#ifndef _ASM_POWERPC_PGTABLE_PPC64_H_ #define _ASM_POWERPC_PGTABLE_PPC64_H_ /* * This file contains the functions and defines necessary to modify and use * the ppc64 hashed page table. */ #ifndef __ASSEMBLY__ #include #include #endif /* __ASSEMBLY__ */ #ifdef CONFIG_PPC_64K_PAGES #include #else #include #endif #define FIRST_USER_ADDRESS 0 /* * Size of EA range mapped by our pagetables. */ #define PGTABLE_EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \ PUD_INDEX_SIZE + PGD_INDEX_SIZE + PAGE_SHIFT) #define PGTABLE_RANGE (ASM_CONST(1) << PGTABLE_EADDR_SIZE) #if TASK_SIZE_USER64 > PGTABLE_RANGE #error TASK_SIZE_USER64 exceeds pagetable range #endif #if TASK_SIZE_USER64 > (1UL << (USER_ESID_BITS + SID_SHIFT)) #error TASK_SIZE_USER64 exceeds user VSID range #endif /* * Define the address range of the vmalloc VM area. */ #define VMALLOC_START ASM_CONST(0xD000000000000000) #define VMALLOC_SIZE (PGTABLE_RANGE >> 1) #define VMALLOC_END (VMALLOC_START + VMALLOC_SIZE) /* * Define the address ranges for MMIO and IO space : * * ISA_IO_BASE = VMALLOC_END, 64K reserved area * PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE */ #define FULL_IO_SIZE 0x80000000ul #define ISA_IO_BASE (VMALLOC_END) #define ISA_IO_END (VMALLOC_END + 0x10000ul) #define PHB_IO_BASE (ISA_IO_END) #define PHB_IO_END (VMALLOC_END + FULL_IO_SIZE) #define IOREMAP_BASE (PHB_IO_END) #define IOREMAP_END (VMALLOC_START + PGTABLE_RANGE) /* * Region IDs */ #define REGION_SHIFT 60UL #define REGION_MASK (0xfUL << REGION_SHIFT) #define REGION_ID(ea) (((unsigned long)(ea)) >> REGION_SHIFT) #define VMALLOC_REGION_ID (REGION_ID(VMALLOC_START)) #define KERNEL_REGION_ID (REGION_ID(PAGE_OFFSET)) #define VMEMMAP_REGION_ID (0xfUL) #define USER_REGION_ID (0UL) /* * Defines the address of the vmemap area, in its own region */ #define VMEMMAP_BASE (VMEMMAP_REGION_ID << REGION_SHIFT) #define vmemmap ((struct page *)VMEMMAP_BASE) /* * Common bits in a linux-style PTE. These match the bits in the * (hardware-defined) PowerPC PTE as closely as possible. Additional * bits may be defined in pgtable-*.h */ #define _PAGE_PRESENT 0x0001 /* software: pte contains a translation */ #define _PAGE_USER 0x0002 /* matches one of the PP bits */ #define _PAGE_FILE 0x0002 /* (!present only) software: pte holds file offset */ #define _PAGE_EXEC 0x0004 /* No execute on POWER4 and newer (we invert) */ #define _PAGE_GUARDED 0x0008 #define _PAGE_COHERENT 0x0010 /* M: enforce memory coherence (SMP systems) */ #define _PAGE_NO_CACHE 0x0020 /* I: cache inhibit */ #define _PAGE_WRITETHRU 0x0040 /* W: cache write-through */ #define _PAGE_DIRTY 0x0080 /* C: page changed */ #define _PAGE_ACCESSED 0x0100 /* R: page referenced */ #define _PAGE_RW 0x0200 /* software: user write access allowed */ #define _PAGE_BUSY 0x0800 /* software: PTE & hash are busy */ /* Strong Access Ordering */ #define _PAGE_SAO (_PAGE_WRITETHRU | _PAGE_NO_CACHE | _PAGE_COHERENT) #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_COHERENT) #define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY) /* __pgprot defined in arch/powerpc/include/asm/page.h */ #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED) #define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER) #define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER | _PAGE_EXEC) #define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER) #define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) #define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER) #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) #define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_WRENABLE) #define PAGE_KERNEL_CI __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \ _PAGE_WRENABLE | _PAGE_NO_CACHE | _PAGE_GUARDED) #define PAGE_KERNEL_EXEC __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_EXEC) #define PAGE_AGP __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_NO_CACHE) #define HAVE_PAGE_AGP #define PAGE_PROT_BITS (_PAGE_GUARDED | _PAGE_COHERENT | \ _PAGE_NO_CACHE | _PAGE_WRITETHRU | \ _PAGE_4K_PFN | _PAGE_RW | _PAGE_USER | \ _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_EXEC) /* PTEIDX nibble */ #define _PTEIDX_SECONDARY 0x8 #define _PTEIDX_GROUP_IX 0x7 /* To make some generic powerpc code happy */ #define _PAGE_HWEXEC 0 /* * POWER4 and newer have per page execute protection, older chips can only * do this on a segment (256MB) basis. * * Also, write permissions imply read permissions. * This is the closest we can get.. * * Note due to the way vm flags are laid out, the bits are XWR */ #define __P000 PAGE_NONE #define __P001 PAGE_READONLY #define __P010 PAGE_COPY #define __P011 PAGE_COPY #define __P100 PAGE_READONLY_X #define __P101 PAGE_READONLY_X #define __P110 PAGE_COPY_X #define __P111 PAGE_COPY_X #define __S000 PAGE_NONE #define __S001 PAGE_READONLY #define __S010 PAGE_SHARED #define __S011 PAGE_SHARED #define __S100 PAGE_READONLY_X #define __S101 PAGE_READONLY_X #define __S110 PAGE_SHARED_X #define __S111 PAGE_SHARED_X #ifdef CONFIG_PPC_MM_SLICES #define HAVE_ARCH_UNMAPPED_AREA #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN #endif /* CONFIG_PPC_MM_SLICES */ #ifndef __ASSEMBLY__ /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. * * mk_pte takes a (struct page *) as input */ #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) { pte_t pte; pte_val(pte) = (pfn << PTE_RPN_SHIFT) | pgprot_val(pgprot); return pte; } #define pte_modify(_pte, newprot) \ (__pte((pte_val(_pte) & _PAGE_CHG_MASK) | pgprot_val(newprot))) #define pte_none(pte) ((pte_val(pte) & ~_PAGE_HPTEFLAGS) == 0) #define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT) /* pte_clear moved to later in this file */ #define pte_pfn(x) ((unsigned long)((pte_val(x)>>PTE_RPN_SHIFT))) #define pte_page(x) pfn_to_page(pte_pfn(x)) #define PMD_BAD_BITS (PTE_TABLE_SIZE-1) #define PUD_BAD_BITS (PMD_TABLE_SIZE-1) #define pmd_set(pmdp, pmdval) (pmd_val(*(pmdp)) = (pmdval)) #define pmd_none(pmd) (!pmd_val(pmd)) #define pmd_bad(pmd) (!is_kernel_addr(pmd_val(pmd)) \ || (pmd_val(pmd) & PMD_BAD_BITS)) #define pmd_present(pmd) (pmd_val(pmd) != 0) #define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0) #define pmd_page_vaddr(pmd) (pmd_val(pmd) & ~PMD_MASKED_BITS) #define pmd_page(pmd) virt_to_page(pmd_page_vaddr(pmd)) #define pud_set(pudp, pudval) (pud_val(*(pudp)) = (pudval)) #define pud_none(pud) (!pud_val(pud)) #define pud_bad(pud) (!is_kernel_addr(pud_val(pud)) \ || (pud_val(pud) & PUD_BAD_BITS)) #define pud_present(pud) (pud_val(pud) != 0) #define pud_clear(pudp) (pud_val(*(pudp)) = 0) #define pud_page_vaddr(pud) (pud_val(pud) & ~PUD_MASKED_BITS) #define pud_page(pud) virt_to_page(pud_page_vaddr(pud)) #define pgd_set(pgdp, pudp) ({pgd_val(*(pgdp)) = (unsigned long)(pudp);}) /* * Find an entry in a page-table-directory. We combine the address region * (the high order N bits) and the pgd portion of the address. */ /* to avoid overflow in free_pgtables we don't use PTRS_PER_PGD here */ #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & 0x1ff) #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) #define pmd_offset(pudp,addr) \ (((pmd_t *) pud_page_vaddr(*(pudp))) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))) #define pte_offset_kernel(dir,addr) \ (((pte_t *) pmd_page_vaddr(*(dir))) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))) #define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr)) #define pte_offset_map_nested(dir,addr) pte_offset_kernel((dir), (addr)) #define pte_unmap(pte) do { } while(0) #define pte_unmap_nested(pte) do { } while(0) /* to find an entry in a kernel page-table-directory */ /* This now only contains the vmalloc pages */ #define pgd_offset_k(address) pgd_offset(&init_mm, address) /* * The following only work if pte_present() is true. * Undefined behaviour if not.. */ static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW;} static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY;} static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED;} static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE;} static inline int pte_special(pte_t pte) { return pte_val(pte) & _PAGE_SPECIAL; } static inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~(_PAGE_RW); return pte; } static inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~(_PAGE_DIRTY); return pte; } static inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } static inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_RW; return pte; } static inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; } static inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; } static inline pte_t pte_mkhuge(pte_t pte) { return pte; } static inline pte_t pte_mkspecial(pte_t pte) { pte_val(pte) |= _PAGE_SPECIAL; return pte; } static inline pgprot_t pte_pgprot(pte_t pte) { return __pgprot(pte_val(pte) & PAGE_PROT_BITS); } /* Atomic PTE updates */ static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr, pte_t *ptep, unsigned long clr, int huge) { unsigned long old, tmp; __asm__ __volatile__( "1: ldarx %0,0,%3 # pte_update\n\ andi. %1,%0,%6\n\ bne- 1b \n\ andc %1,%0,%4 \n\ stdcx. %1,0,%3 \n\ bne- 1b" : "=&r" (old), "=&r" (tmp), "=m" (*ptep) : "r" (ptep), "r" (clr), "m" (*ptep), "i" (_PAGE_BUSY) : "cc" ); /* huge pages use the old page table lock */ if (!huge) assert_pte_locked(mm, addr); if (old & _PAGE_HASHPTE) hpte_need_flush(mm, addr, ptep, old, huge); return old; } static inline int __ptep_test_and_clear_young(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { unsigned long old; if ((pte_val(*ptep) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0) return 0; old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0); return (old & _PAGE_ACCESSED) != 0; } #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG #define ptep_test_and_clear_young(__vma, __addr, __ptep) \ ({ \ int __r; \ __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \ __r; \ }) #define __HAVE_ARCH_PTEP_SET_WRPROTECT static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { unsigned long old; if ((pte_val(*ptep) & _PAGE_RW) == 0) return; old = pte_update(mm, addr, ptep, _PAGE_RW, 0); } static inline void huge_ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { unsigned long old; if ((pte_val(*ptep) & _PAGE_RW) == 0) return; old = pte_update(mm, addr, ptep, _PAGE_RW, 1); } /* * We currently remove entries from the hashtable regardless of whether * the entry was young or dirty. The generic routines only flush if the * entry was young or dirty which is not good enough. * * We should be more intelligent about this but for the moment we override * these functions and force a tlb flush unconditionally */ #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH #define ptep_clear_flush_young(__vma, __address, __ptep) \ ({ \ int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \ __ptep); \ __young; \ }) #define __HAVE_ARCH_PTEP_GET_AND_CLEAR static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0); return __pte(old); } static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t * ptep) { pte_update(mm, addr, ptep, ~0UL, 0); } /* Set the dirty and/or accessed bits atomically in a linux PTE, this * function doesn't need to flush the hash entry */ static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry) { unsigned long bits = pte_val(entry) & (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC); unsigned long old, tmp; __asm__ __volatile__( "1: ldarx %0,0,%4\n\ andi. %1,%0,%6\n\ bne- 1b \n\ or %0,%3,%0\n\ stdcx. %0,0,%4\n\ bne- 1b" :"=&r" (old), "=&r" (tmp), "=m" (*ptep) :"r" (bits), "r" (ptep), "m" (*ptep), "i" (_PAGE_BUSY) :"cc"); } #define __HAVE_ARCH_PTE_SAME #define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0) #define pte_ERROR(e) \ printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e)) #define pmd_ERROR(e) \ printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e)) #define pgd_ERROR(e) \ printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) /* Encode and de-code a swap entry */ #define __swp_type(entry) (((entry).val >> 1) & 0x3f) #define __swp_offset(entry) ((entry).val >> 8) #define __swp_entry(type, offset) ((swp_entry_t){((type)<< 1)|((offset)<<8)}) #define __pte_to_swp_entry(pte) ((swp_entry_t){pte_val(pte) >> PTE_RPN_SHIFT}) #define __swp_entry_to_pte(x) ((pte_t) { (x).val << PTE_RPN_SHIFT }) #define pte_to_pgoff(pte) (pte_val(pte) >> PTE_RPN_SHIFT) #define pgoff_to_pte(off) ((pte_t) {((off) << PTE_RPN_SHIFT)|_PAGE_FILE}) #define PTE_FILE_MAX_BITS (BITS_PER_LONG - PTE_RPN_SHIFT) void pgtable_cache_init(void); /* * find_linux_pte returns the address of a linux pte for a given * effective address and directory. If not found, it returns zero. */static inline pte_t *find_linux_pte(pgd_t *pgdir, unsigned long ea) { pgd_t *pg; pud_t *pu; pmd_t *pm; pte_t *pt = NULL; pg = pgdir + pgd_index(ea); if (!pgd_none(*pg)) { pu = pud_offset(pg, ea); if (!pud_none(*pu)) { pm = pmd_offset(pu, ea); if (pmd_present(*pm)) pt = pte_offset_kernel(pm, ea); } } return pt; } pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long address); #endif /* __ASSEMBLY__ */ #endif /* _ASM_POWERPC_PGTABLE_PPC64_H_ */