Commit Graph

13 Commits

Author SHA1 Message Date
Ingo Molnar
8c5db92a70 Merge branch 'linus' into locking/core, to resolve conflicts
Conflicts:
	include/linux/compiler-clang.h
	include/linux/compiler-gcc.h
	include/linux/compiler-intel.h
	include/uapi/linux/stddef.h

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-11-07 10:32:44 +01:00
Greg Kroah-Hartman
b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Mark Rutland
6aa7de0591 locking/atomics: COCCINELLE/treewide: Convert trivial ACCESS_ONCE() patterns to READ_ONCE()/WRITE_ONCE()
Please do not apply this to mainline directly, instead please re-run the
coccinelle script shown below and apply its output.

For several reasons, it is desirable to use {READ,WRITE}_ONCE() in
preference to ACCESS_ONCE(), and new code is expected to use one of the
former. So far, there's been no reason to change most existing uses of
ACCESS_ONCE(), as these aren't harmful, and changing them results in
churn.

However, for some features, the read/write distinction is critical to
correct operation. To distinguish these cases, separate read/write
accessors must be used. This patch migrates (most) remaining
ACCESS_ONCE() instances to {READ,WRITE}_ONCE(), using the following
coccinelle script:

----
// Convert trivial ACCESS_ONCE() uses to equivalent READ_ONCE() and
// WRITE_ONCE()

// $ make coccicheck COCCI=/home/mark/once.cocci SPFLAGS="--include-headers" MODE=patch

virtual patch

@ depends on patch @
expression E1, E2;
@@

- ACCESS_ONCE(E1) = E2
+ WRITE_ONCE(E1, E2)

@ depends on patch @
expression E;
@@

- ACCESS_ONCE(E)
+ READ_ONCE(E)
----

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: davem@davemloft.net
Cc: linux-arch@vger.kernel.org
Cc: mpe@ellerman.id.au
Cc: shuah@kernel.org
Cc: snitzer@redhat.com
Cc: thor.thayer@linux.intel.com
Cc: tj@kernel.org
Cc: viro@zeniv.linux.org.uk
Cc: will.deacon@arm.com
Link: http://lkml.kernel.org/r/1508792849-3115-19-git-send-email-paulmck@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-25 11:01:08 +02:00
Ingo Molnar
2055da9738 sched/wait: Disambiguate wq_entry->task_list and wq_head->task_list naming
So I've noticed a number of instances where it was not obvious from the
code whether ->task_list was for a wait-queue head or a wait-queue entry.

Furthermore, there's a number of wait-queue users where the lists are
not for 'tasks' but other entities (poll tables, etc.), in which case
the 'task_list' name is actively confusing.

To clear this all up, name the wait-queue head and entry list structure
fields unambiguously:

	struct wait_queue_head::task_list	=> ::head
	struct wait_queue_entry::task_list	=> ::entry

For example, this code:

	rqw->wait.task_list.next != &wait->task_list

... is was pretty unclear (to me) what it's doing, while now it's written this way:

	rqw->wait.head.next != &wait->entry

... which makes it pretty clear that we are iterating a list until we see the head.

Other examples are:

	list_for_each_entry_safe(pos, next, &x->task_list, task_list) {
	list_for_each_entry(wq, &fence->wait.task_list, task_list) {

... where it's unclear (to me) what we are iterating, and during review it's
hard to tell whether it's trying to walk a wait-queue entry (which would be
a bug), while now it's written as:

	list_for_each_entry_safe(pos, next, &x->head, entry) {
	list_for_each_entry(wq, &fence->wait.head, entry) {

Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-06-20 12:19:14 +02:00
Ingo Molnar
ac6424b981 sched/wait: Rename wait_queue_t => wait_queue_entry_t
Rename:

	wait_queue_t		=>	wait_queue_entry_t

'wait_queue_t' was always a slight misnomer: its name implies that it's a "queue",
but in reality it's a queue *entry*. The 'real' queue is the wait queue head,
which had to carry the name.

Start sorting this out by renaming it to 'wait_queue_entry_t'.

This also allows the real structure name 'struct __wait_queue' to
lose its double underscore and become 'struct wait_queue_entry',
which is the more canonical nomenclature for such data types.

Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-06-20 12:18:27 +02:00
Eric W. Biederman
820f9f147d fs_pin: Allow for the possibility that m_list or s_list go unused.
This is needed to support lazily umounting locked mounts.  Because the
entire unmounted subtree needs to stay together until there are no
users with references to any part of the subtree.

To support this guarantee that the fs_pin m_list and s_list nodes
are initialized by initializing them in init_fs_pin allowing
for the possibility that pin_insert_group does not touch them.

Further use hlist_del_init in pin_remove so that there is
a hlist_unhashed test before the list we attempt to update
the previous list item.

Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2015-04-09 11:39:55 -05:00
Al Viro
87b95ce096 switch the IO-triggering parts of umount to fs_pin
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-01-25 23:17:29 -05:00
Al Viro
59eda0e07f new fs_pin killing logics
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-01-25 23:17:28 -05:00
Al Viro
fdab684d72 allow attaching fs_pin to a group not associated with some superblock
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-01-25 23:17:28 -05:00
Al Viro
32426f6653 pull bumping refcount into ->kill()
there will be one more change of ->kill() calling conventions; this
isn't final.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-01-25 23:16:29 -05:00
Al Viro
9e251d0204 kill pin_put()
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-01-25 23:16:28 -05:00
Al Viro
8fa1f1c2bd make fs/{namespace,super}.c forget about acct.h
These externs belong in fs/internal.h.  Rename (they are not acct-specific
anymore) and move them over there.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2014-08-07 14:40:09 -04:00
Al Viro
efb170c228 take fs_pin stuff to fs/*
Add a new field to fs_pin - kill(pin).  That's what umount and r/o remount
will be calling for all pins attached to vfsmount and superblock resp.
Called after bumping the refcount, so it won't go away under us.  Dropping
the refcount is responsibility of the instance.  All generic stuff moved to
fs/fs_pin.c; the next step will rip all the knowledge of kernel/acct.c from
fs/super.c and fs/namespace.c.  After that - death to mnt_pin(); it was
intended to be usable as generic mechanism for code that wants to attach
objects to vfsmount, so that they would not make the sucker busy and
would get killed on umount.  Never got it right; it remained acct.c-specific
all along.  Now it's very close to being killable.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2014-08-07 14:40:08 -04:00