KVM: PPC: Book3S HV: Speed up wakeups of CPUs on HV KVM
Currently, we wake up a CPU by sending a host IPI with
smp_send_reschedule() to thread 0 of that core, which will take all
threads out of the guest, and cause them to re-evaluate their
interrupt status on the way back in.

This adds a mechanism to differentiate real host IPIs from IPIs sent
by KVM for guest threads to poke each other, in order to target the
guest threads precisely when possible and avoid that global switch of
the core to host state.

We then use this new facility in the in-kernel XICS code.

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-04-26 20:27:31 +02:00
Benjamin Herrenschmidt bc5ad3f370 KVM: PPC: Book3S: Add kernel emulation for the XICS interrupt controller
This adds in-kernel emulation of the XICS (eXternal Interrupt
Controller Specification) interrupt controller specified by PAPR, for
both HV and PR KVM guests.

The XICS emulation supports up to 1048560 interrupt sources.
Interrupt source numbers below 16 are reserved; 0 is used to mean no
interrupt and 2 is used for IPIs.  Internally these are represented in
blocks of 1024, called ICS (interrupt controller source) entities, but
that is not visible to userspace.

Each vcpu gets one ICP (interrupt controller presentation) entity,
used to store the per-vcpu state such as vcpu priority, pending
interrupt state, IPI request, etc.

This does not include any API or any way to connect vcpus to their
ICP state; that will be added in later patches.

This is based on an initial implementation by Michael Ellerman
<michael@ellerman.id.au> reworked by Benjamin Herrenschmidt and
Paul Mackerras.

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix typo, add dependency on !KVM_MPIC]
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-04-26 20:27:30 +02:00
Michael Ellerman 8e591cb720 KVM: PPC: Book3S: Add infrastructure to implement kernel-side RTAS calls
For pseries machine emulation, in order to move the interrupt
controller code to the kernel, we need to intercept some RTAS
calls in the kernel itself.  This adds an infrastructure to allow
in-kernel handlers to be registered for RTAS services by name.
A new ioctl, KVM_PPC_RTAS_DEFINE_TOKEN, then allows userspace to
associate token values with those service names.  Then, when the
guest requests an RTAS service with one of those token values, it
will be handled by the relevant in-kernel handler rather than being
passed up to userspace as at present.

Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix warning]
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-04-26 20:27:29 +02:00
Scott Wood eb1e4f43e0 kvm/ppc/mpic: add KVM_CAP_IRQ_MPIC
Enabling this capability connects the vcpu to the designated in-kernel
MPIC.  Using explicit connections between vcpus and irqchips allows
for flexibility, but the main benefit at the moment is that it
simplifies the code -- KVM doesn't need vm-global state to remember
which MPIC object is associated with this vm, and it doesn't need to
care about ordering between irqchip creation and vcpu creation.

Signed-off-by: Scott Wood <scottwood@freescale.com>
[agraf: add stub functions for kvmppc_mpic_{dis,}connect_vcpu]
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-04-26 20:27:24 +02:00
Scott Wood 5df554ad5b kvm/ppc/mpic: in-kernel MPIC emulation
Hook the MPIC code up to the KVM interfaces, add locking, etc.

Signed-off-by: Scott Wood <scottwood@freescale.com>
[agraf: add stub function for kvmppc_mpic_set_epr, non-booke, 64bit]
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-04-26 20:27:23 +02:00
Bharat Bhushan c402a3f457 Rename EMULATE_DO_PAPR to EMULATE_EXIT_USER
Instruction emulation return EMULATE_DO_PAPR when it requires
exit to userspace on book3s. Similar return is required
for booke. EMULATE_DO_PAPR reads out to be confusing so it is
renamed to EMULATE_EXIT_USER.

Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-04-26 20:27:03 +02:00
Bharat Bhushan adccf65ca4 KVM: PPC: cache flush for kernel managed pages
Kernel can only access pages which maps as memory.
So flush only the valid kernel pages.

Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-04-26 20:27:01 +02:00
Paul Mackerras 4fe27d2add KVM: PPC: Remove unused argument to kvmppc_core_dequeue_external
Currently kvmppc_core_dequeue_external() takes a struct kvm_interrupt *
argument and does nothing with it, in any of its implementations.
This removes it in order to make things easier for forthcoming
in-kernel interrupt controller emulation code.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-03-22 01:21:17 +01:00
Takuya Yoshikawa 8482644aea KVM: set_memory_region: Refactor commit_memory_region()
This patch makes the parameter old a const pointer to the old memory
slot and adds a new parameter named change to know the change being
requested: the former is for removing extra copying and the latter is
for cleaning up the code.

Signed-off-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2013-03-04 20:21:08 -03:00
Bharat Bhushan 1d542d9c2b KVM: PPC: booke: Allow multiple exception types
Current kvmppc_booke_handlers uses the same macro (KVM_HANDLER) and
all handlers are considered to be the same size. This will not be
the case if we want to use different macros for different handlers.

This patch improves the kvmppc_booke_handler so that it can
support different macros for different handlers.

Signed-off-by: Liu Yu <yu.liu@freescale.com>
[bharat.bhushan@freescale.com: Substantial changes]
Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-02-13 12:56:40 +01:00
Alexander Graf 1c81063655 KVM: PPC: BookE: Implement EPR exit
The External Proxy Facility in FSL BookE chips allows the interrupt
controller to automatically acknowledge an interrupt as soon as a
core gets its pending external interrupt delivered.

Today, user space implements the interrupt controller, so we need to
check on it during such a cycle.

This patch implements logic for user space to enable EPR exiting,
disable EPR exiting and EPR exiting itself, so that user space can
acknowledge an interrupt when an external interrupt has successfully
been delivered into the guest vcpu.

Signed-off-by: Alexander Graf <agraf@suse.de>
2013-01-10 13:42:31 +01:00
Alexander Graf 50c7bb80b5 KVM: PPC: Book3S: PR: Enable alternative instruction for SC 1
When running on top of pHyp, the hypercall instruction "sc 1" goes
straight into pHyp without trapping in supervisor mode.

So if we want to support PAPR guest in this configuration we need to
add a second way of accessing PAPR hypercalls, preferably with the
exact same semantics except for the instruction.

So let's overlay an officially reserved instruction and emulate PAPR
hypercalls whenever we hit that one.

Signed-off-by: Alexander Graf <agraf@suse.de>
2013-01-10 13:15:08 +01:00
Mihai Caraman 8823a8fd0d KVM: PPC: Mask ea's high 32-bits in 32/64 instr emulation
Mask high 32 bits of effective address in emulation layer for guests running
in 32-bit mode.

Signed-off-by: Mihai Caraman <mihai.caraman@freescale.com>
[agraf: fix indent]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-12-06 01:34:13 +01:00
Mihai Caraman 7cdd7a95c6 KVM: PPC: e500: Add emulation helper for getting instruction ea
Add emulation helper for getting instruction ea and refactor tlb instruction
emulation to use it.

Signed-off-by: Mihai Caraman <mihai.caraman@freescale.com>
[agraf: keep rt variable around]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-12-06 01:34:12 +01:00
Paul Mackerras a2932923cc KVM: PPC: Book3S HV: Provide a method for userspace to read and write the HPT
A new ioctl, KVM_PPC_GET_HTAB_FD, returns a file descriptor.  Reads on
this fd return the contents of the HPT (hashed page table), writes
create and/or remove entries in the HPT.  There is a new capability,
KVM_CAP_PPC_HTAB_FD, to indicate the presence of the ioctl.  The ioctl
takes an argument structure with the index of the first HPT entry to
read out and a set of flags.  The flags indicate whether the user is
intending to read or write the HPT, and whether to return all entries
or only the "bolted" entries (those with the bolted bit, 0x10, set in
the first doubleword).

This is intended for use in implementing qemu's savevm/loadvm and for
live migration.  Therefore, on reads, the first pass returns information
about all HPTEs (or all bolted HPTEs).  When the first pass reaches the
end of the HPT, it returns from the read.  Subsequent reads only return
information about HPTEs that have changed since they were last read.
A read that finds no changed HPTEs in the HPT following where the last
read finished will return 0 bytes.

The format of the data provides a simple run-length compression of the
invalid entries.  Each block of data starts with a header that indicates
the index (position in the HPT, which is just an array), the number of
valid entries starting at that index (may be zero), and the number of
invalid entries following those valid entries.  The valid entries, 16
bytes each, follow the header.  The invalid entries are not explicitly
represented.

Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix documentation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-12-06 01:33:57 +01:00
Paul Mackerras 55b665b026 KVM: PPC: Book3S HV: Provide a way for userspace to get/set per-vCPU areas
The PAPR paravirtualization interface lets guests register three
different types of per-vCPU buffer areas in its memory for communication
with the hypervisor.  These are called virtual processor areas (VPAs).
Currently the hypercalls to register and unregister VPAs are handled
by KVM in the kernel, and userspace has no way to know about or save
and restore these registrations across a migration.

This adds "register" codes for these three areas that userspace can
use with the KVM_GET/SET_ONE_REG ioctls to see what addresses have
been registered, and to register or unregister them.  This will be
needed for guest hibernation and migration, and is also needed so
that userspace can unregister them on reset (otherwise we corrupt
guest memory after reboot by writing to the VPAs registered by the
previous kernel).

The "register" for the VPA is a 64-bit value containing the address,
since the length of the VPA is fixed.  The "registers" for the SLB
shadow buffer and dispatch trace log (DTL) are 128 bits long,
consisting of the guest physical address in the high (first) 64 bits
and the length in the low 64 bits.

This also fixes a bug where we were calling init_vpa unconditionally,
leading to an oops when unregistering the VPA.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-10-05 23:38:55 +02:00
Paul Mackerras a8bd19ef4d KVM: PPC: Book3S: Get/set guest FP regs using the GET/SET_ONE_REG interface
This enables userspace to get and set all the guest floating-point
state using the KVM_[GS]ET_ONE_REG ioctls.  The floating-point state
includes all of the traditional floating-point registers and the
FPSCR (floating point status/control register), all the VMX/Altivec
vector registers and the VSCR (vector status/control register), and
on POWER7, the vector-scalar registers (note that each FP register
is the high-order half of the corresponding VSR).

Most of these are implemented in common Book 3S code, except for VSX
on POWER7.  Because HV and PR differ in how they store the FP and VSX
registers on POWER7, the code for these cases is not common.  On POWER7,
the FP registers are the upper halves of the VSX registers vsr0 - vsr31.
PR KVM stores vsr0 - vsr31 in two halves, with the upper halves in the
arch.fpr[] array and the lower halves in the arch.vsr[] array, whereas
HV KVM on POWER7 stores the whole VSX register in arch.vsr[].

Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix whitespace, vsx compilation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-10-05 23:38:54 +02:00
Paul Mackerras a136a8bdc0 KVM: PPC: Book3S: Get/set guest SPRs using the GET/SET_ONE_REG interface
This enables userspace to get and set various SPRs (special-purpose
registers) using the KVM_[GS]ET_ONE_REG ioctls.  With this, userspace
can get and set all the SPRs that are part of the guest state, either
through the KVM_[GS]ET_REGS ioctls, the KVM_[GS]ET_SREGS ioctls, or
the KVM_[GS]ET_ONE_REG ioctls.

The SPRs that are added here are:

- DABR:  Data address breakpoint register
- DSCR:  Data stream control register
- PURR:  Processor utilization of resources register
- SPURR: Scaled PURR
- DAR:   Data address register
- DSISR: Data storage interrupt status register
- AMR:   Authority mask register
- UAMOR: User authority mask override register
- MMCR0, MMCR1, MMCRA: Performance monitor unit control registers
- PMC1..PMC8: Performance monitor unit counter registers

In order to reduce code duplication between PR and HV KVM code, this
moves the kvm_vcpu_ioctl_[gs]et_one_reg functions into book3s.c and
centralizes the copying between user and kernel space there.  The
registers that are handled differently between PR and HV, and those
that exist only in one flavor, are handled in kvmppc_[gs]et_one_reg()
functions that are specific to each flavor.

Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: minimal style fixes]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-10-05 23:38:54 +02:00
Paul Mackerras dfe49dbd1f KVM: PPC: Book3S HV: Handle memory slot deletion and modification correctly
This adds an implementation of kvm_arch_flush_shadow_memslot for
Book3S HV, and arranges for kvmppc_core_commit_memory_region to
flush the dirty log when modifying an existing slot.  With this,
we can handle deletion and modification of memory slots.

kvm_arch_flush_shadow_memslot calls kvmppc_core_flush_memslot, which
on Book3S HV now traverses the reverse map chains to remove any HPT
(hashed page table) entries referring to pages in the memslot.  This
gets called by generic code whenever deleting a memslot or changing
the guest physical address for a memslot.

We flush the dirty log in kvmppc_core_commit_memory_region for
consistency with what x86 does.  We only need to flush when an
existing memslot is being modified, because for a new memslot the
rmap array (which stores the dirty bits) is all zero, meaning that
every page is considered clean already, and when deleting a memslot
we obviously don't care about the dirty bits any more.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-10-05 23:38:51 +02:00
Paul Mackerras a66b48c3a3 KVM: PPC: Move kvm->arch.slot_phys into memslot.arch
Now that we have an architecture-specific field in the kvm_memory_slot
structure, we can use it to store the array of page physical addresses
that we need for Book3S HV KVM on PPC970 processors.  This reduces the
size of struct kvm_arch for Book3S HV, and also reduces the size of
struct kvm_arch_memory_slot for other PPC KVM variants since the fields
in it are now only compiled in for Book3S HV.

This necessitates making the kvm_arch_create_memslot and
kvm_arch_free_memslot operations specific to each PPC KVM variant.
That in turn means that we now don't allocate the rmap arrays on
Book3S PR and Book E.

Since we now unpin pages and free the slot_phys array in
kvmppc_core_free_memslot, we no longer need to do it in
kvmppc_core_destroy_vm, since the generic code takes care to free
all the memslots when destroying a VM.

We now need the new memslot to be passed in to
kvmppc_core_prepare_memory_region, since we need to initialize its
arch.slot_phys member on Book3S HV.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-10-05 23:38:51 +02:00
Bharat Bhushan f61c94bb99 KVM: PPC: booke: Add watchdog emulation
This patch adds the watchdog emulation in KVM. The watchdog
emulation is enabled by KVM_ENABLE_CAP(KVM_CAP_PPC_BOOKE_WATCHDOG) ioctl.
The kernel timer are used for watchdog emulation and emulates
h/w watchdog state machine. On watchdog timer expiry, it exit to QEMU
if TCR.WRC is non ZERO. QEMU can reset/shutdown etc depending upon how
it is configured.

Signed-off-by: Liu Yu <yu.liu@freescale.com>
Signed-off-by: Scott Wood <scottwood@freescale.com>
[bharat.bhushan@freescale.com: reworked patch]
Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com>
[agraf: adjust to new request framework]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-10-05 23:38:47 +02:00
Alexander Graf 7c973a2ebb KVM: PPC: Add return value to core_check_requests
Requests may want to tell us that we need to go back into host state,
so add a return value for the checks.

Signed-off-by: Alexander Graf <agraf@suse.de>
2012-10-05 23:38:46 +02:00
Alexander Graf bd2be6836e KVM: PPC: Book3S: PR: Rework irq disabling
Today, we disable preemption while inside guest context, because we need
to expose to the world that we are not in a preemptible context. However,
during that time we already have interrupts disabled, which would indicate
that we are in a non-preemptible context.

The reason the checks for irqs_disabled() fail for us though is that we
manually control hard IRQs and ignore all the lazy EE framework. Let's
stop doing that. Instead, let's always use lazy EE to indicate when we
want to disable IRQs, but do a special final switch that gets us into
EE disabled, but soft enabled state. That way when we get back out of
guest state, we are immediately ready to process interrupts.

This simplifies the code drastically and reduces the time that we appear
as preempt disabled.

Signed-off-by: Alexander Graf <agraf@suse.de>
2012-10-05 23:38:45 +02:00
Alexander Graf 03d25c5bd5 KVM: PPC: Use same kvmppc_prepare_to_enter code for booke and book3s_pr
We need to do the same things when preparing to enter a guest for booke and
book3s_pr cores. Fold the generic code into a generic function that both call.

Signed-off-by: Alexander Graf <agraf@suse.de>
2012-10-05 23:38:42 +02:00
Alexander Graf 862d31f788 KVM: PPC: E500: Implement MMU notifiers
The e500 target has lived without mmu notifiers ever since it got
introduced, but fails for the user space check on them with hugetlbfs.

So in order to get that one working, implement mmu notifiers in a
reasonably dumb fashion and be happy. On embedded hardware, we almost
never end up with mmu notifier calls, since most people don't overcommit.

Signed-off-by: Alexander Graf <agraf@suse.de>
2012-10-05 23:38:41 +02:00
Alexander Graf 249ba1ee0f KVM: PPC: Add cache flush on page map
When we map a page that wasn't icache cleared before, do so when first
mapping it in KVM using the same information bits as the Linux mapping
logic. That way we are 100% sure that any page we map does not have stale
entries in the icache.

Signed-off-by: Alexander Graf <agraf@suse.de>
2012-08-16 14:14:53 +02:00
Paul Mackerras 32fad281c0 KVM: PPC: Book3S HV: Make the guest hash table size configurable
This adds a new ioctl to enable userspace to control the size of the guest
hashed page table (HPT) and to clear it out when resetting the guest.
The KVM_PPC_ALLOCATE_HTAB ioctl is a VM ioctl and takes as its parameter
a pointer to a u32 containing the desired order of the HPT (log base 2
of the size in bytes), which is updated on successful return to the
actual order of the HPT which was allocated.

There must be no vcpus running at the time of this ioctl.  To enforce
this, we now keep a count of the number of vcpus running in
kvm->arch.vcpus_running.

If the ioctl is called when a HPT has already been allocated, we don't
reallocate the HPT but just clear it out.  We first clear the
kvm->arch.rma_setup_done flag, which has two effects: (a) since we hold
the kvm->lock mutex, it will prevent any vcpus from starting to run until
we're done, and (b) it means that the first vcpu to run after we're done
will re-establish the VRMA if necessary.

If userspace doesn't call this ioctl before running the first vcpu, the
kernel will allocate a default-sized HPT at that point.  We do it then
rather than when creating the VM, as the code did previously, so that
userspace has a chance to do the ioctl if it wants.

When allocating the HPT, we can allocate either from the kernel page
allocator, or from the preallocated pool.  If userspace is asking for
a different size from the preallocated HPTs, we first try to allocate
using the kernel page allocator.  Then we try to allocate from the
preallocated pool, and then if that fails, we try allocating decreasing
sizes from the kernel page allocator, down to the minimum size allowed
(256kB).  Note that the kernel page allocator limits allocations to
1 << CONFIG_FORCE_MAX_ZONEORDER pages, which by default corresponds to
16MB (on 64-bit powerpc, at least).

Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix module compilation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-05-30 11:43:10 +02:00
Alexander Graf 54771e6217 KVM: PPC: Emulator: clean up SPR reads and writes
When reading and writing SPRs, every SPR emulation piece had to read
or write the respective GPR the value was read from or stored in itself.

This approach is pretty prone to failure. What if we accidentally
implement mfspr emulation where we just do "break" and nothing else?
Suddenly we would get a random value in the return register - which is
always a bad idea.

So let's consolidate the generic code paths and only give the core
specific SPR handling code readily made variables to read/write from/to.

Functionally, this patch doesn't change anything, but it increases the
readability of the code and makes is less prone to bugs.

Signed-off-by: Alexander Graf <agraf@suse.de>
2012-05-06 16:19:13 +02:00
Benjamin Herrenschmidt 5b74716eba kvm/powerpc: Add new ioctl to retreive server MMU infos
This is necessary for qemu to be able to pass the right information
to the guest, such as the supported page sizes and corresponding
encodings in the SLB and hash table, which can vary depending
on the processor type, the type of KVM used (PR vs HV) and the
version of KVM

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
[agraf: fix compilation on hv, adjust for newer ioctl numbers]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-05-06 16:19:12 +02:00
Benjamin Herrenschmidt f31e65e117 kvm/book3s: Make kernel emulated H_PUT_TCE available for "PR" KVM
There is nothing in the code for emulating TCE tables in the kernel
that prevents it from working on "PR" KVM... other than ifdef's and
location of the code.

This and moves the bulk of the code there to a new file called
book3s_64_vio.c.

This speeds things up a bit on my G5.

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
[agraf: fix for hv kvm, 32bit, whitespace]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-05-06 16:19:11 +02:00
Alexander Graf a8e4ef8414 KVM: PPC: booke: rework rescheduling checks
Instead of checking whether we should reschedule only when we exited
due to an interrupt, let's always check before entering the guest back
again. This gets the target more in line with the other archs.

Also while at it, generalize the whole thing so that eventually we could
have a single kvmppc_prepare_to_enter function for all ppc targets that
does signal and reschedule checking for us.

Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-04-08 12:55:05 +03:00
Scott Wood d30f6e4800 KVM: PPC: booke: category E.HV (GS-mode) support
Chips such as e500mc that implement category E.HV in Power ISA 2.06
provide hardware virtualization features, including a new MSR mode for
guest state.  The guest OS can perform many operations without trapping
into the hypervisor, including transitions to and from guest userspace.

Since we can use SRR1[GS] to reliably tell whether an exception came from
guest state, instead of messing around with IVPR, we use DO_KVM similarly
to book3s.

Current issues include:
 - Machine checks from guest state are not routed to the host handler.
 - The guest can cause a host oops by executing an emulated instruction
   in a page that lacks read permission.  Existing e500/4xx support has
   the same problem.

Includes work by Ashish Kalra <Ashish.Kalra@freescale.com>,
Varun Sethi <Varun.Sethi@freescale.com>, and
Liu Yu <yu.liu@freescale.com>.

Signed-off-by: Scott Wood <scottwood@freescale.com>
[agraf: remove pt_regs usage]
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-04-08 12:51:19 +03:00
Scott Wood 043cc4d724 KVM: PPC: factor out lpid allocator from book3s_64_mmu_hv
We'll use it on e500mc as well.

Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-04-08 12:51:02 +03:00
Alexander Graf d2a1b483a4 KVM: PPC: Add HPT preallocator
We're currently allocating 16MB of linear memory on demand when creating
a guest. That does work some times, but finding 16MB of linear memory
available in the system at runtime is definitely not a given.

So let's add another command line option similar to the RMA preallocator,
that we can use to keep a pool of page tables around. Now, when a guest
gets created it has a pretty low chance of receiving an OOM.

Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-03-05 14:57:28 +02:00
Alexander Graf b4e706111d KVM: PPC: Convert RMA allocation into generic code
We have code to allocate big chunks of linear memory on bootup for later use.
This code is currently used for RMA allocation, but can be useful beyond that
extent.

Make it generic so we can reuse it for other stuff later.

Signed-off-by: Alexander Graf <agraf@suse.de>
Acked-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-03-05 14:57:25 +02:00
Paul Mackerras 31f3438eca KVM: PPC: Move kvm_vcpu_ioctl_[gs]et_one_reg down to platform-specific code
This moves the get/set_one_reg implementation down from powerpc.c into
booke.c, book3s_pr.c and book3s_hv.c.  This avoids #ifdefs in C code,
but more importantly, it fixes a bug on Book3s HV where we were
accessing beyond the end of the kvm_vcpu struct (via the to_book3s()
macro) and corrupting memory, causing random crashes and file corruption.

On Book3s HV we only accept setting the HIOR to zero, since the guest
runs in supervisor mode and its vectors are never offset from zero.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
[agraf update to apply on top of changed ONE_REG patches]
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-03-05 14:52:41 +02:00
Paul Mackerras da9d1d7f28 KVM: PPC: Allow use of small pages to back Book3S HV guests
This relaxes the requirement that the guest memory be provided as
16MB huge pages, allowing it to be provided as normal memory, i.e.
in pages of PAGE_SIZE bytes (4k or 64k).  To allow this, we index
the kvm->arch.slot_phys[] arrays with a small page index, even if
huge pages are being used, and use the low-order 5 bits of each
entry to store the order of the enclosing page with respect to
normal pages, i.e. log_2(enclosing_page_size / PAGE_SIZE).

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-03-05 14:52:37 +02:00
Paul Mackerras c77162dee7 KVM: PPC: Only get pages when actually needed, not in prepare_memory_region()
This removes the code from kvmppc_core_prepare_memory_region() that
looked up the VMA for the region being added and called hva_to_page
to get the pfns for the memory.  We have no guarantee that there will
be anything mapped there at the time of the KVM_SET_USER_MEMORY_REGION
ioctl call; userspace can do that ioctl and then map memory into the
region later.

Instead we defer looking up the pfn for each memory page until it is
needed, which generally means when the guest does an H_ENTER hcall on
the page.  Since we can't call get_user_pages in real mode, if we don't
already have the pfn for the page, kvmppc_h_enter() will return
H_TOO_HARD and we then call kvmppc_virtmode_h_enter() once we get back
to kernel context.  That calls kvmppc_get_guest_page() to get the pfn
for the page, and then calls back to kvmppc_h_enter() to redo the HPTE
insertion.

When the first vcpu starts executing, we need to have the RMO or VRMA
region mapped so that the guest's real mode accesses will work.  Thus
we now have a check in kvmppc_vcpu_run() to see if the RMO/VRMA is set
up and if not, call kvmppc_hv_setup_rma().  It checks if the memslot
starting at guest physical 0 now has RMO memory mapped there; if so it
sets it up for the guest, otherwise on POWER7 it sets up the VRMA.
The function that does that, kvmppc_map_vrma, is now a bit simpler,
as it calls kvmppc_virtmode_h_enter instead of creating the HPTE itself.

Since we are now potentially updating entries in the slot_phys[]
arrays from multiple vcpu threads, we now have a spinlock protecting
those updates to ensure that we don't lose track of any references
to pages.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-03-05 14:52:36 +02:00
Scott Wood dfd4d47e9a KVM: PPC: booke: Improve timer register emulation
Decrementers are now properly driven by TCR/TSR, and the guest
has full read/write access to these registers.

The decrementer keeps ticking (and setting the TSR bit) regardless of
whether the interrupts are enabled with TCR.

The decrementer stops at zero, rather than going negative.

Decrementers (and FITs, once implemented) are delivered as
level-triggered interrupts -- dequeued when the TSR bit is cleared, not
on delivery.

Signed-off-by: Liu Yu <yu.liu@freescale.com>
[scottwood@freescale.com: significant changes]
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-03-05 14:52:27 +02:00
Scott Wood 7e28e60ef9 KVM: PPC: Rename deliver_interrupts to prepare_to_enter
This function also updates paravirt int_pending, so rename it
to be more obvious that this is a collection of checks run prior
to (re)entering a guest.

Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-03-05 14:52:25 +02:00
Scott Wood dc83b8bc02 KVM: PPC: e500: MMU API
This implements a shared-memory API for giving host userspace access to
the guest's TLB.

Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-03-05 14:52:24 +02:00
Alexander Graf af8f38b349 KVM: PPC: Add sanity checking to vcpu_run
There are multiple features in PowerPC KVM that can now be enabled
depending on the user's wishes. Some of the combinations don't make
sense or don't work though.

So this patch adds a way to check if the executing environment would
actually be able to run the guest properly. It also adds sanity
checks if PVR is set (should always be true given the current code
flow), if PAPR is only used with book3s_64 where it works and that
HV KVM is only used in PAPR mode.

Signed-off-by: Alexander Graf <agraf@suse.de>
2011-09-25 19:52:27 +03:00
Paul Mackerras aa04b4cc5b KVM: PPC: Allocate RMAs (Real Mode Areas) at boot for use by guests
This adds infrastructure which will be needed to allow book3s_hv KVM to
run on older POWER processors, including PPC970, which don't support
the Virtual Real Mode Area (VRMA) facility, but only the Real Mode
Offset (RMO) facility.  These processors require a physically
contiguous, aligned area of memory for each guest.  When the guest does
an access in real mode (MMU off), the address is compared against a
limit value, and if it is lower, the address is ORed with an offset
value (from the Real Mode Offset Register (RMOR)) and the result becomes
the real address for the access.  The size of the RMA has to be one of
a set of supported values, which usually includes 64MB, 128MB, 256MB
and some larger powers of 2.

Since we are unlikely to be able to allocate 64MB or more of physically
contiguous memory after the kernel has been running for a while, we
allocate a pool of RMAs at boot time using the bootmem allocator.  The
size and number of the RMAs can be set using the kvm_rma_size=xx and
kvm_rma_count=xx kernel command line options.

KVM exports a new capability, KVM_CAP_PPC_RMA, to signal the availability
of the pool of preallocated RMAs.  The capability value is 1 if the
processor can use an RMA but doesn't require one (because it supports
the VRMA facility), or 2 if the processor requires an RMA for each guest.

This adds a new ioctl, KVM_ALLOCATE_RMA, which allocates an RMA from the
pool and returns a file descriptor which can be used to map the RMA.  It
also returns the size of the RMA in the argument structure.

Having an RMA means we will get multiple KMV_SET_USER_MEMORY_REGION
ioctl calls from userspace.  To cope with this, we now preallocate the
kvm->arch.ram_pginfo array when the VM is created with a size sufficient
for up to 64GB of guest memory.  Subsequently we will get rid of this
array and use memory associated with each memslot instead.

This moves most of the code that translates the user addresses into
host pfns (page frame numbers) out of kvmppc_prepare_vrma up one level
to kvmppc_core_prepare_memory_region.  Also, instead of having to look
up the VMA for each page in order to check the page size, we now check
that the pages we get are compound pages of 16MB.  However, if we are
adding memory that is mapped to an RMA, we don't bother with calling
get_user_pages_fast and instead just offset from the base pfn for the
RMA.

Typically the RMA gets added after vcpus are created, which makes it
inconvenient to have the LPCR (logical partition control register) value
in the vcpu->arch struct, since the LPCR controls whether the processor
uses RMA or VRMA for the guest.  This moves the LPCR value into the
kvm->arch struct and arranges for the MER (mediated external request)
bit, which is the only bit that varies between vcpus, to be set in
assembly code when going into the guest if there is a pending external
interrupt request.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:57 +03:00
Paul Mackerras 371fefd6f2 KVM: PPC: Allow book3s_hv guests to use SMT processor modes
This lifts the restriction that book3s_hv guests can only run one
hardware thread per core, and allows them to use up to 4 threads
per core on POWER7.  The host still has to run single-threaded.

This capability is advertised to qemu through a new KVM_CAP_PPC_SMT
capability.  The return value of the ioctl querying this capability
is the number of vcpus per virtual CPU core (vcore), currently 4.

To use this, the host kernel should be booted with all threads
active, and then all the secondary threads should be offlined.
This will put the secondary threads into nap mode.  KVM will then
wake them from nap mode and use them for running guest code (while
they are still offline).  To wake the secondary threads, we send
them an IPI using a new xics_wake_cpu() function, implemented in
arch/powerpc/sysdev/xics/icp-native.c.  In other words, at this stage
we assume that the platform has a XICS interrupt controller and
we are using icp-native.c to drive it.  Since the woken thread will
need to acknowledge and clear the IPI, we also export the base
physical address of the XICS registers using kvmppc_set_xics_phys()
for use in the low-level KVM book3s code.

When a vcpu is created, it is assigned to a virtual CPU core.
The vcore number is obtained by dividing the vcpu number by the
number of threads per core in the host.  This number is exported
to userspace via the KVM_CAP_PPC_SMT capability.  If qemu wishes
to run the guest in single-threaded mode, it should make all vcpu
numbers be multiples of the number of threads per core.

We distinguish three states of a vcpu: runnable (i.e., ready to execute
the guest), blocked (that is, idle), and busy in host.  We currently
implement a policy that the vcore can run only when all its threads
are runnable or blocked.  This way, if a vcpu needs to execute elsewhere
in the kernel or in qemu, it can do so without being starved of CPU
by the other vcpus.

When a vcore starts to run, it executes in the context of one of the
vcpu threads.  The other vcpu threads all go to sleep and stay asleep
until something happens requiring the vcpu thread to return to qemu,
or to wake up to run the vcore (this can happen when another vcpu
thread goes from busy in host state to blocked).

It can happen that a vcpu goes from blocked to runnable state (e.g.
because of an interrupt), and the vcore it belongs to is already
running.  In that case it can start to run immediately as long as
the none of the vcpus in the vcore have started to exit the guest.
We send the next free thread in the vcore an IPI to get it to start
to execute the guest.  It synchronizes with the other threads via
the vcore->entry_exit_count field to make sure that it doesn't go
into the guest if the other vcpus are exiting by the time that it
is ready to actually enter the guest.

Note that there is no fixed relationship between the hardware thread
number and the vcpu number.  Hardware threads are assigned to vcpus
as they become runnable, so we will always use the lower-numbered
hardware threads in preference to higher-numbered threads if not all
the vcpus in the vcore are runnable, regardless of which vcpus are
runnable.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:57 +03:00
David Gibson 54738c0971 KVM: PPC: Accelerate H_PUT_TCE by implementing it in real mode
This improves I/O performance for guests using the PAPR
paravirtualization interface by making the H_PUT_TCE hcall faster, by
implementing it in real mode.  H_PUT_TCE is used for updating virtual
IOMMU tables, and is used both for virtual I/O and for real I/O in the
PAPR interface.

Since this moves the IOMMU tables into the kernel, we define a new
KVM_CREATE_SPAPR_TCE ioctl to allow qemu to create the tables.  The
ioctl returns a file descriptor which can be used to mmap the newly
created table.  The qemu driver models use them in the same way as
userspace managed tables, but they can be updated directly by the
guest with a real-mode H_PUT_TCE implementation, reducing the number
of host/guest context switches during guest IO.

There are certain circumstances where it is useful for userland qemu
to write to the TCE table even if the kernel H_PUT_TCE path is used
most of the time.  Specifically, allowing this will avoid awkwardness
when we need to reset the table.  More importantly, we will in the
future need to write the table in order to restore its state after a
checkpoint resume or migration.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:56 +03:00
Paul Mackerras a8606e20e4 KVM: PPC: Handle some PAPR hcalls in the kernel
This adds the infrastructure for handling PAPR hcalls in the kernel,
either early in the guest exit path while we are still in real mode,
or later once the MMU has been turned back on and we are in the full
kernel context.  The advantage of handling hcalls in real mode if
possible is that we avoid two partition switches -- and this will
become more important when we support SMT4 guests, since a partition
switch means we have to pull all of the threads in the core out of
the guest.  The disadvantage is that we can only access the kernel
linear mapping, not anything vmalloced or ioremapped, since the MMU
is off.

This also adds code to handle the following hcalls in real mode:

H_ENTER       Add an HPTE to the hashed page table
H_REMOVE      Remove an HPTE from the hashed page table
H_READ        Read HPTEs from the hashed page table
H_PROTECT     Change the protection bits in an HPTE
H_BULK_REMOVE Remove up to 4 HPTEs from the hashed page table
H_SET_DABR    Set the data address breakpoint register

Plus code to handle the following hcalls in the kernel:

H_CEDE        Idle the vcpu until an interrupt or H_PROD hcall arrives
H_PROD        Wake up a ceded vcpu
H_REGISTER_VPA Register a virtual processor area (VPA)

The code that runs in real mode has to be in the base kernel, not in
the module, if KVM is compiled as a module.  The real-mode code can
only access the kernel linear mapping, not vmalloc or ioremap space.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:55 +03:00