Commit Graph

731 Commits

Author SHA1 Message Date
Michal Hocko 0ee931c4e3 mm: treewide: remove GFP_TEMPORARY allocation flag
GFP_TEMPORARY was introduced by commit e12ba74d8f ("Group short-lived
and reclaimable kernel allocations") along with __GFP_RECLAIMABLE.  It's
primary motivation was to allow users to tell that an allocation is
short lived and so the allocator can try to place such allocations close
together and prevent long term fragmentation.  As much as this sounds
like a reasonable semantic it becomes much less clear when to use the
highlevel GFP_TEMPORARY allocation flag.  How long is temporary? Can the
context holding that memory sleep? Can it take locks? It seems there is
no good answer for those questions.

The current implementation of GFP_TEMPORARY is basically GFP_KERNEL |
__GFP_RECLAIMABLE which in itself is tricky because basically none of
the existing caller provide a way to reclaim the allocated memory.  So
this is rather misleading and hard to evaluate for any benefits.

I have checked some random users and none of them has added the flag
with a specific justification.  I suspect most of them just copied from
other existing users and others just thought it might be a good idea to
use without any measuring.  This suggests that GFP_TEMPORARY just
motivates for cargo cult usage without any reasoning.

I believe that our gfp flags are quite complex already and especially
those with highlevel semantic should be clearly defined to prevent from
confusion and abuse.  Therefore I propose dropping GFP_TEMPORARY and
replace all existing users to simply use GFP_KERNEL.  Please note that
SLAB users with shrinkers will still get __GFP_RECLAIMABLE heuristic and
so they will be placed properly for memory fragmentation prevention.

I can see reasons we might want some gfp flag to reflect shorterm
allocations but I propose starting from a clear semantic definition and
only then add users with proper justification.

This was been brought up before LSF this year by Matthew [1] and it
turned out that GFP_TEMPORARY really doesn't have a clear semantic.  It
seems to be a heuristic without any measured advantage for most (if not
all) its current users.  The follow up discussion has revealed that
opinions on what might be temporary allocation differ a lot between
developers.  So rather than trying to tweak existing users into a
semantic which they haven't expected I propose to simply remove the flag
and start from scratch if we really need a semantic for short term
allocations.

[1] http://lkml.kernel.org/r/20170118054945.GD18349@bombadil.infradead.org

[akpm@linux-foundation.org: fix typo]
[akpm@linux-foundation.org: coding-style fixes]
[sfr@canb.auug.org.au: drm/i915: fix up]
  Link: http://lkml.kernel.org/r/20170816144703.378d4f4d@canb.auug.org.au
Link: http://lkml.kernel.org/r/20170728091904.14627-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Neil Brown <neilb@suse.de>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-13 18:53:16 -07:00
Alexey Dobriyan 9b130ad5bb treewide: make "nr_cpu_ids" unsigned
First, number of CPUs can't be negative number.

Second, different signnnedness leads to suboptimal code in the following
cases:

1)
	kmalloc(nr_cpu_ids * sizeof(X));

"int" has to be sign extended to size_t.

2)
	while (loff_t *pos < nr_cpu_ids)

MOVSXD is 1 byte longed than the same MOV.

Other cases exist as well. Basically compiler is told that nr_cpu_ids
can't be negative which can't be deduced if it is "int".

Code savings on allyesconfig kernel: -3KB

	add/remove: 0/0 grow/shrink: 25/264 up/down: 261/-3631 (-3370)
	function                                     old     new   delta
	coretemp_cpu_online                          450     512     +62
	rcu_init_one                                1234    1272     +38
	pci_device_probe                             374     399     +25

				...

	pgdat_reclaimable_pages                      628     556     -72
	select_fallback_rq                           446     369     -77
	task_numa_find_cpu                          1923    1807    -116

Link: http://lkml.kernel.org/r/20170819114959.GA30580@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-08 18:26:48 -07:00
Arvind Yadav 1fdaaa2329 mm/slub.c: constify attribute_group structures
attribute_group are not supposed to change at runtime.  All functions
working with attribute_group provided by <linux/sysfs.h> work with const
attribute_group.  So mark the non-const structs as const.

Link: http://lkml.kernel.org/r/1501157186-3749-1-git-send-email-arvind.yadav.cs@gmail.com
Signed-off-by: Arvind Yadav <arvind.yadav.cs@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:27 -07:00
Alexander Popov ce6fa91b93 mm/slub.c: add a naive detection of double free or corruption
Add an assertion similar to "fasttop" check in GNU C Library allocator
as a part of SLAB_FREELIST_HARDENED feature.  An object added to a
singly linked freelist should not point to itself.  That helps to detect
some double free errors (e.g. CVE-2017-2636) without slub_debug and
KASAN.

Link: http://lkml.kernel.org/r/1502468246-1262-1-git-send-email-alex.popov@linux.com
Signed-off-by: Alexander Popov <alex.popov@linux.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Paul E McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Nicolas Pitre <nicolas.pitre@linaro.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Tycho Andersen <tycho@docker.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:24 -07:00
Kees Cook 2482ddec67 mm: add SLUB free list pointer obfuscation
This SLUB free list pointer obfuscation code is modified from Brad
Spengler/PaX Team's code in the last public patch of grsecurity/PaX
based on my understanding of the code.  Changes or omissions from the
original code are mine and don't reflect the original grsecurity/PaX
code.

This adds a per-cache random value to SLUB caches that is XORed with
their freelist pointer address and value.  This adds nearly zero
overhead and frustrates the very common heap overflow exploitation
method of overwriting freelist pointers.

A recent example of the attack is written up here:

  http://cyseclabs.com/blog/cve-2016-6187-heap-off-by-one-exploit

and there is a section dedicated to the technique the book "A Guide to
Kernel Exploitation: Attacking the Core".

This is based on patches by Daniel Micay, and refactored to minimize the
use of #ifdef.

With 200-count cycles of "hackbench -g 20 -l 1000" I saw the following
run times:

 before:
 	mean 10.11882499999999999995
	variance .03320378329145728642
	stdev .18221905304181911048

  after:
	mean 10.12654000000000000014
	variance .04700556623115577889
	stdev .21680767106160192064

The difference gets lost in the noise, but if the above is to be taken
literally, using CONFIG_FREELIST_HARDENED is 0.07% slower.

Link: http://lkml.kernel.org/r/20170802180609.GA66807@beast
Signed-off-by: Kees Cook <keescook@chromium.org>
Suggested-by: Daniel Micay <danielmicay@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Tycho Andersen <tycho@docker.com>
Cc: Alexander Popov <alex.popov@linux.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:24 -07:00
Alexander Potapenko ea37df54d2 slub: tidy up initialization ordering
- free_kmem_cache_nodes() frees the cache node before nulling out a
   reference to it

 - init_kmem_cache_nodes() publishes the cache node before initializing
   it

Neither of these matter at runtime because the cache nodes cannot be
looked up by any other thread.  But it's neater and more consistent to
reorder these.

Link: http://lkml.kernel.org/r/20170707083408.40410-1-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:24 -07:00
Vladimir Davydov f6ba488073 slub: fix per memcg cache leak on css offline
To avoid a possible deadlock, sysfs_slab_remove() schedules an
asynchronous work to delete sysfs entries corresponding to the kmem
cache.  To ensure the cache isn't freed before the work function is
called, it takes a reference to the cache kobject.  The reference is
supposed to be released by the work function.

However, the work function (sysfs_slab_remove_workfn()) does nothing in
case the cache sysfs entry has already been deleted, leaking the kobject
and the corresponding cache.

This may happen on a per memcg cache destruction, because sysfs entries
of a per memcg cache are deleted on memcg offline if the cache is empty
(see __kmemcg_cache_deactivate()).

The kmemleak report looks like this:

  unreferenced object 0xffff9f798a79f540 (size 32):
    comm "kworker/1:4", pid 15416, jiffies 4307432429 (age 28687.554s)
    hex dump (first 32 bytes):
      6b 6d 61 6c 6c 6f 63 2d 31 36 28 31 35 39 39 3a  kmalloc-16(1599:
      6e 65 77 72 6f 6f 74 29 00 23 6b c0 ff ff ff ff  newroot).#k.....
    backtrace:
       kmemleak_alloc+0x4a/0xa0
       __kmalloc_track_caller+0x148/0x2c0
       kvasprintf+0x66/0xd0
       kasprintf+0x49/0x70
       memcg_create_kmem_cache+0xe6/0x160
       memcg_kmem_cache_create_func+0x20/0x110
       process_one_work+0x205/0x5d0
       worker_thread+0x4e/0x3a0
       kthread+0x109/0x140
       ret_from_fork+0x2a/0x40
  unreferenced object 0xffff9f79b6136840 (size 416):
    comm "kworker/1:4", pid 15416, jiffies 4307432429 (age 28687.573s)
    hex dump (first 32 bytes):
      40 fb 80 c2 3e 33 00 00 00 00 00 40 00 00 00 00  @...>3.....@....
      00 00 00 00 00 00 00 00 10 00 00 00 10 00 00 00  ................
    backtrace:
       kmemleak_alloc+0x4a/0xa0
       kmem_cache_alloc+0x128/0x280
       create_cache+0x3b/0x1e0
       memcg_create_kmem_cache+0x118/0x160
       memcg_kmem_cache_create_func+0x20/0x110
       process_one_work+0x205/0x5d0
       worker_thread+0x4e/0x3a0
       kthread+0x109/0x140
       ret_from_fork+0x2a/0x40

Fix the leak by adding the missing call to kobject_put() to
sysfs_slab_remove_workfn().

Link: http://lkml.kernel.org/r/20170812181134.25027-1-vdavydov.dev@gmail.com
Fixes: 3b7b314053 ("slub: make sysfs file removal asynchronous")
Signed-off-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Reported-by: Andrei Vagin <avagin@gmail.com>
Tested-by: Andrei Vagin <avagin@gmail.com>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: <stable@vger.kernel.org>	[4.12.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-18 15:32:01 -07:00
Johannes Weiner 7779f21236 mm: memcontrol: account slab stats per lruvec
Josef's redesign of the balancing between slab caches and the page cache
requires slab cache statistics at the lruvec level.

Link: http://lkml.kernel.org/r/20170530181724.27197-7-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:35 -07:00
Johannes Weiner 385386cff4 mm: vmstat: move slab statistics from zone to node counters
Patch series "mm: per-lruvec slab stats"

Josef is working on a new approach to balancing slab caches and the page
cache.  For this to work, he needs slab cache statistics on the lruvec
level.  These patches implement that by adding infrastructure that
allows updating and reading generic VM stat items per lruvec, then
switches some existing VM accounting sites, including the slab
accounting ones, to this new cgroup-aware API.

I'll follow up with more patches on this, because there is actually
substantial simplification that can be done to the memory controller
when we replace private memcg accounting with making the existing VM
accounting sites cgroup-aware.  But this is enough for Josef to base his
slab reclaim work on, so here goes.

This patch (of 5):

To re-implement slab cache vs.  page cache balancing, we'll need the
slab counters at the lruvec level, which, ever since lru reclaim was
moved from the zone to the node, is the intersection of the node, not
the zone, and the memcg.

We could retain the per-zone counters for when the page allocator dumps
its memory information on failures, and have counters on both levels -
which on all but NUMA node 0 is usually redundant.  But let's keep it
simple for now and just move them.  If anybody complains we can restore
the per-zone counters.

[hannes@cmpxchg.org: fix oops]
  Link: http://lkml.kernel.org/r/20170605183511.GA8915@cmpxchg.org
Link: http://lkml.kernel.org/r/20170530181724.27197-3-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:35 -07:00
Wei Yang e6d0e1dcf5 mm/slub.c: wrap kmem_cache->cpu_partial in config CONFIG_SLUB_CPU_PARTIAL
kmem_cache->cpu_partial is just used when CONFIG_SLUB_CPU_PARTIAL is
set, so wrap it with config CONFIG_SLUB_CPU_PARTIAL will save some space
on 32bit arch.

This patch wraps kmem_cache->cpu_partial in config CONFIG_SLUB_CPU_PARTIAL
and wraps its sysfs too.

Link: http://lkml.kernel.org/r/20170502144533.10729-4-richard.weiyang@gmail.com
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:30 -07:00
Wei Yang a93cf07bc3 mm/slub.c: wrap cpu_slab->partial in CONFIG_SLUB_CPU_PARTIAL
cpu_slab's field partial is used when CONFIG_SLUB_CPU_PARTIAL is set,
which means we can save a pointer's space on each cpu for every slub
item.

This patch wraps cpu_slab->partial in CONFIG_SLUB_CPU_PARTIAL and wraps
its sysfs use too.

[akpm@linux-foundation.org: avoid strange 80-col tricks]
Link: http://lkml.kernel.org/r/20170502144533.10729-3-richard.weiyang@gmail.com
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:30 -07:00
Wei Yang d4ff6d35f6 mm/slub: reset cpu_slab's pointer in deactivate_slab()
Each time a slab is deactivated, the page and freelist pointer should be
reset.

This patch just merges these two options into deactivate_slab().

Link: http://lkml.kernel.org/r/20170507031215.3130-2-richard.weiyang@gmail.com
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:30 -07:00
Wei Yang 66fdbe5203 mm/slub.c: remove a redundant assignment in ___slab_alloc()
When the code comes to this point, there are two cases:
1. cpu_slab is deactivated
2. cpu_slab is empty

In both cased, cpu_slab->freelist is NULL at this moment.

This patch removes the redundant assignment of cpu_slab->freelist.

Link: http://lkml.kernel.org/r/20170507031215.3130-1-richard.weiyang@gmail.com
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:30 -07:00
Tejun Heo 3b7b314053 slub: make sysfs file removal asynchronous
Commit bf5eb3de38 ("slub: separate out sysfs_slab_release() from
sysfs_slab_remove()") made slub sysfs file removals synchronous to
kmem_cache shutdown.

Unfortunately, this created a possible ABBA deadlock between slab_mutex
and sysfs draining mechanism triggering the following lockdep warning.

  ======================================================
  [ INFO: possible circular locking dependency detected ]
  4.10.0-test+ #48 Not tainted
  -------------------------------------------------------
  rmmod/1211 is trying to acquire lock:
   (s_active#120){++++.+}, at: [<ffffffff81308073>] kernfs_remove+0x23/0x40

  but task is already holding lock:
   (slab_mutex){+.+.+.}, at: [<ffffffff8120f691>] kmem_cache_destroy+0x41/0x2d0

  which lock already depends on the new lock.

  the existing dependency chain (in reverse order) is:

  -> #1 (slab_mutex){+.+.+.}:
	 lock_acquire+0xf6/0x1f0
	 __mutex_lock+0x75/0x950
	 mutex_lock_nested+0x1b/0x20
	 slab_attr_store+0x75/0xd0
	 sysfs_kf_write+0x45/0x60
	 kernfs_fop_write+0x13c/0x1c0
	 __vfs_write+0x28/0x120
	 vfs_write+0xc8/0x1e0
	 SyS_write+0x49/0xa0
	 entry_SYSCALL_64_fastpath+0x1f/0xc2

  -> #0 (s_active#120){++++.+}:
	 __lock_acquire+0x10ed/0x1260
	 lock_acquire+0xf6/0x1f0
	 __kernfs_remove+0x254/0x320
	 kernfs_remove+0x23/0x40
	 sysfs_remove_dir+0x51/0x80
	 kobject_del+0x18/0x50
	 __kmem_cache_shutdown+0x3e6/0x460
	 kmem_cache_destroy+0x1fb/0x2d0
	 kvm_exit+0x2d/0x80 [kvm]
	 vmx_exit+0x19/0xa1b [kvm_intel]
	 SyS_delete_module+0x198/0x1f0
	 entry_SYSCALL_64_fastpath+0x1f/0xc2

  other info that might help us debug this:

   Possible unsafe locking scenario:

	 CPU0                    CPU1
	 ----                    ----
    lock(slab_mutex);
				 lock(s_active#120);
				 lock(slab_mutex);
    lock(s_active#120);

   *** DEADLOCK ***

  2 locks held by rmmod/1211:
   #0:  (cpu_hotplug.dep_map){++++++}, at: [<ffffffff810a7877>] get_online_cpus+0x37/0x80
   #1:  (slab_mutex){+.+.+.}, at: [<ffffffff8120f691>] kmem_cache_destroy+0x41/0x2d0

  stack backtrace:
  CPU: 3 PID: 1211 Comm: rmmod Not tainted 4.10.0-test+ #48
  Hardware name: Hewlett-Packard HP Compaq Pro 6300 SFF/339A, BIOS K01 v02.05 05/07/2012
  Call Trace:
   print_circular_bug+0x1be/0x210
   __lock_acquire+0x10ed/0x1260
   lock_acquire+0xf6/0x1f0
   __kernfs_remove+0x254/0x320
   kernfs_remove+0x23/0x40
   sysfs_remove_dir+0x51/0x80
   kobject_del+0x18/0x50
   __kmem_cache_shutdown+0x3e6/0x460
   kmem_cache_destroy+0x1fb/0x2d0
   kvm_exit+0x2d/0x80 [kvm]
   vmx_exit+0x19/0xa1b [kvm_intel]
   SyS_delete_module+0x198/0x1f0
   ? SyS_delete_module+0x5/0x1f0
   entry_SYSCALL_64_fastpath+0x1f/0xc2

It'd be the cleanest to deal with the issue by removing sysfs files
without holding slab_mutex before the rest of shutdown; however, given
the current code structure, it is pretty difficult to do so.

This patch punts sysfs file removal to a work item.  Before commit
bf5eb3de38, the removal was punted to a RCU delayed work item which is
executed after release.  Now, we're punting to a different work item on
shutdown which still maintains the goal removing the sysfs files earlier
when destroying kmem_caches.

Link: http://lkml.kernel.org/r/20170620204512.GI21326@htj.duckdns.org
Fixes: bf5eb3de38 ("slub: separate out sysfs_slab_release() from sysfs_slab_remove()")
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Tested-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-06-23 16:15:55 -07:00
Thomas Gleixner 478fe3037b slub/memcg: cure the brainless abuse of sysfs attributes
memcg_propagate_slab_attrs() abuses the sysfs attribute file functions
to propagate settings from the root kmem_cache to a newly created
kmem_cache.  It does that with:

     attr->show(root, buf);
     attr->store(new, buf, strlen(bug);

Aside of being a lazy and absurd hackery this is broken because it does
not check the return value of the show() function.

Some of the show() functions return 0 w/o touching the buffer.  That
means in such a case the store function is called with the stale content
of the previous show().  That causes nonsense like invoking
kmem_cache_shrink() on a newly created kmem_cache.  In the worst case it
would cause handing in an uninitialized buffer.

This should be rewritten proper by adding a propagate() callback to
those slub_attributes which must be propagated and avoid that insane
conversion to and from ASCII, but that's too large for a hot fix.

Check at least the return value of the show() function, so calling
store() with stale content is prevented.

Steven said:
 "It can cause a deadlock with get_online_cpus() that has been uncovered
  by recent cpu hotplug and lockdep changes that Thomas and Peter have
  been doing.

     Possible unsafe locking scenario:

           CPU0                    CPU1
           ----                    ----
      lock(cpu_hotplug.lock);
                                   lock(slab_mutex);
                                   lock(cpu_hotplug.lock);
      lock(slab_mutex);

     *** DEADLOCK ***"

Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1705201244540.2255@nanos
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reported-by: Steven Rostedt <rostedt@goodmis.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-06-02 15:07:37 -07:00
Paul E. McKenney 5f0d5a3ae7 mm: Rename SLAB_DESTROY_BY_RCU to SLAB_TYPESAFE_BY_RCU
A group of Linux kernel hackers reported chasing a bug that resulted
from their assumption that SLAB_DESTROY_BY_RCU provided an existence
guarantee, that is, that no block from such a slab would be reallocated
during an RCU read-side critical section.  Of course, that is not the
case.  Instead, SLAB_DESTROY_BY_RCU only prevents freeing of an entire
slab of blocks.

However, there is a phrase for this, namely "type safety".  This commit
therefore renames SLAB_DESTROY_BY_RCU to SLAB_TYPESAFE_BY_RCU in order
to avoid future instances of this sort of confusion.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: <linux-mm@kvack.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
[ paulmck: Add comments mentioning the old name, as requested by Eric
  Dumazet, in order to help people familiar with the old name find
  the new one. ]
Acked-by: David Rientjes <rientjes@google.com>
2017-04-18 11:42:36 -07:00
Tejun Heo 1663f26df3 slub: make sysfs directories for memcg sub-caches optional
SLUB creates a per-cache directory under /sys/kernel/slab which hosts a
bunch of debug files.  Usually, there aren't that many caches on a
system and this doesn't really matter; however, if memcg is in use, each
cache can have per-cgroup sub-caches.  SLUB creates the same directories
for these sub-caches under /sys/kernel/slab/$CACHE/cgroup.

Unfortunately, because there can be a lot of cgroups, active or
draining, the product of the numbers of caches, cgroups and files in
each directory can reach a very high number - hundreds of thousands is
commonplace.  Millions and beyond aren't difficult to reach either.

What's under /sys/kernel/slab is primarily for debugging and the
information and control on the a root cache already cover its
sub-caches.  While having a separate directory for each sub-cache can be
helpful for development, it doesn't make much sense to pay this amount
of overhead by default.

This patch introduces a boot parameter slub_memcg_sysfs which determines
whether to create sysfs directories for per-memcg sub-caches.  It also
adds CONFIG_SLUB_MEMCG_SYSFS_ON which determines the boot parameter's
default value and defaults to 0.

[akpm@linux-foundation.org: kset_unregister(NULL) is legal]
Link: http://lkml.kernel.org/r/20170204145203.GB26958@mtj.duckdns.org
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:27 -08:00
Tejun Heo 50862ce711 slab: remove slub sysfs interface files early for empty memcg caches
With kmem cgroup support enabled, kmem_caches can be created and
destroyed frequently and a great number of near empty kmem_caches can
accumulate if there are a lot of transient cgroups and the system is not
under memory pressure.  When memory reclaim starts under such
conditions, it can lead to consecutive deactivation and destruction of
many kmem_caches, easily hundreds of thousands on moderately large
systems, exposing scalability issues in the current slab management
code.  This is one of the patches to address the issue.

Each cache has a number of sysfs interface files under /sys/kernel/slab.
On a system with a lot of memory and transient memcgs, the number of
interface files which have to be removed once memory reclaim kicks in
can reach millions.

Link: http://lkml.kernel.org/r/20170117235411.9408-10-tj@kernel.org
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Jay Vana <jsvana@fb.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:27 -08:00
Tejun Heo 01fb58bcba slab: remove synchronous synchronize_sched() from memcg cache deactivation path
With kmem cgroup support enabled, kmem_caches can be created and
destroyed frequently and a great number of near empty kmem_caches can
accumulate if there are a lot of transient cgroups and the system is not
under memory pressure.  When memory reclaim starts under such
conditions, it can lead to consecutive deactivation and destruction of
many kmem_caches, easily hundreds of thousands on moderately large
systems, exposing scalability issues in the current slab management
code.  This is one of the patches to address the issue.

slub uses synchronize_sched() to deactivate a memcg cache.
synchronize_sched() is an expensive and slow operation and doesn't scale
when a huge number of caches are destroyed back-to-back.  While there
used to be a simple batching mechanism, the batching was too restricted
to be helpful.

This patch implements slab_deactivate_memcg_cache_rcu_sched() which slub
can use to schedule sched RCU callback instead of performing
synchronize_sched() synchronously while holding cgroup_mutex.  While
this adds online cpus, mems and slab_mutex operations, operating on
these locks back-to-back from the same kworker, which is what's gonna
happen when there are many to deactivate, isn't expensive at all and
this gets rid of the scalability problem completely.

Link: http://lkml.kernel.org/r/20170117235411.9408-9-tj@kernel.org
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Jay Vana <jsvana@fb.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:27 -08:00
Tejun Heo c9fc586403 slab: introduce __kmemcg_cache_deactivate()
__kmem_cache_shrink() is called with %true @deactivate only for memcg
caches.  Remove @deactivate from __kmem_cache_shrink() and introduce
__kmemcg_cache_deactivate() instead.  Each memcg-supporting allocator
should implement it and it should deactivate and drain the cache.

This is to allow memcg cache deactivation behavior to further deviate
from simple shrinking without messing up __kmem_cache_shrink().

This is pure reorganization and doesn't introduce any observable
behavior changes.

v2: Dropped unnecessary ifdef in mm/slab.h as suggested by Vladimir.

Link: http://lkml.kernel.org/r/20170117235411.9408-8-tj@kernel.org
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:27 -08:00
Tejun Heo 510ded33e0 slab: implement slab_root_caches list
With kmem cgroup support enabled, kmem_caches can be created and
destroyed frequently and a great number of near empty kmem_caches can
accumulate if there are a lot of transient cgroups and the system is not
under memory pressure.  When memory reclaim starts under such
conditions, it can lead to consecutive deactivation and destruction of
many kmem_caches, easily hundreds of thousands on moderately large
systems, exposing scalability issues in the current slab management
code.  This is one of the patches to address the issue.

slab_caches currently lists all caches including root and memcg ones.
This is the only data structure which lists the root caches and
iterating root caches can only be done by walking the list while
skipping over memcg caches.  As there can be a huge number of memcg
caches, this can become very expensive.

This also can make /proc/slabinfo behave very badly.  seq_file processes
reads in 4k chunks and seeks to the previous Nth position on slab_caches
list to resume after each chunk.  With a lot of memcg cache churns on
the list, reading /proc/slabinfo can become very slow and its content
often ends up with duplicate and/or missing entries.

This patch adds a new list slab_root_caches which lists only the root
caches.  When memcg is not enabled, it becomes just an alias of
slab_caches.  memcg specific list operations are collected into
memcg_[un]link_cache().

Link: http://lkml.kernel.org/r/20170117235411.9408-7-tj@kernel.org
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Jay Vana <jsvana@fb.com>
Acked-by: Vladimir Davydov <vdavydov@tarantool.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:27 -08:00
Tejun Heo bf5eb3de38 slub: separate out sysfs_slab_release() from sysfs_slab_remove()
Separate out slub sysfs removal and release, and call the former earlier
from __kmem_cache_shutdown().  There's no reason to defer sysfs removal
through RCU and this will later allow us to remove sysfs files way
earlier during memory cgroup offline instead of release.

Link: http://lkml.kernel.org/r/20170117235411.9408-3-tj@kernel.org
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:27 -08:00
Tejun Heo 290b6a58b7 Revert "slub: move synchronize_sched out of slab_mutex on shrink"
Patch series "slab: make memcg slab destruction scalable", v3.

With kmem cgroup support enabled, kmem_caches can be created and
destroyed frequently and a great number of near empty kmem_caches can
accumulate if there are a lot of transient cgroups and the system is not
under memory pressure.  When memory reclaim starts under such
conditions, it can lead to consecutive deactivation and destruction of
many kmem_caches, easily hundreds of thousands on moderately large
systems, exposing scalability issues in the current slab management
code.

I've seen machines which end up with hundred thousands of caches and
many millions of kernfs_nodes.  The current code is O(N^2) on the total
number of caches and has synchronous rcu_barrier() and
synchronize_sched() in cgroup offline / release path which is executed
while holding cgroup_mutex.  Combined, this leads to very expensive and
slow cache destruction operations which can easily keep running for half
a day.

This also messes up /proc/slabinfo along with other cache iterating
operations.  seq_file operates on 4k chunks and on each 4k boundary
tries to seek to the last position in the list.  With a huge number of
caches on the list, this becomes very slow and very prone to the list
content changing underneath it leading to a lot of missing and/or
duplicate entries.

This patchset addresses the scalability problem.

* Add root and per-memcg lists.  Update each user to use the
  appropriate list.

* Make rcu_barrier() for SLAB_DESTROY_BY_RCU caches globally batched
  and asynchronous.

* For dying empty slub caches, remove the sysfs files after
  deactivation so that we don't end up with millions of sysfs files
  without any useful information on them.

This patchset contains the following nine patches.

 0001-Revert-slub-move-synchronize_sched-out-of-slab_mutex.patch
 0002-slub-separate-out-sysfs_slab_release-from-sysfs_slab.patch
 0003-slab-remove-synchronous-rcu_barrier-call-in-memcg-ca.patch
 0004-slab-reorganize-memcg_cache_params.patch
 0005-slab-link-memcg-kmem_caches-on-their-associated-memo.patch
 0006-slab-implement-slab_root_caches-list.patch
 0007-slab-introduce-__kmemcg_cache_deactivate.patch
 0008-slab-remove-synchronous-synchronize_sched-from-memcg.patch
 0009-slab-remove-slub-sysfs-interface-files-early-for-emp.patch
 0010-slab-use-memcg_kmem_cache_wq-for-slab-destruction-op.patch

0001 reverts an existing optimization to prepare for the following
changes.  0002 is a prep patch.  0003 makes rcu_barrier() in release
path batched and asynchronous.  0004-0006 separate out the lists.
0007-0008 replace synchronize_sched() in slub destruction path with
call_rcu_sched().  0009 removes sysfs files early for empty dying
caches.  0010 makes destruction work items use a workqueue with limited
concurrency.

This patch (of 10):

Revert 89e364db71 ("slub: move synchronize_sched out of slab_mutex on
shrink").

With kmem cgroup support enabled, kmem_caches can be created and destroyed
frequently and a great number of near empty kmem_caches can accumulate if
there are a lot of transient cgroups and the system is not under memory
pressure.  When memory reclaim starts under such conditions, it can lead
to consecutive deactivation and destruction of many kmem_caches, easily
hundreds of thousands on moderately large systems, exposing scalability
issues in the current slab management code.  This is one of the patches to
address the issue.

Moving synchronize_sched() out of slab_mutex isn't enough as it's still
inside cgroup_mutex.  The whole deactivation / release path will be
updated to avoid all synchronous RCU operations.  Revert this insufficient
optimization in preparation to ease future changes.

Link: http://lkml.kernel.org/r/20170117235411.9408-2-tj@kernel.org
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Jay Vana <jsvana@fb.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:27 -08:00
Borislav Petkov 65b9de7525 mm/slub: add a dump_stack() to the unexpected GFP check
We wish to know who is doing such a thing. slab.c does this.

Link: http://lkml.kernel.org/r/20170116091643.15260-1-bp@alien8.de
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:27 -08:00
Sean Rees a810007afe mm/slub.c: fix random_seq offset destruction
Commit 210e7a43fa ("mm: SLUB freelist randomization") broke USB hub
initialisation as described in

  https://bugzilla.kernel.org/show_bug.cgi?id=177551.

Bail out early from init_cache_random_seq if s->random_seq is already
initialised.  This prevents destroying the previously computed
random_seq offsets later in the function.

If the offsets are destroyed, then shuffle_freelist will truncate
page->freelist to just the first object (orphaning the rest).

Fixes: 210e7a43fa ("mm: SLUB freelist randomization")
Link: http://lkml.kernel.org/r/20170207140707.20824-1-sean@erifax.org
Signed-off-by: Sean Rees <sean@erifax.org>
Reported-by: <userwithuid@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Thomas Garnier <thgarnie@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-08 15:41:43 -08:00
Daniel Thompson aa2efd5ea4 mm/slub.c: trace free objects at KERN_INFO
Currently when trace is enabled (e.g.  slub_debug=T,kmalloc-128 ) the
trace messages are mostly output at KERN_INFO.  However the trace code
also calls print_section() to hexdump the head of a free object.  This
is hard coded to use KERN_ERR, meaning the console is deluged with trace
messages even if we've asked for quiet.

Fix this the obvious way but adding a level parameter to
print_section(), allowing calls from the trace code to use the same
trace level as other trace messages.

Link: http://lkml.kernel.org/r/20170113154850.518-1-daniel.thompson@linaro.org
Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-01-24 16:26:14 -08:00
Arnd Bergmann 84582c8ab9 slub: avoid false-postive warning
The slub allocator gives us some incorrect warnings when
CONFIG_PROFILE_ANNOTATED_BRANCHES is set, as the unlikely() macro
prevents it from seeing that the return code matches what it was before:

  mm/slub.c: In function `kmem_cache_free_bulk':
  mm/slub.c:262:23: error: `df.s' may be used uninitialized in this function [-Werror=maybe-uninitialized]
  mm/slub.c:2943:3: error: `df.cnt' may be used uninitialized in this function [-Werror=maybe-uninitialized]
  mm/slub.c:2933:4470: error: `df.freelist' may be used uninitialized in this function [-Werror=maybe-uninitialized]
  mm/slub.c:2943:3: error: `df.tail' may be used uninitialized in this function [-Werror=maybe-uninitialized]

I have not been able to come up with a perfect way for dealing with
this, the three options I see are:

 - add a bogus initialization, which would increase the runtime overhead
 - replace unlikely() with unlikely_notrace()
 - remove the unlikely() annotation completely

I checked the object code for a typical x86 configuration and the last
two cases produce the same result, so I went for the last one, which is
the simplest.

Link: http://lkml.kernel.org/r/20161024155704.3114445-1-arnd@arndb.de
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Laura Abbott <labbott@fedoraproject.org>
Cc: Alexander Potapenko <glider@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:06 -08:00
Vladimir Davydov 89e364db71 slub: move synchronize_sched out of slab_mutex on shrink
synchronize_sched() is a heavy operation and calling it per each cache
owned by a memory cgroup being destroyed may take quite some time.  What
is worse, it's currently called under the slab_mutex, stalling all works
doing cache creation/destruction.

Actually, there isn't much point in calling synchronize_sched() for each
cache - it's enough to call it just once - after setting cpu_partial for
all caches and before shrinking them.  This way, we can also move it out
of the slab_mutex, which we have to hold for iterating over the slab
cache list.

Link: https://bugzilla.kernel.org/show_bug.cgi?id=172991
Link: http://lkml.kernel.org/r/0a10d71ecae3db00fb4421bcd3f82bcc911f4be4.1475329751.git.vdavydov.dev@gmail.com
Signed-off-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Reported-by: Doug Smythies <dsmythies@telus.net>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:06 -08:00
Sebastian Andrzej Siewior a96a87bf94 slub: Convert to hotplug state machine
Install the callbacks via the state machine.

Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: linux-mm@kvack.org
Cc: rt@linutronix.de
Cc: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Link: http://lkml.kernel.org/r/20160818125731.27256-5-bigeasy@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-09-06 18:30:20 +02:00
Chris Wilson 6039892396 mm/slub.c: run free_partial() outside of the kmem_cache_node->list_lock
With debugobjects enabled and using SLAB_DESTROY_BY_RCU, when a
kmem_cache_node is destroyed the call_rcu() may trigger a slab
allocation to fill the debug object pool (__debug_object_init:fill_pool).

Everywhere but during kmem_cache_destroy(), discard_slab() is performed
outside of the kmem_cache_node->list_lock and avoids a lockdep warning
about potential recursion:

  =============================================
  [ INFO: possible recursive locking detected ]
  4.8.0-rc1-gfxbench+ #1 Tainted: G     U
  ---------------------------------------------
  rmmod/8895 is trying to acquire lock:
   (&(&n->list_lock)->rlock){-.-...}, at: [<ffffffff811c80d7>] get_partial_node.isra.63+0x47/0x430

  but task is already holding lock:
   (&(&n->list_lock)->rlock){-.-...}, at: [<ffffffff811cbda4>] __kmem_cache_shutdown+0x54/0x320

  other info that might help us debug this:
  Possible unsafe locking scenario:
        CPU0
        ----
   lock(&(&n->list_lock)->rlock);
   lock(&(&n->list_lock)->rlock);

   *** DEADLOCK ***
   May be due to missing lock nesting notation
   5 locks held by rmmod/8895:
   #0:  (&dev->mutex){......}, at: driver_detach+0x42/0xc0
   #1:  (&dev->mutex){......}, at: driver_detach+0x50/0xc0
   #2:  (cpu_hotplug.dep_map){++++++}, at: get_online_cpus+0x2d/0x80
   #3:  (slab_mutex){+.+.+.}, at: kmem_cache_destroy+0x3c/0x220
   #4:  (&(&n->list_lock)->rlock){-.-...}, at: __kmem_cache_shutdown+0x54/0x320

  stack backtrace:
  CPU: 6 PID: 8895 Comm: rmmod Tainted: G     U          4.8.0-rc1-gfxbench+ #1
  Hardware name: Gigabyte Technology Co., Ltd. H87M-D3H/H87M-D3H, BIOS F11 08/18/2015
  Call Trace:
    __lock_acquire+0x1646/0x1ad0
    lock_acquire+0xb2/0x200
    _raw_spin_lock+0x36/0x50
    get_partial_node.isra.63+0x47/0x430
    ___slab_alloc.constprop.67+0x1a7/0x3b0
    __slab_alloc.isra.64.constprop.66+0x43/0x80
    kmem_cache_alloc+0x236/0x2d0
    __debug_object_init+0x2de/0x400
    debug_object_activate+0x109/0x1e0
    __call_rcu.constprop.63+0x32/0x2f0
    call_rcu+0x12/0x20
    discard_slab+0x3d/0x40
    __kmem_cache_shutdown+0xdb/0x320
    shutdown_cache+0x19/0x60
    kmem_cache_destroy+0x1ae/0x220
    i915_gem_load_cleanup+0x14/0x40 [i915]
    i915_driver_unload+0x151/0x180 [i915]
    i915_pci_remove+0x14/0x20 [i915]
    pci_device_remove+0x34/0xb0
    __device_release_driver+0x95/0x140
    driver_detach+0xb6/0xc0
    bus_remove_driver+0x53/0xd0
    driver_unregister+0x27/0x50
    pci_unregister_driver+0x25/0x70
    i915_exit+0x1a/0x1e2 [i915]
    SyS_delete_module+0x193/0x1f0
    entry_SYSCALL_64_fastpath+0x1c/0xac

Fixes: 52b4b950b5 ("mm: slab: free kmem_cache_node after destroy sysfs file")
Link: http://lkml.kernel.org/r/1470759070-18743-1-git-send-email-chris@chris-wilson.co.uk
Reported-by: Dave Gordon <david.s.gordon@intel.com>
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dmitry Safonov <dsafonov@virtuozzo.com>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: Dave Gordon <david.s.gordon@intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-10 16:40:56 -07:00
Linus Torvalds 1eccfa090e Implements HARDENED_USERCOPY verification of copy_to_user/copy_from_user
bounds checking for most architectures on SLAB and SLUB.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 Comment: Kees Cook <kees@outflux.net>
 
 iQIcBAABCgAGBQJXl9tlAAoJEIly9N/cbcAm5BoP/ikTtDp2bFw1sn92yHTnIWzl
 O+dcKVAeRgjfnSvPfb1JITpaM58exQSaDsPBeR0DbVzU1zDdhLcwHHiQupFh98Ka
 vBZthbrlL/u4NB26enEEW0iyA32BsxYBMnIu0z5ux9RbZflmQwGQ0c0rvy3dJ7/b
 FzB5ayVST5y/a0m6/sImeeExh78GU9rsMb1XmJRMwlJAy6miDz/F9TP0LnuW6PhG
 J5XC99ygNJS1pQBLACRsrZw6ImgBxXnWCok6tWPMxFfD+rJBU2//wqS+HozyMWHL
 iYP7+ytVo/ZVok4114X/V4Oof3a6wqgpBuYrivJ228QO+UsLYbYLo6sZ8kRK7VFm
 9GgHo/8rWB1T9lBbSaa7UL5r0dVNNLjFGS42vwV+YlgUMQ1A35VRojO0jUnJSIQU
 Ug1IxKmylLd0nEcwD8/l3DXeQABsfL8GsoKW0OtdTZtW4RND4gzq34LK6t7hvayF
 kUkLg1OLNdUJwOi16M/rhugwYFZIMfoxQtjkRXKWN4RZ2QgSHnx2lhqNmRGPAXBG
 uy21wlzUTfLTqTpoeOyHzJwyF2qf2y4nsziBMhvmlrUvIzW1LIrYUKCNT4HR8Sh5
 lC2WMGYuIqaiu+NOF3v6CgvKd9UW+mxMRyPEybH8mEgfm+FLZlWABiBjIUpSEZuB
 JFfuMv1zlljj/okIQRg8
 =USIR
 -----END PGP SIGNATURE-----

Merge tag 'usercopy-v4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux

Pull usercopy protection from Kees Cook:
 "Tbhis implements HARDENED_USERCOPY verification of copy_to_user and
  copy_from_user bounds checking for most architectures on SLAB and
  SLUB"

* tag 'usercopy-v4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
  mm: SLUB hardened usercopy support
  mm: SLAB hardened usercopy support
  s390/uaccess: Enable hardened usercopy
  sparc/uaccess: Enable hardened usercopy
  powerpc/uaccess: Enable hardened usercopy
  ia64/uaccess: Enable hardened usercopy
  arm64/uaccess: Enable hardened usercopy
  ARM: uaccess: Enable hardened usercopy
  x86/uaccess: Enable hardened usercopy
  mm: Hardened usercopy
  mm: Implement stack frame object validation
  mm: Add is_migrate_cma_page
2016-08-08 14:48:14 -07:00
Geert Uytterhoeven 117d54df7a slub: drop bogus inline for fixup_red_left()
With m68k-linux-gnu-gcc-4.1:

    include/linux/slub_def.h:126: warning: `fixup_red_left' declared inline after being called
    include/linux/slub_def.h:126: warning: previous declaration of `fixup_red_left' was here

Commit c146a2b98e ("mm, kasan: account for object redzone in SLUB's
nearest_obj()") made fixup_red_left() global, but forgot to remove the
inline keyword.

Fixes: c146a2b98e ("mm, kasan: account for object redzone in SLUB's nearest_obj()")
Link: http://lkml.kernel.org/r/1470256262-1586-1-git-send-email-geert@linux-m68k.org
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Alexander Potapenko <glider@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-04 20:02:09 -04:00
Andrey Ryabinin b3cbd9bf77 mm/kasan: get rid of ->state in struct kasan_alloc_meta
The state of object currently tracked in two places - shadow memory, and
the ->state field in struct kasan_alloc_meta.  We can get rid of the
latter.  The will save us a little bit of memory.  Also, this allow us
to move free stack into struct kasan_alloc_meta, without increasing
memory consumption.  So now we should always know when the last time the
object was freed.  This may be useful for long delayed use-after-free
bugs.

As a side effect this fixes following UBSAN warning:
	UBSAN: Undefined behaviour in mm/kasan/quarantine.c:102:13
	member access within misaligned address ffff88000d1efebc for type 'struct qlist_node'
	which requires 8 byte alignment

Link: http://lkml.kernel.org/r/1470062715-14077-5-git-send-email-aryabinin@virtuozzo.com
Reported-by: kernel test robot <xiaolong.ye@intel.com>
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-02 17:31:41 -04:00
Alexander Potapenko 80a9201a59 mm, kasan: switch SLUB to stackdepot, enable memory quarantine for SLUB
For KASAN builds:
 - switch SLUB allocator to using stackdepot instead of storing the
   allocation/deallocation stacks in the objects;
 - change the freelist hook so that parts of the freelist can be put
   into the quarantine.

[aryabinin@virtuozzo.com: fixes]
  Link: http://lkml.kernel.org/r/1468601423-28676-1-git-send-email-aryabinin@virtuozzo.com
Link: http://lkml.kernel.org/r/1468347165-41906-3-git-send-email-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Steven Rostedt (Red Hat) <rostedt@goodmis.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kostya Serebryany <kcc@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Kuthonuzo Luruo <kuthonuzo.luruo@hpe.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Alexander Potapenko c146a2b98e mm, kasan: account for object redzone in SLUB's nearest_obj()
When looking up the nearest SLUB object for a given address, correctly
calculate its offset if SLAB_RED_ZONE is enabled for that cache.

Previously, when KASAN had detected an error on an object from a cache
with SLAB_RED_ZONE set, the actual start address of the object was
miscalculated, which led to random stacks having been reported.

When looking up the nearest SLUB object for a given address, correctly
calculate its offset if SLAB_RED_ZONE is enabled for that cache.

Fixes: 7ed2f9e663 ("mm, kasan: SLAB support")
Link: http://lkml.kernel.org/r/1468347165-41906-2-git-send-email-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Steven Rostedt (Red Hat) <rostedt@goodmis.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kostya Serebryany <kcc@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Kuthonuzo Luruo <kuthonuzo.luruo@hpe.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Vladimir Davydov 4949148ad4 mm: charge/uncharge kmemcg from generic page allocator paths
Currently, to charge a non-slab allocation to kmemcg one has to use
alloc_kmem_pages helper with __GFP_ACCOUNT flag.  A page allocated with
this helper should finally be freed using free_kmem_pages, otherwise it
won't be uncharged.

This API suits its current users fine, but it turns out to be impossible
to use along with page reference counting, i.e.  when an allocation is
supposed to be freed with put_page, as it is the case with pipe or unix
socket buffers.

To overcome this limitation, this patch moves charging/uncharging to
generic page allocator paths, i.e.  to __alloc_pages_nodemask and
free_pages_prepare, and zaps alloc/free_kmem_pages helpers.  This way,
one can use any of the available page allocation functions to get the
allocated page charged to kmemcg - it's enough to pass __GFP_ACCOUNT,
just like in case of kmalloc and friends.  A charged page will be
automatically uncharged on free.

To make it possible, we need to mark pages charged to kmemcg somehow.
To avoid introducing a new page flag, we make use of page->_mapcount for
marking such pages.  Since pages charged to kmemcg are not supposed to
be mapped to userspace, it should work just fine.  There are other
(ab)users of page->_mapcount - buddy and balloon pages - but we don't
conflict with them.

In case kmemcg is compiled out or not used at runtime, this patch
introduces no overhead to generic page allocator paths.  If kmemcg is
used, it will be plus one gfp flags check on alloc and plus one
page->_mapcount check on free, which shouldn't hurt performance, because
the data accessed are hot.

Link: http://lkml.kernel.org/r/a9736d856f895bcb465d9f257b54efe32eda6f99.1464079538.git.vdavydov@virtuozzo.com
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Michal Hocko 72baeef0c2 slab: do not panic on invalid gfp_mask
Both SLAB and SLUB BUG() when a caller provides an invalid gfp_mask.
This is a rather harsh way to announce a non-critical issue.  Allocator
is free to ignore invalid flags.  Let's simply replace BUG() by
dump_stack to tell the offender and fixup the mask to move on with the
allocation request.

This is an example for kmalloc(GFP_KERNEL|__GFP_HIGHMEM) from a test
module:

  Unexpected gfp: 0x2 (__GFP_HIGHMEM). Fixing up to gfp: 0x24000c0 (GFP_KERNEL). Fix your code!
  CPU: 0 PID: 2916 Comm: insmod Tainted: G           O    4.6.0-slabgfp2-00002-g4cdfc2ef4892-dirty #936
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Debian-1.8.2-1 04/01/2014
  Call Trace:
    dump_stack+0x67/0x90
    cache_alloc_refill+0x201/0x617
    kmem_cache_alloc_trace+0xa7/0x24a
    ? 0xffffffffa0005000
    mymodule_init+0x20/0x1000 [test_slab]
    do_one_initcall+0xe7/0x16c
    ? rcu_read_lock_sched_held+0x61/0x69
    ? kmem_cache_alloc_trace+0x197/0x24a
    do_init_module+0x5f/0x1d9
    load_module+0x1a3d/0x1f21
    ? retint_kernel+0x2d/0x2d
    SyS_init_module+0xe8/0x10e
    ? SyS_init_module+0xe8/0x10e
    do_syscall_64+0x68/0x13f
    entry_SYSCALL64_slow_path+0x25/0x25

Link: http://lkml.kernel.org/r/1465548200-11384-2-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Michal Hocko bacdcb3460 slab: make GFP_SLAB_BUG_MASK information more human readable
printk offers %pGg for quite some time so let's use it to get a human
readable list of invalid flags.

The original output would be
  [  429.191962] gfp: 2

after the change
  [  429.191962] Unexpected gfp: 0x2 (__GFP_HIGHMEM)

Link: http://lkml.kernel.org/r/1465548200-11384-1-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Thomas Garnier 210e7a43fa mm: SLUB freelist randomization
Implements freelist randomization for the SLUB allocator.  It was
previous implemented for the SLAB allocator.  Both use the same
configuration option (CONFIG_SLAB_FREELIST_RANDOM).

The list is randomized during initialization of a new set of pages.  The
order on different freelist sizes is pre-computed at boot for
performance.  Each kmem_cache has its own randomized freelist.

This security feature reduces the predictability of the kernel SLUB
allocator against heap overflows rendering attacks much less stable.

For example these attacks exploit the predictability of the heap:
 - Linux Kernel CAN SLUB overflow (https://goo.gl/oMNWkU)
 - Exploiting Linux Kernel Heap corruptions (http://goo.gl/EXLn95)

Performance results:

slab_test impact is between 3% to 4% on average for 100000 attempts
without smp.  It is a very focused testing, kernbench show the overall
impact on the system is way lower.

Before:

  Single thread testing
  =====================
  1. Kmalloc: Repeatedly allocate then free test
  100000 times kmalloc(8) -> 49 cycles kfree -> 77 cycles
  100000 times kmalloc(16) -> 51 cycles kfree -> 79 cycles
  100000 times kmalloc(32) -> 53 cycles kfree -> 83 cycles
  100000 times kmalloc(64) -> 62 cycles kfree -> 90 cycles
  100000 times kmalloc(128) -> 81 cycles kfree -> 97 cycles
  100000 times kmalloc(256) -> 98 cycles kfree -> 121 cycles
  100000 times kmalloc(512) -> 95 cycles kfree -> 122 cycles
  100000 times kmalloc(1024) -> 96 cycles kfree -> 126 cycles
  100000 times kmalloc(2048) -> 115 cycles kfree -> 140 cycles
  100000 times kmalloc(4096) -> 149 cycles kfree -> 171 cycles
  2. Kmalloc: alloc/free test
  100000 times kmalloc(8)/kfree -> 70 cycles
  100000 times kmalloc(16)/kfree -> 70 cycles
  100000 times kmalloc(32)/kfree -> 70 cycles
  100000 times kmalloc(64)/kfree -> 70 cycles
  100000 times kmalloc(128)/kfree -> 70 cycles
  100000 times kmalloc(256)/kfree -> 69 cycles
  100000 times kmalloc(512)/kfree -> 70 cycles
  100000 times kmalloc(1024)/kfree -> 73 cycles
  100000 times kmalloc(2048)/kfree -> 72 cycles
  100000 times kmalloc(4096)/kfree -> 71 cycles

After:

  Single thread testing
  =====================
  1. Kmalloc: Repeatedly allocate then free test
  100000 times kmalloc(8) -> 57 cycles kfree -> 78 cycles
  100000 times kmalloc(16) -> 61 cycles kfree -> 81 cycles
  100000 times kmalloc(32) -> 76 cycles kfree -> 93 cycles
  100000 times kmalloc(64) -> 83 cycles kfree -> 94 cycles
  100000 times kmalloc(128) -> 106 cycles kfree -> 107 cycles
  100000 times kmalloc(256) -> 118 cycles kfree -> 117 cycles
  100000 times kmalloc(512) -> 114 cycles kfree -> 116 cycles
  100000 times kmalloc(1024) -> 115 cycles kfree -> 118 cycles
  100000 times kmalloc(2048) -> 147 cycles kfree -> 131 cycles
  100000 times kmalloc(4096) -> 214 cycles kfree -> 161 cycles
  2. Kmalloc: alloc/free test
  100000 times kmalloc(8)/kfree -> 66 cycles
  100000 times kmalloc(16)/kfree -> 66 cycles
  100000 times kmalloc(32)/kfree -> 66 cycles
  100000 times kmalloc(64)/kfree -> 66 cycles
  100000 times kmalloc(128)/kfree -> 65 cycles
  100000 times kmalloc(256)/kfree -> 67 cycles
  100000 times kmalloc(512)/kfree -> 67 cycles
  100000 times kmalloc(1024)/kfree -> 64 cycles
  100000 times kmalloc(2048)/kfree -> 67 cycles
  100000 times kmalloc(4096)/kfree -> 67 cycles

Kernbench, before:

  Average Optimal load -j 12 Run (std deviation):
  Elapsed Time 101.873 (1.16069)
  User Time 1045.22 (1.60447)
  System Time 88.969 (0.559195)
  Percent CPU 1112.9 (13.8279)
  Context Switches 189140 (2282.15)
  Sleeps 99008.6 (768.091)

After:

  Average Optimal load -j 12 Run (std deviation):
  Elapsed Time 102.47 (0.562732)
  User Time 1045.3 (1.34263)
  System Time 88.311 (0.342554)
  Percent CPU 1105.8 (6.49444)
  Context Switches 189081 (2355.78)
  Sleeps 99231.5 (800.358)

Link: http://lkml.kernel.org/r/1464295031-26375-3-git-send-email-thgarnie@google.com
Signed-off-by: Thomas Garnier <thgarnie@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Kees Cook ed18adc1cd mm: SLUB hardened usercopy support
Under CONFIG_HARDENED_USERCOPY, this adds object size checking to the
SLUB allocator to catch any copies that may span objects. Includes a
redzone handling fix discovered by Michael Ellerman.

Based on code from PaX and grsecurity.

Signed-off-by: Kees Cook <keescook@chromium.org>
Tested-by: Michael Ellerman <mpe@ellerman.id.au>
Reviwed-by: Laura Abbott <labbott@redhat.com>
2016-07-26 14:43:54 -07:00
Alexander Potapenko 4ebb31a42f mm, kasan: don't call kasan_krealloc() from ksize().
Instead of calling kasan_krealloc(), which replaces the memory
allocation stack ID (if stack depot is used), just unpoison the whole
memory chunk.

Signed-off-by: Alexander Potapenko <glider@google.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Konstantin Serebryany <kcc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Joonsoo Kim 0139aa7b7f mm: rename _count, field of the struct page, to _refcount
Many developers already know that field for reference count of the
struct page is _count and atomic type.  They would try to handle it
directly and this could break the purpose of page reference count
tracepoint.  To prevent direct _count modification, this patch rename it
to _refcount and add warning message on the code.  After that, developer
who need to handle reference count will find that field should not be
accessed directly.

[akpm@linux-foundation.org: fix comments, per Vlastimil]
[akpm@linux-foundation.org: Documentation/vm/transhuge.txt too]
[sfr@canb.auug.org.au: sync ethernet driver changes]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Berg <johannes@sipsolutions.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Sunil Goutham <sgoutham@cavium.com>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Manish Chopra <manish.chopra@qlogic.com>
Cc: Yuval Mintz <yuval.mintz@qlogic.com>
Cc: Tariq Toukan <tariqt@mellanox.com>
Cc: Saeed Mahameed <saeedm@mellanox.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Li Peng 43efd3ea64 mm/slub.c: fix sysfs filename in comment
/sys/kernel/slab/xx/defrag_ratio should be remote_node_defrag_ratio.

Link: http://lkml.kernel.org/r/1463449242-5366-1-git-send-email-lip@dtdream.com
Signed-off-by: Li Peng <lip@dtdream.com>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Vladimir Davydov 81ae6d0395 mm/slub.c: replace kick_all_cpus_sync() with synchronize_sched() in kmem_cache_shrink()
When we call __kmem_cache_shrink on memory cgroup removal, we need to
synchronize kmem_cache->cpu_partial update with put_cpu_partial that
might be running on other cpus.  Currently, we achieve that by using
kick_all_cpus_sync, which works as a system wide memory barrier.  Though
fast it is, this method has a flaw - it issues a lot of IPIs, which
might hurt high performance or real-time workloads.

To fix this, let's replace kick_all_cpus_sync with synchronize_sched.
Although the latter one may take much longer to finish, it shouldn't be
a problem in this particular case, because memory cgroups are destroyed
asynchronously from a workqueue so that no user visible effects should
be introduced.  OTOH, it will save us from excessive IPIs when someone
removes a cgroup.

Anyway, even if using synchronize_sched turns out to take too long, we
can always introduce a kind of __kmem_cache_shrink batching so that this
method would only be called once per one cgroup destruction (not per
each per memcg kmem cache as it is now).

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Reported-by: Peter Zijlstra <peterz@infradead.org>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Alexander Potapenko 505f5dcb1c mm, kasan: add GFP flags to KASAN API
Add GFP flags to KASAN hooks for future patches to use.

This patch is based on the "mm: kasan: unified support for SLUB and SLAB
allocators" patch originally prepared by Dmitry Chernenkov.

Signed-off-by: Alexander Potapenko <glider@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-25 16:37:42 -07:00
Joe Perches 756a025f00 mm: coalesce split strings
Kernel style prefers a single string over split strings when the string is
'user-visible'.

Miscellanea:

 - Add a missing newline
 - Realign arguments

Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: Tejun Heo <tj@kernel.org>	[percpu]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Mel Gorman 444eb2a449 mm: thp: set THP defrag by default to madvise and add a stall-free defrag option
THP defrag is enabled by default to direct reclaim/compact but not wake
kswapd in the event of a THP allocation failure.  The problem is that
THP allocation requests potentially enter reclaim/compaction.  This
potentially incurs a severe stall that is not guaranteed to be offset by
reduced TLB misses.  While there has been considerable effort to reduce
the impact of reclaim/compaction, it is still a high cost and workloads
that should fit in memory fail to do so.  Specifically, a simple
anon/file streaming workload will enter direct reclaim on NUMA at least
even though the working set size is 80% of RAM.  It's been years and
it's time to throw in the towel.

First, this patch defines THP defrag as follows;

 madvise: A failed allocation will direct reclaim/compact if the application requests it
 never:   Neither reclaim/compact nor wake kswapd
 defer:   A failed allocation will wake kswapd/kcompactd
 always:  A failed allocation will direct reclaim/compact (historical behaviour)
          khugepaged defrag will enter direct/reclaim but not wake kswapd.

Next it sets the default defrag option to be "madvise" to only enter
direct reclaim/compaction for applications that specifically requested
it.

Lastly, it removes a check from the page allocator slowpath that is
related to __GFP_THISNODE to allow "defer" to work.  The callers that
really cares are slub/slab and they are updated accordingly.  The slab
one may be surprising because it also corrects a comment as kswapd was
never woken up by that path.

This means that a THP fault will no longer stall for most applications
by default and the ideal for most users that get THP if they are
immediately available.  There are still options for users that prefer a
stall at startup of a new application by either restoring historical
behaviour with "always" or pick a half-way point with "defer" where
kswapd does some of the work in the background and wakes kcompactd if
necessary.  THP defrag for khugepaged remains enabled and will enter
direct/reclaim but no wakeup kswapd or kcompactd.

After this patch a THP allocation failure will quickly fallback and rely
on khugepaged to recover the situation at some time in the future.  In
some cases, this will reduce THP usage but the benefit of THP is hard to
measure and not a universal win where as a stall to reclaim/compaction
is definitely measurable and can be painful.

The first test for this is using "usemem" to read a large file and write
a large anonymous mapping (to avoid the zero page) multiple times.  The
total size of the mappings is 80% of RAM and the benchmark simply
measures how long it takes to complete.  It uses multiple threads to see
if that is a factor.  On UMA, the performance is almost identical so is
not reported but on NUMA, we see this

usemem
                                   4.4.0                 4.4.0
                          kcompactd-v1r1         nodefrag-v1r3
Amean    System-1       102.86 (  0.00%)       46.81 ( 54.50%)
Amean    System-4        37.85 (  0.00%)       34.02 ( 10.12%)
Amean    System-7        48.12 (  0.00%)       46.89 (  2.56%)
Amean    System-12       51.98 (  0.00%)       56.96 ( -9.57%)
Amean    System-21       80.16 (  0.00%)       79.05 (  1.39%)
Amean    System-30      110.71 (  0.00%)      107.17 (  3.20%)
Amean    System-48      127.98 (  0.00%)      124.83 (  2.46%)
Amean    Elapsd-1       185.84 (  0.00%)      105.51 ( 43.23%)
Amean    Elapsd-4        26.19 (  0.00%)       25.58 (  2.33%)
Amean    Elapsd-7        21.65 (  0.00%)       21.62 (  0.16%)
Amean    Elapsd-12       18.58 (  0.00%)       17.94 (  3.43%)
Amean    Elapsd-21       17.53 (  0.00%)       16.60 (  5.33%)
Amean    Elapsd-30       17.45 (  0.00%)       17.13 (  1.84%)
Amean    Elapsd-48       15.40 (  0.00%)       15.27 (  0.82%)

For a single thread, the benchmark completes 43.23% faster with this
patch applied with smaller benefits as the thread increases.  Similar,
notice the large reduction in most cases in system CPU usage.  The
overall CPU time is

               4.4.0       4.4.0
        kcompactd-v1r1 nodefrag-v1r3
User        10357.65    10438.33
System       3988.88     3543.94
Elapsed      2203.01     1634.41

Which is substantial. Now, the reclaim figures

                                 4.4.0       4.4.0
                          kcompactd-v1r1nodefrag-v1r3
Minor Faults                 128458477   278352931
Major Faults                   2174976         225
Swap Ins                      16904701           0
Swap Outs                     17359627           0
Allocation stalls                43611           0
DMA allocs                           0           0
DMA32 allocs                  19832646    19448017
Normal allocs                614488453   580941839
Movable allocs                       0           0
Direct pages scanned          24163800           0
Kswapd pages scanned                 0           0
Kswapd pages reclaimed               0           0
Direct pages reclaimed        20691346           0
Compaction stalls                42263           0
Compaction success                 938           0
Compaction failures              41325           0

This patch eliminates almost all swapping and direct reclaim activity.
There is still overhead but it's from NUMA balancing which does not
identify that it's pointless trying to do anything with this workload.

I also tried the thpscale benchmark which forces a corner case where
compaction can be used heavily and measures the latency of whether base
or huge pages were used

thpscale Fault Latencies
                                       4.4.0                 4.4.0
                              kcompactd-v1r1         nodefrag-v1r3
Amean    fault-base-1      5288.84 (  0.00%)     2817.12 ( 46.73%)
Amean    fault-base-3      6365.53 (  0.00%)     3499.11 ( 45.03%)
Amean    fault-base-5      6526.19 (  0.00%)     4363.06 ( 33.15%)
Amean    fault-base-7      7142.25 (  0.00%)     4858.08 ( 31.98%)
Amean    fault-base-12    13827.64 (  0.00%)    10292.11 ( 25.57%)
Amean    fault-base-18    18235.07 (  0.00%)    13788.84 ( 24.38%)
Amean    fault-base-24    21597.80 (  0.00%)    24388.03 (-12.92%)
Amean    fault-base-30    26754.15 (  0.00%)    19700.55 ( 26.36%)
Amean    fault-base-32    26784.94 (  0.00%)    19513.57 ( 27.15%)
Amean    fault-huge-1      4223.96 (  0.00%)     2178.57 ( 48.42%)
Amean    fault-huge-3      2194.77 (  0.00%)     2149.74 (  2.05%)
Amean    fault-huge-5      2569.60 (  0.00%)     2346.95 (  8.66%)
Amean    fault-huge-7      3612.69 (  0.00%)     2997.70 ( 17.02%)
Amean    fault-huge-12     3301.75 (  0.00%)     6727.02 (-103.74%)
Amean    fault-huge-18     6696.47 (  0.00%)     6685.72 (  0.16%)
Amean    fault-huge-24     8000.72 (  0.00%)     9311.43 (-16.38%)
Amean    fault-huge-30    13305.55 (  0.00%)     9750.45 ( 26.72%)
Amean    fault-huge-32     9981.71 (  0.00%)    10316.06 ( -3.35%)

The average time to fault pages is substantially reduced in the majority
of caseds but with the obvious caveat that fewer THPs are actually used
in this adverse workload

                                   4.4.0                 4.4.0
                          kcompactd-v1r1         nodefrag-v1r3
Percentage huge-1         0.71 (  0.00%)       14.04 (1865.22%)
Percentage huge-3        10.77 (  0.00%)       33.05 (206.85%)
Percentage huge-5        60.39 (  0.00%)       38.51 (-36.23%)
Percentage huge-7        45.97 (  0.00%)       34.57 (-24.79%)
Percentage huge-12       68.12 (  0.00%)       40.07 (-41.17%)
Percentage huge-18       64.93 (  0.00%)       47.82 (-26.35%)
Percentage huge-24       62.69 (  0.00%)       44.23 (-29.44%)
Percentage huge-30       43.49 (  0.00%)       55.38 ( 27.34%)
Percentage huge-32       50.72 (  0.00%)       51.90 (  2.35%)

                                 4.4.0       4.4.0
                          kcompactd-v1r1nodefrag-v1r3
Minor Faults                  37429143    47564000
Major Faults                      1916        1558
Swap Ins                          1466        1079
Swap Outs                      2936863      149626
Allocation stalls                62510           3
DMA allocs                           0           0
DMA32 allocs                   6566458     6401314
Normal allocs                216361697   216538171
Movable allocs                       0           0
Direct pages scanned          25977580       17998
Kswapd pages scanned                 0     3638931
Kswapd pages reclaimed               0      207236
Direct pages reclaimed         8833714          88
Compaction stalls               103349           5
Compaction success                 270           4
Compaction failures             103079           1

Note again that while this does swap as it's an aggressive workload, the
direct relcim activity and allocation stalls is substantially reduced.
There is some kswapd activity but ftrace showed that the kswapd activity
was due to normal wakeups from 4K pages being allocated.
Compaction-related stalls and activity are almost eliminated.

I also tried the stutter benchmark.  For this, I do not have figures for
NUMA but it's something that does impact UMA so I'll report what is
available

stutter
                                 4.4.0                 4.4.0
                        kcompactd-v1r1         nodefrag-v1r3
Min         mmap      7.3571 (  0.00%)      7.3438 (  0.18%)
1st-qrtle   mmap      7.5278 (  0.00%)     17.9200 (-138.05%)
2nd-qrtle   mmap      7.6818 (  0.00%)     21.6055 (-181.25%)
3rd-qrtle   mmap     11.0889 (  0.00%)     21.8881 (-97.39%)
Max-90%     mmap     27.8978 (  0.00%)     22.1632 ( 20.56%)
Max-93%     mmap     28.3202 (  0.00%)     22.3044 ( 21.24%)
Max-95%     mmap     28.5600 (  0.00%)     22.4580 ( 21.37%)
Max-99%     mmap     29.6032 (  0.00%)     25.5216 ( 13.79%)
Max         mmap   4109.7289 (  0.00%)   4813.9832 (-17.14%)
Mean        mmap     12.4474 (  0.00%)     19.3027 (-55.07%)

This benchmark is trying to fault an anonymous mapping while there is a
heavy IO load -- a scenario that desktop users used to complain about
frequently.  This shows a mix because the ideal case of mapping with THP
is not hit as often.  However, note that 99% of the mappings complete
13.79% faster.  The CPU usage here is particularly interesting

               4.4.0       4.4.0
        kcompactd-v1r1nodefrag-v1r3
User           67.50        0.99
System       1327.88       91.30
Elapsed      2079.00     2128.98

And once again we look at the reclaim figures

                                 4.4.0       4.4.0
                          kcompactd-v1r1nodefrag-v1r3
Minor Faults                 335241922  1314582827
Major Faults                       715         819
Swap Ins                             0           0
Swap Outs                            0           0
Allocation stalls               532723           0
DMA allocs                           0           0
DMA32 allocs                1822364341  1177950222
Normal allocs               1815640808  1517844854
Movable allocs                       0           0
Direct pages scanned          21892772           0
Kswapd pages scanned          20015890    41879484
Kswapd pages reclaimed        19961986    41822072
Direct pages reclaimed        21892741           0
Compaction stalls              1065755           0
Compaction success                 514           0
Compaction failures            1065241           0

Allocation stalls and all direct reclaim activity is eliminated as well
as compaction-related stalls.

THP gives impressive gains in some cases but only if they are quickly
available.  We're not going to reach the point where they are completely
free so lets take the costs out of the fast paths finally and defer the
cost to kswapd, kcompactd and khugepaged where it belongs.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Joonsoo Kim 922d566cdc mm/slub: query dynamic DEBUG_PAGEALLOC setting
We can disable debug_pagealloc processing even if the code is compiled
with CONFIG_DEBUG_PAGEALLOC.  This patch changes the code to query
whether it is enabled or not in runtime.

[akpm@linux-foundation.org: clean up code, per Christian]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Takashi Iwai <tiwai@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Vladimir Davydov 27ee57c93f mm: memcontrol: report slab usage in cgroup2 memory.stat
Show how much memory is used for storing reclaimable and unreclaimable
in-kernel data structures allocated from slab caches.

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Vlastimil Babka 5b3810e5c6 mm, sl[au]b: print gfp_flags as strings in slab_out_of_memory()
We can now print gfp_flags more human-readable.  Make use of this in
slab_out_of_memory() for SLUB and SLAB.  Also convert the SLAB variant
it to pr_warn() along the way.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00