It doesn't put the CPU into deeper sleep states, so it's better to use the standard
idle loop to save power. But allow to reenable it anyways for benchmarking.
I also removed the obsolete idle=halt on i386
Cc: andreas.herrmann@amd.com
Signed-off-by: Andi Kleen <ak@suse.de>
With the rewrite of the SMP trampoline and the early page
allocator there is nothing that needs identity mapped pages,
once we start executing C code.
So add zap_identity_mappings into head64.c and remove
zap_low_mappings() from much later in the code. The functions
are subtly different thus the name change.
This also kills boot_level4_pgt which was from an earlier
attempt to move the identity mappings as early as possible,
and is now no longer needed. Essentially I have replaced
boot_level4_pgt with trampoline_level4_pgt in trampoline.S
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Fix the following section mismatch warnings on x86_64:
(build using defconfig)
WARNING: arch/x86_64/kernel/built-in.o - Section mismatch: reference to .init.text:mtrr_bp_init from .text between 'identify_cpu' (at offset 0x65eb) and 'IRQ0x20_interrupt'
WARNING: arch/x86_64/kernel/built-in.o - Section mismatch: reference to .init.data: from .text between 'finish_e820_parsing' (at offset 0x7dc2) and 'early_panic'
WARNING: arch/x86_64/kernel/built-in.o - Section mismatch: reference to .init.text:e820_print_map from .text between 'finish_e820_parsing' (at offset 0x7de1) and 'early_panic'
WARNING: arch/x86_64/kernel/built-in.o - Section mismatch: reference to .init.data:num_processors from .text between 'acpi_unmap_lsapic' (at offset 0xc88f) and 'acpi_register_ioapic'
WARNING: arch/x86_64/kernel/built-in.o - Section mismatch: reference to .init.data:disabled_cpus from .text between 'MP_processor_info' (at offset 0x11f35) and 'mp_register_lapic'
WARNING: arch/x86_64/kernel/built-in.o - Section mismatch: reference to .init.data:num_processors from .text between 'MP_processor_info' (at offset 0x11f6e) and 'mp_register_lapic'
WARNING: arch/x86_64/kernel/built-in.o - Section mismatch: reference to .init.data:num_processors from .text between 'MP_processor_info' (at offset 0x11f93) and 'mp_register_lapic'
WARNING: arch/x86_64/kernel/built-in.o - Section mismatch: reference to .init.data:fix_aperture from .text between 'gart_parse_options' (at offset 0x15517) and 'iommu_full'
WARNING: arch/x86_64/kernel/built-in.o - Section mismatch: reference to .init.data:fix_aperture from .text between 'gart_parse_options' (at offset 0x1552c) and 'iommu_full'
WARNING: arch/x86_64/kernel/built-in.o - Section mismatch: reference to .init.data:iommu_aperture_allowed from .text between 'gart_parse_options' (at offset 0x1553d) and 'iommu_full'
WARNING: arch/x86_64/kernel/built-in.o - Section mismatch: reference to .init.data:iommu_aperture_allowed from .text between 'gart_parse_options' (at offset 0x15552) and 'iommu_full'
WARNING: arch/x86_64/kernel/built-in.o - Section mismatch: reference to .init.data:iommu_aperture_allowed from .text between 'gart_parse_options' (at offset 0x15561) and 'iommu_full'
WARNING: arch/x86_64/kernel/built-in.o - Section mismatch: reference to .init.data:iommu_aperture_allowed from .text between 'gart_parse_options' (at offset 0x15577) and 'iommu_full'
WARNING: arch/x86_64/kernel/built-in.o - Section mismatch: reference to .init.data:fallback_aper_force from .text between 'gart_parse_options' (at offset 0x1558a) and 'iommu_full'
WARNING: arch/x86_64/kernel/built-in.o - Section mismatch: reference to .init.data:fallback_aper_order from .text between 'gart_parse_options' (at offset 0x155bf) and 'iommu_full'
WARNING: arch/x86_64/kernel/built-in.o - Section mismatch: reference to .init.data:timer_over_8254 from .text between 'ati_bugs' (at offset 0x16344) and 'via_bugs'
WARNING: arch/x86_64/kernel/built-in.o - Section mismatch: reference to .init.data:timer_over_8254 from .text between 'ati_bugs' (at offset 0x16356) and 'via_bugs'
WARNING: arch/x86_64/kernel/built-in.o - Section mismatch: reference to .init.data:iommu_aperture_allowed from .text between 'via_bugs' (at offset 0x16380) and 'nvidia_bugs'
WARNING: arch/x86_64/kernel/built-in.o - Section mismatch: reference to .init.data:iommu_aperture_disabled from .text between 'via_bugs' (at offset 0x16397) and 'nvidia_bugs'
WARNING: arch/x86_64/kernel/built-in.o - Section mismatch: reference to .init.data:acpi_use_timer_override from .text between 'nvidia_bugs' (at offset 0x163a7) and 'arch_unregister_cpu'
WARNING: arch/x86_64/kernel/built-in.o - Section mismatch: reference to .init.text:nvidia_hpet_check from .text between 'nvidia_bugs' (at offset 0x163b1) and 'arch_unregister_cpu'
WARNING: arch/x86_64/kernel/built-in.o - Section mismatch: reference to .init.data: from .text between 'nvidia_bugs' (at offset 0x163be) and 'arch_unregister_cpu'
WARNING: arch/x86_64/kernel/built-in.o - Section mismatch: reference to .init.data: from .text between 'nvidia_bugs' (at offset 0x163d1) and 'arch_unregister_cpu'
WARNING: arch/x86_64/kernel/built-in.o - Section mismatch: reference to .init.data:acpi_skip_timer_override from .text between 'nvidia_bugs' (at offset 0x163e1) and 'arch_unregister_cpu'
WARNING: arch/x86_64/kernel/built-in.o - Section mismatch: reference to .init.text:quirk_intel_irqbalance from .text between 'intel_bugs' (at offset 0x1633c) and 'ati_bugs'
But adds:
WARNING: arch/x86_64/kernel/built-in.o - Section mismatch: reference to .init.text:get_mtrr_state from .text between 'mtrr_bp_init' (at offset 0xb887) and 'ipi_handler'
The warnings does not show up during a normal build due to kbuild
failing to check for section mismatch in vmlinux.
To see these warnings run:
scripts/mod/modpost arch/x86_64/kernel/built-in.o
kbuild will be fixed but the 'noise-level' had to be decresed first.
There remains a few section mismatch warnigns for x86_64 for areas where I did
not feel confident.
Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: Andi Kleen <ak@suse.de>
This patch converts x86_64 to use the GENERIC_TIME infrastructure and adds
clocksource structures for both TSC and HPET (ACPI PM is shared w/ i386).
[akpm@osdl.org: fix printk timestamps]
[akpm@osdl.org: fix printk ckeanups]
[akpm@osdl.org: hpet build fix]
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Andi Kleen <ak@muc.de>
Cc: Roman Zippel <zippel@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
make the TSC synchronization code more robust, and unify it between x86_64 and
i386.
The biggest change is the removal of the 'fix up TSCs' code on x86_64 and
i386, in some rare cases it was /causing/ time-warps on SMP systems.
The new code only checks for TSC asynchronity - and if it can prove a
time-warp (if it can observe the TSC going backwards when going from one CPU
to another within a critical section), then the TSC clock-source is turned
off.
The TSC synchronization-checking code also got moved into a separate file.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: john stultz <johnstul@us.ibm.com>
Cc: Roman Zippel <zippel@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move the irqbalance quirks for E7320/E7520/E7525(Errata 23 in
http://download.intel.com/design/chipsets/specupdt/30304203.pdf) to early
quirks.
And add a PCI quirk for these platforms to check(which happens very late
during the boot) if the APIC routing is indeed set to default flat mode.
This fixes the breakage(in x86_64) of this quirk due to cpu hotplug which
selects physical mode instead of the logical flat(as needed for this errata
workaround).
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Andi Kleen <ak@suse.de>
Cc: "Li, Shaohua" <shaohua.li@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
By default route the 8254 over the 8259 and only disable
it on ATI boards where this causes double timer interrupts.
This should unbreak some Nvidia boards where the timer doesn't
seem to tick of it isn't enabled in the 8259. At least one
VIA board also seemed to have a little trouble with the disabled
8259.
For 2.6.20 we'll try both dynamically without black listing, but I think
for .19 this is the safer approach because it has been already well tested
in earlier kernels. This also makes the x86-64 behaviour the same
as i386.
Command line options can change all this of course.
Signed-off-by: Andi Kleen <ak@suse.de>
Maintain a per-CPU global "struct pt_regs *" variable which can be used instead
of passing regs around manually through all ~1800 interrupt handlers in the
Linux kernel.
The regs pointer is used in few places, but it potentially costs both stack
space and code to pass it around. On the FRV arch, removing the regs parameter
from all the genirq function results in a 20% speed up of the IRQ exit path
(ie: from leaving timer_interrupt() to leaving do_IRQ()).
Where appropriate, an arch may override the generic storage facility and do
something different with the variable. On FRV, for instance, the address is
maintained in GR28 at all times inside the kernel as part of general exception
handling.
Having looked over the code, it appears that the parameter may be handed down
through up to twenty or so layers of functions. Consider a USB character
device attached to a USB hub, attached to a USB controller that posts its
interrupts through a cascaded auxiliary interrupt controller. A character
device driver may want to pass regs to the sysrq handler through the input
layer which adds another few layers of parameter passing.
I've build this code with allyesconfig for x86_64 and i386. I've runtested the
main part of the code on FRV and i386, though I can't test most of the drivers.
I've also done partial conversion for powerpc and MIPS - these at least compile
with minimal configurations.
This will affect all archs. Mostly the changes should be relatively easy.
Take do_IRQ(), store the regs pointer at the beginning, saving the old one:
struct pt_regs *old_regs = set_irq_regs(regs);
And put the old one back at the end:
set_irq_regs(old_regs);
Don't pass regs through to generic_handle_irq() or __do_IRQ().
In timer_interrupt(), this sort of change will be necessary:
- update_process_times(user_mode(regs));
- profile_tick(CPU_PROFILING, regs);
+ update_process_times(user_mode(get_irq_regs()));
+ profile_tick(CPU_PROFILING);
I'd like to move update_process_times()'s use of get_irq_regs() into itself,
except that i386, alone of the archs, uses something other than user_mode().
Some notes on the interrupt handling in the drivers:
(*) input_dev() is now gone entirely. The regs pointer is no longer stored in
the input_dev struct.
(*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does
something different depending on whether it's been supplied with a regs
pointer or not.
(*) Various IRQ handler function pointers have been moved to type
irq_handler_t.
Signed-Off-By: David Howells <dhowells@redhat.com>
(cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
Instead of hackish manual parsing
Requires earlier i386 patchkit, but also fixes i386 early_printk again.
I removed some obsolete really early parameters which didn't do anything useful.
Also made a few parameters that needed it early (mostly oops printing setup)
Also removed one panic check that wasn't visible without
early console anyways (the early console is now initialized after that
panic)
This cleans up a lot of code.
Signed-off-by: Andi Kleen <ak@suse.de>
They did not really belong into io_apic.c. Move them into a new file
and clean it up a bit.
Also remove outdated ATI quirk that was obsolete,
Signed-off-by: Andi Kleen <ak@suse.de>
This patch adds initalization of the RDTSCP auxilliary values to CPU numbers
to time.c. If RDTSCP is available, the MSRs are written with the respective
values. It can be later used to initalize per-cpu timekeeping variables.
AK: Some cleanups. Move externs into headers and fix CPU hotplug.
Signed-off-by: Vojtech Pavlik <vojtech@suse.cz>
Signed-off-by: Andi Kleen <ak@suse.de>
This patch creates a new interface for IOMMUs by adding a centralized
location for IOMMU allocation (for translation tables/apertures) and
IOMMU initialization. In creating these, code was moved around for
abstraction, uniformity, and consiceness.
Take note of the move of the iommu_setup bootarg parsing code to
__setup. This is enabled by moving back the location of the aperture
allocation/detection to mem init (which while ugly, was already the
location of the swiotlb_init).
While a slight departure from the previous patch, I belive this provides
the true intention of the previous versions of the patch which changed
this code. It also makes the addition of the upcoming calgary code much
cleaner than previous patches.
[AK: Removed one broken change. iommu_setup still has to be called
early]
Signed-off-by: Muli Ben-Yehuda <muli@il.ibm.com>
Signed-off-by: Jon Mason <jdmason@us.ibm.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
swiotlb relies on the gart specific iommu_aperture variable to know if
we discovered a hardware IOMMU before swiotlb initialization. Introduce
iommu_detected to do the same thing, but in a HW IOMMU neutral manner,
in preparation for adding the Calgary HW IOMMU.
Signed-Off-By: Muli Ben-Yehuda <muli@il.ibm.com>
Signed-Off-By: Jon Mason <jdmason@us.ibm.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
These are the x86_64-specific pieces to enable reliable stack traces. The
only restriction with this is that it currently cannot unwind across the
interrupt->normal stack boundary, as that transition is lacking proper
annotation.
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
- Rename the GART_IOMMU option to IOMMU to make clear it's not
just for AMD
- Rewrite the help text to better emphatise this fact
- Make it an embedded option because too many people get it wrong.
To my astonishment I discovered the aacraid driver tests this
symbol directly. This looks quite broken to me - it's an internal
implementation detail of the PCI DMA API. Can the maintainer
please clarify what this test was intended to do?
Cc: linux-scsi@vger.kernel.org
Cc: alan@redhat.com
Cc: markh@osdl.org
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
SMP time selection originally ran after all CPUs were brought up because
it needed to know the number of CPUs to decide if it needs an MP safe
timer or not.
This is not needed anymore because we know present CPUs early.
This fixes a couple of problems:
- apicmaintimer didn't always work because it relied on state that was
set up time_init_gtod too late.
- The output for the used timer in early kernel log was misleading
because time_init_gtod could actually change it later. Now always
print the final timer choice
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
It didn't set up the CPU possible map early enough, so the
option didn't actually work.
Noticed by Heiko Carstens
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
On some broken motherboards (at least one NForce3 based AMD64 laptop)
the PIT timer runs at a incorrect frequency. This patch adds a new
option "apicpmtimer" that allows to use the APIC timer and calibrate it
using the PMTimer. It requires the earlier patch that allows to run the
main timer from the APIC.
Specifying apicpmtimer implies apicmaintimer.
The option defaults to off for now.
I tested it on a few systems and the resulting APIC timer frequencies
were usually a bit off, but always <1%, which should be tolerable.
TBD figure out heuristic to enable this automatically on the affected
systems TBD perhaps do it on all NForce3s or using DMI?
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
At resume time, TSC's value or something similar might be changed a lot
against suspend time. This could make system gets a very big lost ticks.
See http://bugzilla.kernel.org/show_bug.cgi?id=5825
Signed-off-by: Shaohua Li<shaohua.li@intel.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Another piece from the no-idle-tick patch.
This can be enabled with the "apicmaintimer" option.
This is mainly useful when the PIT/HPET interrupt is unreliable.
Note there are some systems that are known to stop the APIC
timer in C3. For those it will never work, but this case
should be automatically detected.
It also only works with PM timer right now. When HPET is used
the way the main timer handler computes the delay doesn't work.
It should be a bit more efficient because there is one less
regular interrupt to process on the boot processor.
Requires earlier bugfix from Venkatesh
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
They already do this in hardware and the Linux algorithm
actually adds errors.
Cc: mingo@elte.hu
Cc: rohit.seth@intel.com
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
cpumask.h wasn't included implicitely into proto.h in this case.
Just move it over to smp.h
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
AK: I hacked Muli's original patch a lot and there were a lot
of changes - all bugs are probably to blame on me now.
There were also some changes in the fall back behaviour
for swiotlb - in particular it doesn't try to use GFP_DMA
now anymore. Also all DMA mapping operations use the
same core dma_alloc_coherent code with proper fallbacks now.
And various other changes and cleanups.
Known problems: iommu=force swiotlb=force together breaks
needs more testing.
This patch cleans up x86_64's DMA mapping dispatching code. Right now
we have three possible IOMMU types: AGP GART, swiotlb and nommu, and
in the future we will also have Xen's x86_64 swiotlb and other HW
IOMMUs for x86_64. In order to support all of them cleanly, this
patch:
- introduces a struct dma_mapping_ops with function pointers for each
of the DMA mapping operations of gart (AMD HW IOMMU), swiotlb
(software IOMMU) and nommu (no IOMMU).
- gets rid of:
if (swiotlb)
return swiotlb_xxx();
- PCI_DMA_BUS_IS_PHYS is now checked against the dma_ops being set
This makes swiotlb faster by avoiding double copying in some cases.
Signed-Off-By: Muli Ben-Yehuda <mulix@mulix.org>
Signed-Off-By: Jon D. Mason <jdmason@us.ibm.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
We should zap the low mappings, as soon as possible, so that we can catch
kernel bugs more effectively. Previously early boot had NULL mapped
and didn't trap on NULL references.
This patch introduces boot_level4_pgt, which will always have low identity
addresses mapped. Druing boot, all the processors will use this as their
level4 pgt. On BP, we will switch to init_level4_pgt as soon as we enter C
code and zap the low mappings as soon as we are done with the usage of
identity low mapped addresses. On AP's we will zap the low mappings as
soon as we jump to C code.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Add a new 4GB GFP_DMA32 zone between the GFP_DMA and GFP_NORMAL zones.
As a bit of historical background: when the x86-64 port
was originally designed we had some discussion if we should
use a 16MB DMA zone like i386 or a 4GB DMA zone like IA64 or
both. Both was ruled out at this point because it was in early
2.4 when VM is still quite shakey and had bad troubles even
dealing with one DMA zone. We settled on the 16MB DMA zone mainly
because we worried about older soundcards and the floppy.
But this has always caused problems since then because
device drivers had trouble getting enough DMA able memory. These days
the VM works much better and the wide use of NUMA has proven
it can deal with many zones successfully.
So this patch adds both zones.
This helps drivers who need a lot of memory below 4GB because
their hardware is not accessing more (graphic drivers - proprietary
and free ones, video frame buffer drivers, sound drivers etc.).
Previously they could only use IOMMU+16MB GFP_DMA, which
was not enough memory.
Another common problem is that hardware who has full memory
addressing for >4GB misses it for some control structures in memory
(like transmit rings or other metadata). They tended to allocate memory
in the 16MB GFP_DMA or the IOMMU/swiotlb then using pci_alloc_consistent,
but that can tie up a lot of precious 16MB GFPDMA/IOMMU/swiotlb memory
(even on AMD systems the IOMMU tends to be quite small) especially if you have
many devices. With the new zone pci_alloc_consistent can just put
this stuff into memory below 4GB which works better.
One argument was still if the zone should be 4GB or 2GB. The main
motivation for 2GB would be an unnamed not so unpopular hardware
raid controller (mostly found in older machines from a particular four letter
company) who has a strange 2GB restriction in firmware. But
that one works ok with swiotlb/IOMMU anyways, so it doesn't really
need GFP_DMA32. I chose 4GB to be compatible with IA64 and because
it seems to be the most common restriction.
The new zone is so far added only for x86-64.
For other architectures who don't set up this
new zone nothing changes. Architectures can set a compatibility
define in Kconfig CONFIG_DMA_IS_DMA32 that will define GFP_DMA32
as GFP_DMA. Otherwise it's a nop because on 32bit architectures
it's normally not needed because GFP_NORMAL (=0) is DMA able
enough.
One problem is still that GFP_DMA means different things on different
architectures. e.g. some drivers used to have #ifdef ia64 use GFP_DMA
(trusting it to be 4GB) #elif __x86_64__ (use other hacks like
the swiotlb because 16MB is not enough) ... . This was quite
ugly and is now obsolete.
These should be now converted to use GFP_DMA32 unconditionally. I haven't done
this yet. Or best only use pci_alloc_consistent/dma_alloc_coherent
which will use GFP_DMA32 transparently.
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Rather than blindly re-enabling interrupts in oops_end(), save their state
in oope_begin() and then restore that state.
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The FLATMEM people added it, but there doesn't seem a good reason
because end_pfn is identical.
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
get_cpu_vendor() no longer has any users in other files.
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
There has been some discuss about solving the SMP MTRR suspend/resume
breakage, but I didn't find a patch for it. This is an intent for it. The
basic idea is moving mtrr initializing into cpu_identify for all APs (so it
works for cpu hotplug). For BP, restore_processor_state is responsible for
restoring MTRR.
Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Acked-by: Andi Kleen <ak@muc.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
There are unfortunately more and more multi processor Opteron systems which
don't have HPET timer support in the southbridge. This covers in particular
Nvidia and VIA chipsets. They also don't guarantee that the TSCs are
synchronized between CPUs; and especially with MP powernow the systems are
nearly unusable because the time gets very inconsistent between CPUs.
The timer code for x86-64 was originally written under the assumption that we
could fall back to the HPET timer on such systems. But this doesn't work
there.
Another alternative is to use the ACPI PM timer as primary time source. This
patch does that. The kernel only uses PM timer when there is no other choice
because it has some disadvantages.
Ported over from i386. It should be faster than the i386 version because I
dropped the "read three times" workaround, but is still considerable slower
than HPET and also does not work together with vsyscalls which have to be
disabled.
Cc: <mark.langsdorf@amd.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This will allow hotplug CPU in the future and in general cleans up a lot of
crufty code. It also should plug some races that the old hackish way
introduces. Remove one old race workaround in NMI watchdog setup that is not
needed anymore.
I removed the old total sum of bogomips reporting code. The brag value of
BogoMips has been greatly devalued in the last years on the open market.
Real CPU hotplug will need some more work, but the infrastructure for it is
there now.
One drawback: the new TSC sync algorithm is less accurate than before. The
old way of zeroing TSCs is too intrusive to do later. Instead the TSC of the
BP is duplicated now, which is less accurate.
akpm:
- sync_tsc_bp_init seems to have the sense of `init' inverted.
- SPIN_LOCK_UNLOCKED is deprecated - use DEFINE_SPINLOCK.
Cc: <rusty@rustcorp.com.au>
Cc: <mingo@elte.hu>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Use a real VMA to map the 32bit vsyscall page
This interacts better with Hugh's upcomming VMA walk optimization
Also removes some ugly special cases.
Code roughly modelled after the ppc64 vdso version from Ben Herrenschmidt.
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!