Separate out ata_pci_bmdma_prepare_host() and ata_pci_bmdma_init_one()
from their SFF counterparts. SFF ones no longer try to initialize
BMDMA or set PCI master.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jeff Garzik <jgarzik@redhat.com>
Separate out ata_bmdma_qc_issue() from ata_sff_qc_issue() such that
ata_sff_qc_issue() only deals with non-BMDMA SFF protocols (PIO and
nodata) while ata_bmdma_qc_issue() deals with the BMDMA protocols and
uses ata_sff_qc_issue() for non-DMA commands. All the users are
updated accordingly.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jeff Garzik <jgarzik@redhat.com>
When BMDMA initialization failed or BMDMA was not available for
whatever reason, bmdma_addr was left at zero and used as an indication
that BMDMA shouldn't be used. This leads to the following problems.
p1. For BMDMA drivers which don't use traditional BMDMA register,
ata_bmdma_mode_filter() incorrectly inhibits DMA modes. Those
drivers either have to inherit from ata_sff_port_ops or clear
->mode_filter explicitly.
p2. non-BMDMA drivers call into BMDMA PRD table allocation. It
doesn't actually allocate PRD table if bmdma_addr is not
initialized but is still confusing.
p3. For BMDMA drivers which don't use traditional BMDMA register, some
methods might not be invoked as expected (e.g. bmdma_stop from
ata_sff_post_internal_cmd()).
p4. SFF drivers w/ custom DMA interface implement noop BMDMA ops
worrying libata core might call into one of them.
These problems are caused by the muddy line between SFF and BMDMA and
the assumption that all BMDMA controllers initialize bmdma_addr.
This patch fixes p1 and p2 by removing the bmdma_addr assumption and
moving prd allocation to BMDMA port start. Later patches will fix the
remaining issues.
This patch improves BMDMA initialization such that
* When BMDMA register initialization fails, falls back to PIO instead
of failing. ata_pci_bmdma_init() never fails now.
* When ata_pci_bmdma_init() falls back to PIO, it clears
ap->mwdma_mask and udma_mask instead of depending on
ata_bmdma_mode_filter(). This makes ata_bmdma_mode_filter()
unnecessary thus resolving p1.
* ata_port_start() which actually is BMDMA specific is moved to
ata_bmdma_port_start(). ata_port_start() and ata_sff_port_start()
are killed.
* ata_sff_port_start32() is moved and renamed to
ata_bmdma_port_start32().
Drivers which no longer call into PRD table allocation are...
pdc_adma, sata_inic162x, sata_qstor, sata_sx4, pata_cmd640 and all
drivers which inherit from ata_sff_port_ops.
pata_icside sets ->port_start to ATA_OP_NULL as it doesn't need PRD
but is a BMDMA controller and doesn't have custom port_start like
other such controllers.
Note that with the previous patch which makes all and only BMDMA
drivers inherit from ata_bmdma_port_ops, this change doesn't break
drivers which need PRD table.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jeff Garzik <jgarzik@redhat.com>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
This allows parallel scan and the like to be set without having to stop
using the existing full helper functions. This patch merely adds the argument
and fixes up the callers. It doesn't undo the special cases already in the
tree or add any new parallel callers.
Signed-off-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Jeff Garzik <jgarzik@redhat.com>
In particular, several occurances of funny versions of 'success',
'unknown', 'therefore', 'acknowledge', 'argument', 'achieve', 'address',
'beginning', 'desirable', 'separate' and 'necessary' are fixed.
Signed-off-by: Daniel Mack <daniel@caiaq.de>
Cc: Joe Perches <joe@perches.com>
Cc: Junio C Hamano <gitster@pobox.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
External driver files should not include any private acpica headers.
Signed-off-by: Lin Ming <ming.m.lin@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Dave Müller sent a diff for the pata_oldpiix that highlighted a problem
where a lot of the ATA drivers assume dma_mode == 0 means "no DMA" while
the core code uses 0xFF.
This turns out to have other consequences such as code doing >= XFER_UDMA_0
also catching 0xFF as UDMAlots. Fortunately it doesn't generally affect
set_dma_mode, although some drivers call back into their own set mode code
from other points.
Having been through the drivers I've added helpers for using_udma/using_mwdma
dma_enabled so that people don't open code ranges that may change (eg if UDMA8
appears somewhere)
Thanks to David for the initial bits
[and added fix for pata_oldpiix from and signed-off-by Dave Mueller
<dave.mueller@gmx.ch> -jg]
Signed-off-by: Alan Cox <alan@redhat.com>
Signed-off-by: Jeff Garzik <jgarzik@redhat.com>
A couple of distributions (Fedora, Ubuntu) were having weird problems with the
ATI IXP series PATA controllers being reported as simplex. At the heart of
the problem is that both distros ignored the recommendations to load pata_acpi
and ata_generic *AFTER* specific host drivers.
The underlying cause however is that if you D3 and then D0 an ATI IXP it
helpfully throws away some configuration and won't let you rewrite it.
Add checks to ata_generic and pata_acpi to pin ATIIXP devices. Possibly the
real answer here is to quirk them and pin them, but right now we can't do that
before they've been pcim_enable()'d by a driver.
I'm indebted to David Gero for this. His bug report not only reported the
problem but identified the cause correctly and he had tested the right values
to prove what was going on
[If you backport this for 2.6.24 you will need to pull in the 2.6.25
removal of the bogus WARN_ON() in pcim_enagle]
Signed-off-by: Alan Cox <alan@redhat.com>
Tested-by: David Gero <davidg@havidave.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Jeff Garzik <jgarzik@redhat.com>
SFF functions have confusing names. Some have sff prefix, some have
bmdma, some std, some pci and some none. Unify the naming by...
* SFF functions which are common to both BMDMA and non-BMDMA are
prefixed with ata_sff_.
* SFF functions which are specific to BMDMA are prefixed with
ata_bmdma_.
* SFF functions which are specific to PCI but apply to both BMDMA and
non-BMDMA are prefixed with ata_pci_sff_.
* SFF functions which are specific to PCI and BMDMA are prefixed with
ata_pci_bmdma_.
* Drop generic prefixes from LLD specific routines. For example,
bfin_std_dev_select -> bfin_dev_select.
The following renames are noteworthy.
ata_qc_issue_prot() -> ata_sff_qc_issue()
ata_pci_default_filter() -> ata_bmdma_mode_filter()
ata_dev_try_classify() -> ata_sff_dev_classify()
This rename is in preparation of separating SFF support out of libata
core layer. This patch strictly renames functions and doesn't
introduce any behavior difference.
Signed-off-by: Tejun Heo <htejun@gmail.com>
port_info->private_data is currently used for two purposes - to record
private data about the port_info or to specify host->private_data to
use when allocating ata_host.
This overloading is confusing and counter-intuitive in that
port_info->private_data becomes host->private_data instead of
port->private_data. In addition, port_info and host don't correspond
to each other 1-to-1. Currently, the first non-NULL
port_info->private_data is used.
This patch makes port_info->private_data just be what it is -
private_data for the port_info where LLD can jot down extra info.
libata no longer sets host->private_data to the first non-NULL
port_info->private_data, @host_priv argument is added to
ata_pci_init_one() instead. LLDs which use ata_pci_init_one() can use
this argument to pass in pointer to host private data. LLDs which
don't should use init-register model anyway and can initialize
host->private_data directly.
Adding @host_priv instead of using init-register model for LLDs which
use ata_pci_init_one() is suggested by Alan Cox.
Signed-off-by: Tejun Heo <htejun@gmail.com>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
ata_pci_init_one() is the only function which uses ops->irq_handler
and pi->sht. Other initialization functions take the same information
as arguments. This causes confusion and duplicate unused entries in
structures.
Make ata_pci_init_one() take sht as an argument and use ata_interrupt
implicitly. All current users use ata_interrupt and if different irq
handler is necessary open coding ata_pci_init_one() using
ata_prepare_sff_host() and ata_activate_sff_host can be done under ten
lines including error handling and driver which requires custom
interrupt handler is likely to require custom initialization anyway.
As ata_pci_init_one() was the last user of ops->irq_handler, this
patch also kills the field.
Signed-off-by: Tejun Heo <htejun@gmail.com>
libata lets low level drivers build ata_port_operations table and
register it with libata core layer. This allows low level drivers
high level of flexibility but also burdens them with lots of
boilerplate entries.
This becomes worse for drivers which support related similar
controllers which differ slightly. They share most of the operations
except for a few. However, the driver still needs to list all
operations for each variant. This results in large number of
duplicate entries, which is not only inefficient but also error-prone
as it becomes very difficult to tell what the actual differences are.
This duplicate boilerplates all over the low level drivers also make
updating the core layer exteremely difficult and error-prone. When
compounded with multi-branched development model, it ends up
accumulating inconsistencies over time. Some of those inconsistencies
cause immediate problems and fixed. Others just remain there dormant
making maintenance increasingly difficult.
To rectify the problem, this patch implements ata_port_operations
inheritance. To allow LLDs to easily re-use their own ops tables
overriding only specific methods, this patch implements poor man's
class inheritance. An ops table has ->inherits field which can be set
to any ops table as long as it doesn't create a loop. When the host
is started, the inheritance chain is followed and any operation which
isn't specified is taken from the nearest ancestor which has it
specified. This operation is called finalization and done only once
per an ops table and the LLD doesn't have to do anything special about
it other than making the ops table non-const such that libata can
update it.
libata provides four base ops tables lower drivers can inherit from -
base, sata, pmp, sff and bmdma. To avoid overriding these ops
accidentaly, these ops are declared const and LLDs should always
inherit these instead of using them directly.
After finalization, all the ops table are identical before and after
the patch except for setting .irq_handler to ata_interrupt in drivers
which didn't use to. The .irq_handler doesn't have any actual effect
and the field will soon be removed by later patch.
* sata_sx4 is still using old style EH and currently doesn't take
advantage of ops inheritance.
Signed-off-by: Tejun Heo <htejun@gmail.com>
libata lets low level drivers build scsi_host_template and register it
to the SCSI layer. This allows low level drivers high level of
flexibility but also burdens them with lots of boilerplate entries.
This patch implements SHT initializers which can be used to initialize
all the boilerplate entries in a sht. Three variants of them are
implemented - BASE, BMDMA and NCQ - for different types of drivers.
Note that entries can be overriden by putting individual initializers
after the helper macro.
All sht tables are identical before and after this patch.
Signed-off-by: Tejun Heo <htejun@gmail.com>
libata-acpi is using separate timing tables for transfer modes
although libata-core has the complete ata_timing table. Implement
ata_timing_cycle2mode() to look for matching mode given transfer type
and cycle duration and use it in libata-acpi and pata_acpi to replace
private timing tables.
Signed-off-by: Tejun Heo <htejun@gmail.com>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
Finding out matching transfer mode from ACPI GTM values is useful for
other purposes too. Separate out the function and timing tables from
pata_acpi::pacpi_discover_modes().
Other than checking shared-configuration bit after doing
ata_acpi_gtm() in pacpi_discover_modes() which should be safe, this
patch doesn't introduce any behavior change.
Signed-off-by: Tejun Heo <htejun@gmail.com>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
There are configurations where CONFIG_ACPI but !CONFIG_PM. In this
case, pata_acpi can be selected but won't build. Fix it.
Reported by Avuton Olrich.
Signed-off-by: Tejun Heo <htejun@gmail.com>
Cc: Avuton Olrich <avuton@gmail.com>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
On a cable there may be
eighty wires or perhaps forty
and we learn about its type
In the world of ACPI
So we call the GTM
And we find the the timing rate
And we look through it to see
If eighty wire it must be
Timing lives in ACPI routines
ACPI routines, ACPI routines
Timing lives in ACPI routines
ACPI routes ACPI routines
And the drivers last you see
Picking up unknown pci ids
and the code begins to work
Timing lives in ACPI routines
ACPI routines, ACPI routines
Timing lives in ACPI routines
ACPI routes ACPI routines
[Full speed ahead, Mr Hacker, full speed ahead]
Full speed over here sir!
Checking Cable, checking cable
Aye aye, 80 wire,
Heaven heaven]
If we use ACPI (ACPI)
Every box (every box) has all we need (has all we need)
Cable type (cable type) and mode timing (mode timing)
In our ATA (in our ATA) subroutines (subroutines, ha ha)
Timing lives in ACPI routines
ACPI routines, ACPI routines
Timing lives in ACPI routines
ACPI routes ACPI routines
Timing lives in ACPI routines
ACPI routines, ACPI routines
Timing lives in ACPI routines
ACPI routes ACPI routines
Signed-off-by: Alan Cox <alan@redhat.com>
Signed-off-by: Jeff Garzik <jeff@garzik.org>