271 Commits

Author SHA1 Message Date
Divyesh Shah
b1ffe737f5 cfq-iosched: Add additional blktrace log messages in CFQ for easier debugging
These have helped us debug some issues we've noticed in earlier IO
controller versions and should be useful now as well. The extra logging
covers:
- idling behavior. Since there are so many conditions based on which we decide
to idle or not, this patch adds a log message for some conditions that we've
found useful.
- workload slices and current prio and workload type

Changelog from v1:
o moved log message from cfq_set_active_queue() to __cfq_set_active_queue()
o changed queue_count to st->count

Signed-off-by: Divyesh Shah<dpshah@google.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2010-03-25 15:45:03 +01:00
Shaohua Li
e9ce335df5 cfq-iosched: fix a kbuild regression
Alex Shi reported a kbuild regression which is about 10% performance lost.
He bisected to this commit: 3dde36ddea3e07dd025c4c1ba47edec91606fec0.
The reason is cfqq_close() can't find close cooperator. Restoring
cfq_rq_close()'s threshold to original value makes the regression go away.

Since for_preempt parameter isn't used anymore, this patch deletes it.

Reported-by: Alex Shi <alex.shi@intel.com>
Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Acked-by: Corrado Zoccolo <czoccolo@gmail.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2010-03-19 08:03:04 +01:00
Richard Kennedy
73e9ffdd0c cfq: remove 8 bytes of padding from cfq_rb_root on 64 bit builds
Reorder cfq_rb_root to remove 8 bytes of padding on 64 bit builds.

Consequently removing 56 bytes from cfq_group and 64 bytes from
cfq_data.

Signed-off-by: Richard Kennedy <richard@rsk.demon.co.uk>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2010-03-01 10:50:20 +01:00
Shaohua Li
abc3c744d0 cfq-iosched: quantum check tweak
Currently a queue can only dispatch up to 4 requests if there are other queues.
This isn't optimal, device can handle more requests, for example, AHCI can
handle 31 requests. I can understand the limit is for fairness, but we could
do a tweak: if the queue still has a lot of slice left, sounds we could
ignore the limit. Test shows this boost my workload (two thread randread of
a SSD) from 78m/s to 100m/s.
Thanks for suggestions from Corrado and Vivek for the patch.

Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2010-03-01 09:20:54 +01:00
Corrado Zoccolo
53c583d226 cfq-iosched: requests "in flight" vs "in driver" clarification
Counters for requests "in flight" and "in driver" are used asymmetrically
in cfq_may_dispatch, and have slightly different meaning.
We split the rq_in_flight counter (was sync_flight) to count both sync
and async requests, in order to use this one, which is more accurate in
some corner cases.
The rq_in_driver counter is coalesced, since individual sync/async counts
are not used any more.

Signed-off-by: Corrado Zoccolo <czoccolo@gmail.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2010-02-28 19:45:05 +01:00
Corrado Zoccolo
41647e7a91 cfq-iosched: rethink seeky detection for SSDs
CFQ currently applies the same logic of detecting seeky queues and
grouping them together for rotational disks as well as SSDs.
For SSDs, the time to complete a request doesn't depend on the
request location, but only on the size.
This patch therefore changes the criterion to group queues by
request size in case of SSDs, in order to achieve better fairness.

Signed-off-by: Corrado Zoccolo <czoccolo@gmail.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2010-02-28 19:41:25 +01:00
Corrado Zoccolo
3dde36ddea cfq-iosched: rework seeky detection
Current seeky detection is based on average seek lenght.
This is suboptimal, since the average will not distinguish between:
* a process doing medium sized seeks
* a process doing some sequential requests interleaved with larger seeks
and even a medium seek can take lot of time, if the requested sector
happens to be behind the disk head in the rotation (50% probability).

Therefore, we change the seeky queue detection to work as follows:
* each request can be classified as sequential if it is very close to
  the current head position, i.e. it is likely in the disk cache (disks
  usually read more data than requested, and put it in cache for
  subsequent reads). Otherwise, the request is classified as seeky.
* an history window of the last 32 requests is kept, storing the
  classification result.
* A queue is marked as seeky if more than 1/8 of the last 32 requests
  were seeky.

This patch fixes a regression reported by Yanmin, on mmap 64k random
reads.

Reported-by: Yanmin Zhang <yanmin_zhang@linux.intel.com>
Signed-off-by: Corrado Zoccolo <czoccolo@gmail.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2010-02-28 19:41:25 +01:00
Gui Jianfeng
024f906616 cfq: Remove useless css reference get
There's no need to take css reference here, for the caller
has already called rcu_read_lock() to prevent cgroup from
being removed.

Signed-off-by: Gui Jianfeng <guijianfeng@cn.fujitsu.com>
Reviewed-by: Li Zefan <lizf@cn.fujitsu.com>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2010-02-26 08:56:15 +01:00
Richard Kennedy
c4081ba5c9 cfq: reorder cfq_queue removing padding on 64bit
This removes 8 bytes of padding from struct cfq_queue on 64 bit builds,
shrinking it's size to 256 bytes, so fitting into 1 fewer cachelines and
allowing 1 more object/slab in it's kmem_cache.

Signed-off-by: Richard Kennedy <richard@rsk.demon.co.uk>
Reviewed-by: Jeff Moyer <jmoyer@redhat.com>
----
patch against 2.6.33-rc8
tested on x86_64 AMDX2
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2010-02-22 13:49:24 +01:00
Shaohua Li
ae54abed63 cfq-iosched: split seeky coop queues after one slice
Currently we split seeky coop queues after 1s, which is too big. Below patch
marks seeky coop queue split_coop flag after one slice. After that, if new
requests come in, the queues will be splitted. Patch is suggested by Corrado.

Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Reviewed-by: Corrado Zoccolo <czoccolo@gmail.com>
Acked-by: Jeff Moyer <jmoyer@redhat.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2010-02-05 13:11:45 +01:00
Vivek Goyal
1efe8fe1c2 cfq-iosched: Do not idle on async queues
Few weeks back, Shaohua Li had posted similar patch. I am reposting it
with more test results.

This patch does two things.

- Do not idle on async queues.

- It also changes the write queue depth CFQ drives (cfq_may_dispatch()).
  Currently, we seem to driving queue depth of 1 always for WRITES. This is
  true even if there is only one write queue in the system and all the logic
  of infinite queue depth in case of single busy queue as well as slowly
  increasing queue depth based on last delayed sync request does not seem to
  be kicking in at all.

This patch will allow deeper WRITE queue depths (subjected to the other
WRITE queue depth contstraints like cfq_quantum and last delayed sync
request).

Shaohua Li had reported getting more out of his SSD. For me, I have got
one Lun exported from an HP EVA and when pure buffered writes are on, I
can get more out of the system. Following are test results of pure
buffered writes (with end_fsync=1) with vanilla and patched kernel. These
results are average of 3 sets of run with increasing number of threads.

AVERAGE[bufwfs][vanilla]
-------
job       Set NR  ReadBW(KB/s)   MaxClat(us)    WriteBW(KB/s)  MaxClat(us)
---       --- --  ------------   -----------    -------------  -----------
bufwfs    3   1   0              0              95349          474141
bufwfs    3   2   0              0              100282         806926
bufwfs    3   4   0              0              109989         2.7301e+06
bufwfs    3   8   0              0              116642         3762231
bufwfs    3   16  0              0              118230         6902970

AVERAGE[bufwfs] [patched kernel]
-------
bufwfs    3   1   0              0              270722         404352
bufwfs    3   2   0              0              206770         1.06552e+06
bufwfs    3   4   0              0              195277         1.62283e+06
bufwfs    3   8   0              0              260960         2.62979e+06
bufwfs    3   16  0              0              299260         1.70731e+06

I also ran buffered writes along with some sequential reads and some
buffered reads going on in the system on a SATA disk because the potential
risk could be that we should not be driving queue depth higher in presence
of sync IO going to keep the max clat low.

With some random and sequential reads going on in the system on one SATA
disk I did not see any significant increase in max clat. So it looks like
other WRITE queue depth control logic is doing its job. Here are the
results.

AVERAGE[brr, bsr, bufw together] [vanilla]
-------
job       Set NR  ReadBW(KB/s)   MaxClat(us)    WriteBW(KB/s)  MaxClat(us)
---       --- --  ------------   -----------    -------------  -----------
brr       3   1   850            546345         0              0
bsr       3   1   14650          729543         0              0
bufw      3   1   0              0              23908          8274517

brr       3   2   981.333        579395         0              0
bsr       3   2   14149.7        1175689        0              0
bufw      3   2   0              0              21921          1.28108e+07

brr       3   4   898.333        1.75527e+06    0              0
bsr       3   4   12230.7        1.40072e+06    0              0
bufw      3   4   0              0              19722.3        2.4901e+07

brr       3   8   900            3160594        0              0
bsr       3   8   9282.33        1.91314e+06    0              0
bufw      3   8   0              0              18789.3        23890622

AVERAGE[brr, bsr, bufw mixed] [patched kernel]
-------
job       Set NR  ReadBW(KB/s)   MaxClat(us)    WriteBW(KB/s)  MaxClat(us)
---       --- --  ------------   -----------    -------------  -----------
brr       3   1   837            417973         0              0
bsr       3   1   14357.7        591275         0              0
bufw      3   1   0              0              24869.7        8910662

brr       3   2   1038.33        543434         0              0
bsr       3   2   13351.3        1205858        0              0
bufw      3   2   0              0              18626.3        13280370

brr       3   4   913            1.86861e+06    0              0
bsr       3   4   12652.3        1430974        0              0
bufw      3   4   0              0              15343.3        2.81305e+07

brr       3   8   890            2.92695e+06    0              0
bsr       3   8   9635.33        1.90244e+06    0              0
bufw      3   8   0              0              17200.3        24424392

So looks like it might make sense to include this patch.

Thanks
Vivek

Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2010-02-02 20:46:10 +01:00
Divyesh Shah
875feb63b9 cfq-iosched: Respect ioprio_class when preempting
In cfq_should_preempt(), we currently allow some cases where a non-RT request
can preempt an ongoing RT cfqq timeslice. This should not happen.
Examples include:

o A sync_noidle wl type non-RT request pre-empting a sync_noidle wl type cfqq
  on which we are idling.
o Once we have per-cgroup async queues, a non-RT sync request pre-empting a RT
  async cfqq.

Signed-off-by: Divyesh Shah<dpshah@google.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2010-01-11 16:16:18 +01:00
Shaohua Li
2f7a2d89a8 cfq-iosched: don't regard requests with long distance as close
seek_mean could be very big sometimes, using it as close criteria is meaningless
as this doen't improve any performance. So if it's big, let's fallback to
default value.

Reviewed-by: Corrado Zoccolo <czoccolo@gmail.com>
Signed-off-by: Shaohua Li<shaohua.li@intel.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-12-28 13:18:44 +01:00
Vivek Goyal
65b32a573e cfq-iosched: Remove prio_change logic for workload selection
o CFQ now internally divides cfq queues in therr workload categories. sync-idle,
  sync-noidle and async. Which workload to run depends primarily on rb_key
  offset across three service trees. Which is a combination of mulitiple things
  including what time queue got queued on the service tree.

  There is one exception though. That is if we switched the prio class, say
  we served some RT tasks and again started serving BE class, then with-in
  BE class we always started with sync-noidle workload irrespective of rb_key
  offset in service trees.

  This can provide better latencies for sync-noidle workload in the presence
  of RT tasks.

o This patch gets rid of that exception and which workload to run with-in
  class always depends on lowest rb_key across service trees. The reason
  being that now we have multiple BE class groups and if we always switch
  to sync-noidle workload with-in group, we can potentially starve a sync-idle
  workload with-in group. Same is true for async workload which will be in
  root group. Also the workload-switching with-in group will become very
  unpredictable as it now depends whether some RT workload was running in
  the system or not.

Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Reviewed-by: Gui Jianfeng <guijianfeng@cn.fujitsu.com>
Acked-by: Corrado Zoccolo <czoccolo@gmail.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-12-18 12:40:21 +01:00
Vivek Goyal
fb104db41e cfq-iosched: Get rid of nr_groups
o Currently code does not seem to be using cfqd->nr_groups. Get rid of it.

Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Reviewed-by: Gui Jianfeng <guijianfeng@cn.fujitsu.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-12-18 12:40:21 +01:00
Vivek Goyal
1db32c4060 cfq-iosched: Remove the check for same cfq group from allow_merge
o allow_merge() already checks if submitting task is pointing to same cfqq
  as rq has been queued in. If everything is fine, we should not be having
  a task in one cgroup and having a pointer to cfqq in other cgroup.

  Well I guess in some situations it can happen and that is, when a random
  IO queue has been moved into root cgroup for group_isolation=0. In
  this case, tasks's cgroup/group is different from where actually cfqq is,
  but this is intentional and in this case merging should be allowed.

  The second situation is where due to close cooperator patches, multiple
  processes can be sharing a cfqq. If everything implemented right, we should
  not end up in a situation where tasks from different processes in different
  groups are sharing the same cfqq as we allow merging of cooperating queues
  only if they are in same group.

Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Reviewed-by: Gui Jianfeng <guijianfeng@cn.fujitsu.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-12-18 12:40:21 +01:00
Gui Jianfeng
66ae291978 cfq: set workload as expired if it doesn't have any slice left
When a group is resumed, if it doesn't have workload slice left,
we should set workload_expires as expired. Otherwise, we might
start from where we left in previous group by error.
Thanks the idea from Corrado.

Signed-off-by: Gui Jianfeng <guijianfeng@cn.fujitsu.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-12-15 10:08:45 +01:00
Vivek Goyal
82bbbf28db Fix a CFQ crash in "for-2.6.33" branch of block tree
I think my previous patch introduced a bug which can lead to CFQ hitting
BUG_ON().

The offending commit in for-2.6.33 branch is.

commit 7667aa0630407bc07dc38dcc79d29cc0a65553c1
Author: Vivek Goyal <vgoyal@redhat.com>
Date:   Tue Dec 8 17:52:58 2009 -0500

    cfq-iosched: Take care of corner cases of group losing share due to deletion

While doing some stress testing on my box, I enountered following.

login: [ 3165.148841] BUG: scheduling while
atomic: swapper/0/0x10000100
[ 3165.149821] Modules linked in: cfq_iosched dm_multipath qla2xxx igb
scsi_transport_fc dm_snapshot [last unloaded: scsi_wait_scan]
[ 3165.149821] Pid: 0, comm: swapper Not tainted
2.6.32-block-for-33-merged-new #3
[ 3165.149821] Call Trace:
[ 3165.149821]  <IRQ>  [<ffffffff8103fab8>] __schedule_bug+0x5c/0x60
[ 3165.149821]  [<ffffffff8103afd7>] ? __wake_up+0x44/0x4d
[ 3165.149821]  [<ffffffff8153a979>] schedule+0xe3/0x7bc
[ 3165.149821]  [<ffffffff8103a796>] ? cpumask_next+0x1d/0x1f
[ 3165.149821]  [<ffffffffa000b21d>] ? cfq_dispatch_requests+0x6ba/0x93e
[cfq_iosched]
[ 3165.149821]  [<ffffffff810422d8>] __cond_resched+0x2a/0x35
[ 3165.149821]  [<ffffffffa000b21d>] ? cfq_dispatch_requests+0x6ba/0x93e
[cfq_iosched]
[ 3165.149821]  [<ffffffff8153b1ee>] _cond_resched+0x2c/0x37
[ 3165.149821]  [<ffffffff8100e2db>] is_valid_bugaddr+0x16/0x2f
[ 3165.149821]  [<ffffffff811e4161>] report_bug+0x18/0xac
[ 3165.149821]  [<ffffffff8100f1fc>] die+0x39/0x63
[ 3165.149821]  [<ffffffff8153cde1>] do_trap+0x11a/0x129
[ 3165.149821]  [<ffffffff8100d470>] do_invalid_op+0x96/0x9f
[ 3165.149821]  [<ffffffffa000b21d>] ? cfq_dispatch_requests+0x6ba/0x93e
[cfq_iosched]
[ 3165.149821]  [<ffffffff81034b4d>] ? enqueue_task+0x5c/0x67
[ 3165.149821]  [<ffffffff8103ae83>] ? task_rq_unlock+0x11/0x13
[ 3165.149821]  [<ffffffff81041aae>] ? try_to_wake_up+0x292/0x2a4
[ 3165.149821]  [<ffffffff8100c935>] invalid_op+0x15/0x20
[ 3165.149821]  [<ffffffffa000b21d>] ? cfq_dispatch_requests+0x6ba/0x93e
[cfq_iosched]
[ 3165.149821]  [<ffffffff810df5a6>] ? virt_to_head_page+0xe/0x2f
[ 3165.149821]  [<ffffffff811d8c2a>] blk_peek_request+0x191/0x1a7
[ 3165.149821]  [<ffffffff811e5b8d>] ? kobject_get+0x1a/0x21
[ 3165.149821]  [<ffffffff812c8d4c>] scsi_request_fn+0x82/0x3df
[ 3165.149821]  [<ffffffff8110b2de>] ? bio_fs_destructor+0x15/0x17
[ 3165.149821]  [<ffffffff810df5a6>] ? virt_to_head_page+0xe/0x2f
[ 3165.149821]  [<ffffffff811d931f>] __blk_run_queue+0x42/0x71
[ 3165.149821]  [<ffffffff811d9403>] blk_run_queue+0x26/0x3a
[ 3165.149821]  [<ffffffff812c8761>] scsi_run_queue+0x2de/0x375
[ 3165.149821]  [<ffffffff812b60ac>] ? put_device+0x17/0x19
[ 3165.149821]  [<ffffffff812c92d7>] scsi_next_command+0x3b/0x4b
[ 3165.149821]  [<ffffffff812c9b9f>] scsi_io_completion+0x1c9/0x3f5
[ 3165.149821]  [<ffffffff812c3c36>] scsi_finish_command+0xb5/0xbe

I think I have hit following BUG_ON() in cfq_dispatch_request().

BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));

Please find attached the patch to fix it. I have done some stress testing
with it and have not seen it happening again.

o We should wait on a queue even after slice expiry only if it is empty. If
  queue is not empty then continue to expire it.

o If we decide to keep the queue then make cfqq=NULL. Otherwise select_queue()
  will return a valid cfqq and cfq_dispatch_request() can hit following
  BUG_ON().

  BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list))

Reviewed-by: Jeff Moyer <jmoyer@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-12-10 19:25:41 +01:00
Gui Jianfeng
554554f60a cfq: Remove wait_request flag when idle time is being deleted
Remove wait_request flag when idle time is being deleted, otherwise
it'll hit this path every time when a request is enqueued.

Signed-off-by: Gui Jianfeng <guijianfeng@cn.fujitsu.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-12-10 09:38:39 +01:00
Corrado Zoccolo
edc71131c4 cfq-iosched: commenting non-obvious initialization
Added a comment to explain the initialization of last_delayed_sync.

Signed-off-by: Corrado Zoccolo <czoccolo@gmail.com>
Acked-by: Jeff Moyer <jmoyer@redhat.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-12-09 20:56:04 +01:00
Vivek Goyal
7667aa0630 cfq-iosched: Take care of corner cases of group losing share due to deletion
If there is a sequential reader running in a group, we wait for next request
to come in that group after slice expiry and once new request is in, we expire
the queue. Otherwise we delete the group from service tree and group looses
its fair share.

So far I was marking a queue as wait_busy if it had consumed its slice and
it was last queue in the group. But this condition did not cover following
two cases.

1.If a request completed and slice has not expired yet. Next request comes
  in and is dispatched to disk. Now select_queue() hits and slice has expired.
  This group will be deleted. Because request is still in the disk, this queue
  will never get a chance to wait_busy.

2.If request completed and slice has not expired yet. Before next request
  comes in (delay due to think time), select_queue() hits and expires the
  queue hence group. This queue never got a chance to wait busy.

Gui was hitting the boundary condition 1 and not getting fairness numbers
proportional to weight.

This patch puts the checks for above two conditions and improves the fairness
numbers for sequential workload on rotational media. Check in select_queue()
takes care of case 1 and additional check in should_wait_busy() takes care
of case 2.

Reported-by: Gui Jianfeng <guijianfeng@cn.fujitsu.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-12-09 15:11:04 +01:00
Vivek Goyal
c244bb50a9 cfq-iosched: Get rid of cfqq wait_busy_done flag
o Get rid of wait_busy_done flag. This flag only tells we were doing wait
  busy on a queue and that queue got request so expire it. That information
  can easily be obtained by (cfq_cfqq_wait_busy() && queue_is_not_empty). So
  remove this flag and keep code simple.

Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-12-09 15:11:03 +01:00
Gui Jianfeng
b9d8f4c73b cfq: Optimization for close cooperating queue searching
It doesn't make any sense to try to find out a close cooperating
queue if current cfqq is the only one in the group.

Signed-off-by: Gui Jianfeng <guijianfeng@cn.fujitsu.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-12-09 15:11:03 +01:00
Corrado Zoccolo
573412b295 cfq-iosched: reduce write depth only if sync was delayed
The introduction of ramp-up formula for async queue depths has
slowed down dirty page reclaim, by reducing async write performance.
This patch makes sure the formula kicks in only when sync request
was recently delayed.

Signed-off-by: Corrado Zoccolo <czoccolo@gmail.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-12-09 12:32:55 +01:00
Vivek Goyal
878eaddd05 cfq-iosched: Do not access cfqq after freeing it
Fix a crash during boot reported by Jeff Moyer. Fix the issue of accessing
cfqq after freeing it.

Reported-by: Jeff Moyer <jmoyer@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Reviewed-by: Jeff Moyer <jmoyer@redhat.com>
Signed-off-by: Jens Axboe <axboe@carl.(none)>
2009-12-07 19:37:15 +01:00
Jens Axboe
bb729bc98c cfq-iosched: use call_rcu() instead of doing grace period stall on queue exit
After the merge of the IO controller patches, booting on my megaraid
box ran much slower. Vivek Goyal traced it down to megaraid discovery
creating tons of devices, each suffering a grace period when they later
kill that queue (if no device is found).

So lets use call_rcu() to batch these deferred frees, instead of taking
the grace period hit for each one.

Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-12-06 09:54:19 +01:00
Vivek Goyal
3e25206689 blkio: Implement dynamic io controlling policy registration
o One of the goals of block IO controller is that it should be able to
  support mulitple io control policies, some of which be operational at
  higher level in storage hierarchy.

o To begin with, we had one io controlling policy implemented by CFQ, and
  I hard coded the CFQ functions called by blkio. This created issues when
  CFQ is compiled as module.

o This patch implements a basic dynamic io controlling policy registration
  functionality in blkio. This is similar to elevator functionality where
  ioschedulers register the functions dynamically.

o Now in future, when more IO controlling policies are implemented, these
  can dynakically register with block IO controller.

Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-12-04 16:38:14 +01:00
Vivek Goyal
9d6a986c0b blkio: Export some symbols from blkio as its user CFQ can be a module
o blkio controller is inside the kernel and cfq makes use of interfaces
  exported by blkio. CFQ can be a module too, hence export symbols used
  by CFQ.

Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-12-04 16:38:14 +01:00
Shaohua Li
3c764b7a65 cfq-iosched: make nonrot check logic consistent
cfq_arm_slice_timer() has logic to disable idle window for SSD device. The same
thing should be done at cfq_select_queue() too, otherwise we will still see
idle window. This makes the nonrot check logic consistent in cfq.
Tests in a intel SSD with low_latency knob close, below patch can triple disk
thoughput for muti-thread sequential read.

Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-12-04 13:12:06 +01:00
Jens Axboe
f2eecb9152 cfq-iosched: move IO controller declerations to a header file
They should not be declared inside some other file that's not related
to CFQ.

Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-12-04 10:06:35 +01:00
Vivek Goyal
c04645e592 blkio: Wait on sync-noidle queue even if rq_noidle = 1
o rq_noidle() is supposed to tell cfq that do not expect a request after this
  one, hence don't idle. But this does not seem to work very well. For example
  for direct random readers, rq_noidle = 1 but there is next request coming
  after this. Not idling, leads to a group not getting its share even if
  group_isolation=1.

o The right solution for this issue is to scan the higher layers and set
  right flag (WRITE_SYNC or WRITE_ODIRECT). For the time being, this single
  line fix helps. This should not have any significant impact when we are
  not using cgroups. I will later figure out IO paths in higher layer and
  fix it.

Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-12-03 19:28:53 +01:00
Vivek Goyal
ae30c28655 blkio: Implement group_isolation tunable
o If a group is running only a random reader, then it will not have enough
  traffic to keep disk busy and we will reduce overall throughput. This
  should result in better latencies for random reader though. If we don't
  idle on random reader service tree, then this random reader will experience
  large latencies if there are other groups present in system with sequential
  readers running in these.

o One solution suggested by corrado is that by default keep the random readers
  or sync-noidle workload in root group so that during one dispatch round
  we idle only once on sync-noidle tree. This means that all the sync-idle
  workload queues will be in their respective group and we will see service
  differentiation in those but not on sync-noidle workload.

o Provide a tunable group_isolation. If set, this will make sure that even
  sync-noidle queues go in their respective group and we wait on these. This
  provides stronger isolation between groups but at the expense of throughput
  if group does not have enough traffic to keep the disk busy.

o By default group_isolation = 0

Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-12-03 19:28:53 +01:00
Vivek Goyal
f26bd1f0a3 blkio: Determine async workload length based on total number of queues
o Async queues are not per group. Instead these are system wide and maintained
  in root group. Hence their workload slice length should be calculated
  based on total number of queues in the system and not just queues in the
  root group.

o As root group's default weight is 1000, make sure to charge async queue
  more in terms of vtime so that it does not get more time on disk because
  root group has higher weight.

Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-12-03 19:28:53 +01:00
Vivek Goyal
f75edf2dc8 blkio: Wait for cfq queue to get backlogged if group is empty
o If a queue consumes its slice and then gets deleted from service tree, its
  associated group will also get deleted from service tree if this was the
  only queue in the group. That will make group loose its share.

o For the queues on which we have idling on and if these have used their
  slice, wait a bit for these queues to get backlogged again and then
  expire these queues so that group does not loose its share.

Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-12-03 19:28:53 +01:00
Vivek Goyal
f8d461d692 blkio: Propagate cgroup weight updation to cfq groups
o Propagate blkio cgroup weight updation to associated cfq groups.

Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-12-03 19:28:53 +01:00
Vivek Goyal
24610333d5 blkio: Drop the reference to queue once the task changes cgroup
o If a task changes cgroup, drop reference to the cfqq associated with io
  context and set cfqq pointer stored in ioc to NULL so that upon next request
  arrival we will allocate a  new queue in new group.

Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-12-03 19:28:52 +01:00
Vivek Goyal
8682e1f15f blkio: Provide some isolation between groups
o Do not allow following three operations across groups for isolation.
	- selection of co-operating queues
	- preemtpions across groups
	- request merging across groups.

o Async queues are currently global and not per group. Allow preemption of
  an async queue if a sync queue in other group gets backlogged.

Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-12-03 19:28:52 +01:00
Vivek Goyal
220841906f blkio: Export disk time and sectors used by a group to user space
o Export disk time and sector used by a group to user space through cgroup
  interface.

o Also export a "dequeue" interface to cgroup which keeps track of how many
  a times a group was deleted from service tree. Helps in debugging.

Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-12-03 19:28:52 +01:00
Vivek Goyal
2868ef7b39 blkio: Some debugging aids for CFQ
o Some debugging aids for CFQ.

Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-12-03 19:28:52 +01:00
Vivek Goyal
b1c3576961 blkio: Take care of cgroup deletion and cfq group reference counting
o One can choose to change elevator or delete a cgroup. Implement group
  reference counting so that both elevator exit and cgroup deletion can
  take place gracefully.

Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Nauman Rafique <nauman@google.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-12-03 19:28:52 +01:00
Vivek Goyal
25fb5169d4 blkio: Dynamic cfq group creation based on cgroup tasks belongs to
o Determine the cgroup IO submitting task belongs to and create the cfq
  group if it does not exist already.

o Also link cfqq and associated cfq group.

o Currently all async IO is mapped to root group.

Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-12-03 19:28:52 +01:00
Vivek Goyal
dae739ebc4 blkio: Group time used accounting and workload context save restore
o This patch introduces the functionality to do the accounting of group time
  when a queue expires. This time used decides which is the group to go
  next.

o Also introduce the functionlity to save and restore the workload type
  context with-in group. It might happen that once we expire the cfq queue
  and group, a different group will schedule in and we will lose the context
  of the workload type. Hence save and restore it upon queue expiry.

Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-12-03 19:28:52 +01:00
Vivek Goyal
58ff82f34c blkio: Implement per cfq group latency target and busy queue avg
o So far we had 300ms soft target latency system wide. Now with the
  introduction of cfq groups, divide that latency by number of groups so
  that one can come up with group target latency which will be helpful
  in determining the workload slice with-in group and also the dynamic
  slice length of the cfq queue.

Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-12-03 19:28:52 +01:00
Vivek Goyal
25bc6b0776 blkio: Introduce per cfq group weights and vdisktime calculations
o Bring in the per cfq group weight and how vdisktime is calculated for the
  group. Also bring in the functionality of updating the min_vdisktime of
  the group service tree.

Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-12-03 19:28:52 +01:00
Vivek Goyal
1fa8f6d68b blkio: Introduce the root service tree for cfq groups
o So far we just had one cfq_group in cfq_data. To create space for more than
  one cfq_group, we need to have a service tree of groups where all the groups
  can be queued if they have active cfq queues backlogged in these.

Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-12-03 19:28:51 +01:00
Vivek Goyal
f04a642463 blkio: Keep queue on service tree until we expire it
o Currently cfqq deletes a queue from service tree if it is empty (even if
  we might idle on the queue). This patch keeps the queue on service tree
  hence associated group remains on the service tree until we decide that
  we are not going to idle on the queue and expire it.

o This just helps in time accounting for queue/group and in implementation
  of rest of the patches.

Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-12-03 19:28:51 +01:00
Vivek Goyal
615f0259e6 blkio: Implement macro to traverse each service tree in group
o Implement a macro to traverse each service tree in the group. This avoids
  usage of double for loop and special condition for idle tree 4 times.

o Macro is little twisted because of special handling of idle class service
  tree.

Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-12-03 19:28:51 +01:00
Vivek Goyal
cdb16e8f73 blkio: Introduce the notion of cfq groups
o This patch introduce the notion of cfq groups. Soon we will can have multiple
  groups of different weights in the system.

o Various service trees (prioclass and workload type trees), will become per
  cfq group. So hierarchy looks as follows.

			cfq_groups
			   |
			workload type
			   |
		        cfq queue

o When an scheduling decision has to be taken, first we select the cfq group
  then workload with-in the group and then cfq queue with-in the workload
  type.

o This patch just makes various workload service tree per cfq group and
  introduce the function to be able to choose a group for scheduling.

Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-12-03 19:28:51 +01:00
Vivek Goyal
bf79193710 blkio: Set must_dispatch only if we decided to not dispatch the request
o must_dispatch flag should be set only if we decided not to run the queue
  and dispatch the request.

Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-12-03 19:28:51 +01:00
Shaohua Li
474b18ccc2 cfq-iosched: no dispatch limit for single queue
Since commit 2f5cb7381b737e24c8046fd4aeab571fb71315f5, each queue can send
up to 4 * 4 requests if only one queue exists. I wonder why we have such limit.
Device supports tag can send more requests. For example, AHCI can send 31
requests. Test (direct aio randread) shows the limits reduce about 4% disk
thoughput.
On the other hand, since we send one request one time, if other queue
pop when current is sending more than cfq_quantum requests, current queue will
stop send requests soon after one request, so sounds there is no big latency.

Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-12-03 12:58:05 +01:00