/* * arch/s390/mm/vmem.c * * Copyright IBM Corp. 2006 * Author(s): Heiko Carstens */ #include #include #include #include #include #include #include #include #include static DEFINE_MUTEX(vmem_mutex); struct memory_segment { struct list_head list; unsigned long start; unsigned long size; }; static LIST_HEAD(mem_segs); void __meminit memmap_init(unsigned long size, int nid, unsigned long zone, unsigned long start_pfn) { struct page *start, *end; struct page *map_start, *map_end; int i; start = pfn_to_page(start_pfn); end = start + size; for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) { unsigned long cstart, cend; cstart = PFN_DOWN(memory_chunk[i].addr); cend = cstart + PFN_DOWN(memory_chunk[i].size); map_start = mem_map + cstart; map_end = mem_map + cend; if (map_start < start) map_start = start; if (map_end > end) map_end = end; map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page); map_end += ((PFN_ALIGN((unsigned long) map_end) - (unsigned long) map_end) / sizeof(struct page)); if (map_start < map_end) memmap_init_zone((unsigned long)(map_end - map_start), nid, zone, page_to_pfn(map_start), MEMMAP_EARLY); } } static void __ref *vmem_alloc_pages(unsigned int order) { if (slab_is_available()) return (void *)__get_free_pages(GFP_KERNEL, order); return alloc_bootmem_pages((1 << order) * PAGE_SIZE); } #define vmem_pud_alloc() ({ BUG(); ((pud_t *) NULL); }) static inline pmd_t *vmem_pmd_alloc(void) { pmd_t *pmd = NULL; #ifdef CONFIG_64BIT pmd = vmem_alloc_pages(2); if (!pmd) return NULL; clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE*4); #endif return pmd; } static inline pte_t *vmem_pte_alloc(void) { pte_t *pte = vmem_alloc_pages(0); if (!pte) return NULL; clear_table((unsigned long *) pte, _PAGE_TYPE_EMPTY, PAGE_SIZE); return pte; } /* * Add a physical memory range to the 1:1 mapping. */ static int vmem_add_range(unsigned long start, unsigned long size) { unsigned long address; pgd_t *pg_dir; pud_t *pu_dir; pmd_t *pm_dir; pte_t *pt_dir; pte_t pte; int ret = -ENOMEM; for (address = start; address < start + size; address += PAGE_SIZE) { pg_dir = pgd_offset_k(address); if (pgd_none(*pg_dir)) { pu_dir = vmem_pud_alloc(); if (!pu_dir) goto out; pgd_populate_kernel(&init_mm, pg_dir, pu_dir); } pu_dir = pud_offset(pg_dir, address); if (pud_none(*pu_dir)) { pm_dir = vmem_pmd_alloc(); if (!pm_dir) goto out; pud_populate_kernel(&init_mm, pu_dir, pm_dir); } pm_dir = pmd_offset(pu_dir, address); if (pmd_none(*pm_dir)) { pt_dir = vmem_pte_alloc(); if (!pt_dir) goto out; pmd_populate_kernel(&init_mm, pm_dir, pt_dir); } pt_dir = pte_offset_kernel(pm_dir, address); pte = pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL); *pt_dir = pte; } ret = 0; out: flush_tlb_kernel_range(start, start + size); return ret; } /* * Remove a physical memory range from the 1:1 mapping. * Currently only invalidates page table entries. */ static void vmem_remove_range(unsigned long start, unsigned long size) { unsigned long address; pgd_t *pg_dir; pud_t *pu_dir; pmd_t *pm_dir; pte_t *pt_dir; pte_t pte; pte_val(pte) = _PAGE_TYPE_EMPTY; for (address = start; address < start + size; address += PAGE_SIZE) { pg_dir = pgd_offset_k(address); pu_dir = pud_offset(pg_dir, address); if (pud_none(*pu_dir)) continue; pm_dir = pmd_offset(pu_dir, address); if (pmd_none(*pm_dir)) continue; pt_dir = pte_offset_kernel(pm_dir, address); *pt_dir = pte; } flush_tlb_kernel_range(start, start + size); } /* * Add a backed mem_map array to the virtual mem_map array. */ static int vmem_add_mem_map(unsigned long start, unsigned long size) { unsigned long address, start_addr, end_addr; struct page *map_start, *map_end; pgd_t *pg_dir; pud_t *pu_dir; pmd_t *pm_dir; pte_t *pt_dir; pte_t pte; int ret = -ENOMEM; map_start = VMEM_MAP + PFN_DOWN(start); map_end = VMEM_MAP + PFN_DOWN(start + size); start_addr = (unsigned long) map_start & PAGE_MASK; end_addr = PFN_ALIGN((unsigned long) map_end); for (address = start_addr; address < end_addr; address += PAGE_SIZE) { pg_dir = pgd_offset_k(address); if (pgd_none(*pg_dir)) { pu_dir = vmem_pud_alloc(); if (!pu_dir) goto out; pgd_populate_kernel(&init_mm, pg_dir, pu_dir); } pu_dir = pud_offset(pg_dir, address); if (pud_none(*pu_dir)) { pm_dir = vmem_pmd_alloc(); if (!pm_dir) goto out; pud_populate_kernel(&init_mm, pu_dir, pm_dir); } pm_dir = pmd_offset(pu_dir, address); if (pmd_none(*pm_dir)) { pt_dir = vmem_pte_alloc(); if (!pt_dir) goto out; pmd_populate_kernel(&init_mm, pm_dir, pt_dir); } pt_dir = pte_offset_kernel(pm_dir, address); if (pte_none(*pt_dir)) { unsigned long new_page; new_page =__pa(vmem_alloc_pages(0)); if (!new_page) goto out; pte = pfn_pte(new_page >> PAGE_SHIFT, PAGE_KERNEL); *pt_dir = pte; } } ret = 0; out: flush_tlb_kernel_range(start_addr, end_addr); return ret; } static int vmem_add_mem(unsigned long start, unsigned long size) { int ret; ret = vmem_add_mem_map(start, size); if (ret) return ret; return vmem_add_range(start, size); } /* * Add memory segment to the segment list if it doesn't overlap with * an already present segment. */ static int insert_memory_segment(struct memory_segment *seg) { struct memory_segment *tmp; if (seg->start + seg->size >= VMALLOC_START || seg->start + seg->size < seg->start) return -ERANGE; list_for_each_entry(tmp, &mem_segs, list) { if (seg->start >= tmp->start + tmp->size) continue; if (seg->start + seg->size <= tmp->start) continue; return -ENOSPC; } list_add(&seg->list, &mem_segs); return 0; } /* * Remove memory segment from the segment list. */ static void remove_memory_segment(struct memory_segment *seg) { list_del(&seg->list); } static void __remove_shared_memory(struct memory_segment *seg) { remove_memory_segment(seg); vmem_remove_range(seg->start, seg->size); } int remove_shared_memory(unsigned long start, unsigned long size) { struct memory_segment *seg; int ret; mutex_lock(&vmem_mutex); ret = -ENOENT; list_for_each_entry(seg, &mem_segs, list) { if (seg->start == start && seg->size == size) break; } if (seg->start != start || seg->size != size) goto out; ret = 0; __remove_shared_memory(seg); kfree(seg); out: mutex_unlock(&vmem_mutex); return ret; } int add_shared_memory(unsigned long start, unsigned long size) { struct memory_segment *seg; struct page *page; unsigned long pfn, num_pfn, end_pfn; int ret; mutex_lock(&vmem_mutex); ret = -ENOMEM; seg = kzalloc(sizeof(*seg), GFP_KERNEL); if (!seg) goto out; seg->start = start; seg->size = size; ret = insert_memory_segment(seg); if (ret) goto out_free; ret = vmem_add_mem(start, size); if (ret) goto out_remove; pfn = PFN_DOWN(start); num_pfn = PFN_DOWN(size); end_pfn = pfn + num_pfn; page = pfn_to_page(pfn); memset(page, 0, num_pfn * sizeof(struct page)); for (; pfn < end_pfn; pfn++) { page = pfn_to_page(pfn); init_page_count(page); reset_page_mapcount(page); SetPageReserved(page); INIT_LIST_HEAD(&page->lru); } goto out; out_remove: __remove_shared_memory(seg); out_free: kfree(seg); out: mutex_unlock(&vmem_mutex); return ret; } /* * map whole physical memory to virtual memory (identity mapping) * we reserve enough space in the vmalloc area for vmemmap to hotplug * additional memory segments. */ void __init vmem_map_init(void) { int i; BUILD_BUG_ON((unsigned long)VMEM_MAP + VMEM_MAP_SIZE > VMEM_MAP_MAX); NODE_DATA(0)->node_mem_map = VMEM_MAP; for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) vmem_add_mem(memory_chunk[i].addr, memory_chunk[i].size); } /* * Convert memory chunk array to a memory segment list so there is a single * list that contains both r/w memory and shared memory segments. */ static int __init vmem_convert_memory_chunk(void) { struct memory_segment *seg; int i; mutex_lock(&vmem_mutex); for (i = 0; i < MEMORY_CHUNKS; i++) { if (!memory_chunk[i].size) continue; seg = kzalloc(sizeof(*seg), GFP_KERNEL); if (!seg) panic("Out of memory...\n"); seg->start = memory_chunk[i].addr; seg->size = memory_chunk[i].size; insert_memory_segment(seg); } mutex_unlock(&vmem_mutex); return 0; } core_initcall(vmem_convert_memory_chunk);