/* * Copyright (C) 2010, 2011 Texas Instruments Incorporated * Contributed by: Mark Salter (msalter@redhat.com) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include struct timer_regs { u32 reserved0; u32 emumgt; u32 reserved1; u32 reserved2; u32 cntlo; u32 cnthi; u32 prdlo; u32 prdhi; u32 tcr; u32 tgcr; u32 wdtcr; }; static struct timer_regs __iomem *timer; #define TCR_TSTATLO 0x001 #define TCR_INVOUTPLO 0x002 #define TCR_INVINPLO 0x004 #define TCR_CPLO 0x008 #define TCR_ENAMODELO_ONCE 0x040 #define TCR_ENAMODELO_CONT 0x080 #define TCR_ENAMODELO_MASK 0x0c0 #define TCR_PWIDLO_MASK 0x030 #define TCR_CLKSRCLO 0x100 #define TCR_TIENLO 0x200 #define TCR_TSTATHI (0x001 << 16) #define TCR_INVOUTPHI (0x002 << 16) #define TCR_CPHI (0x008 << 16) #define TCR_PWIDHI_MASK (0x030 << 16) #define TCR_ENAMODEHI_ONCE (0x040 << 16) #define TCR_ENAMODEHI_CONT (0x080 << 16) #define TCR_ENAMODEHI_MASK (0x0c0 << 16) #define TGCR_TIMLORS 0x001 #define TGCR_TIMHIRS 0x002 #define TGCR_TIMMODE_UD32 0x004 #define TGCR_TIMMODE_WDT64 0x008 #define TGCR_TIMMODE_CD32 0x00c #define TGCR_TIMMODE_MASK 0x00c #define TGCR_PSCHI_MASK (0x00f << 8) #define TGCR_TDDRHI_MASK (0x00f << 12) /* * Timer clocks are divided down from the CPU clock * The divisor is in the EMUMGTCLKSPD register */ #define TIMER_DIVISOR \ ((soc_readl(&timer->emumgt) & (0xf << 16)) >> 16) #define TIMER64_RATE (c6x_core_freq / TIMER_DIVISOR) #define TIMER64_MODE_DISABLED 0 #define TIMER64_MODE_ONE_SHOT TCR_ENAMODELO_ONCE #define TIMER64_MODE_PERIODIC TCR_ENAMODELO_CONT static int timer64_mode; static int timer64_devstate_id = -1; static void timer64_config(unsigned long period) { u32 tcr = soc_readl(&timer->tcr) & ~TCR_ENAMODELO_MASK; soc_writel(tcr, &timer->tcr); soc_writel(period - 1, &timer->prdlo); soc_writel(0, &timer->cntlo); tcr |= timer64_mode; soc_writel(tcr, &timer->tcr); } static void timer64_enable(void) { u32 val; if (timer64_devstate_id >= 0) dscr_set_devstate(timer64_devstate_id, DSCR_DEVSTATE_ENABLED); /* disable timer, reset count */ soc_writel(soc_readl(&timer->tcr) & ~TCR_ENAMODELO_MASK, &timer->tcr); soc_writel(0, &timer->prdlo); /* use internal clock and 1 cycle pulse width */ val = soc_readl(&timer->tcr); soc_writel(val & ~(TCR_CLKSRCLO | TCR_PWIDLO_MASK), &timer->tcr); /* dual 32-bit unchained mode */ val = soc_readl(&timer->tgcr) & ~TGCR_TIMMODE_MASK; soc_writel(val, &timer->tgcr); soc_writel(val | (TGCR_TIMLORS | TGCR_TIMMODE_UD32), &timer->tgcr); } static void timer64_disable(void) { /* disable timer, reset count */ soc_writel(soc_readl(&timer->tcr) & ~TCR_ENAMODELO_MASK, &timer->tcr); soc_writel(0, &timer->prdlo); if (timer64_devstate_id >= 0) dscr_set_devstate(timer64_devstate_id, DSCR_DEVSTATE_DISABLED); } static int next_event(unsigned long delta, struct clock_event_device *evt) { timer64_config(delta); return 0; } static void set_clock_mode(enum clock_event_mode mode, struct clock_event_device *evt) { switch (mode) { case CLOCK_EVT_MODE_PERIODIC: timer64_enable(); timer64_mode = TIMER64_MODE_PERIODIC; timer64_config(TIMER64_RATE / HZ); break; case CLOCK_EVT_MODE_ONESHOT: timer64_enable(); timer64_mode = TIMER64_MODE_ONE_SHOT; break; case CLOCK_EVT_MODE_UNUSED: case CLOCK_EVT_MODE_SHUTDOWN: timer64_mode = TIMER64_MODE_DISABLED; timer64_disable(); break; case CLOCK_EVT_MODE_RESUME: break; } } static struct clock_event_device t64_clockevent_device = { .name = "TIMER64_EVT32_TIMER", .features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC, .rating = 200, .set_mode = set_clock_mode, .set_next_event = next_event, }; static irqreturn_t timer_interrupt(int irq, void *dev_id) { struct clock_event_device *cd = &t64_clockevent_device; cd->event_handler(cd); return IRQ_HANDLED; } static struct irqaction timer_iact = { .name = "timer", .flags = IRQF_TIMER, .handler = timer_interrupt, .dev_id = &t64_clockevent_device, }; void __init timer64_init(void) { struct clock_event_device *cd = &t64_clockevent_device; struct device_node *np, *first = NULL; u32 val; int err, found = 0; for_each_compatible_node(np, NULL, "ti,c64x+timer64") { err = of_property_read_u32(np, "ti,core-mask", &val); if (!err) { if (val & (1 << get_coreid())) { found = 1; break; } } else if (!first) first = np; } if (!found) { /* try first one with no core-mask */ if (first) np = of_node_get(first); else { pr_debug("Cannot find ti,c64x+timer64 timer.\n"); return; } } timer = of_iomap(np, 0); if (!timer) { pr_debug("%s: Cannot map timer registers.\n", np->full_name); goto out; } pr_debug("%s: Timer registers=%p.\n", np->full_name, timer); cd->irq = irq_of_parse_and_map(np, 0); if (cd->irq == NO_IRQ) { pr_debug("%s: Cannot find interrupt.\n", np->full_name); iounmap(timer); goto out; } /* If there is a device state control, save the ID. */ err = of_property_read_u32(np, "ti,dscr-dev-enable", &val); if (!err) timer64_devstate_id = val; pr_debug("%s: Timer irq=%d.\n", np->full_name, cd->irq); clockevents_calc_mult_shift(cd, c6x_core_freq / TIMER_DIVISOR, 5); cd->max_delta_ns = clockevent_delta2ns(0x7fffffff, cd); cd->min_delta_ns = clockevent_delta2ns(250, cd); cd->cpumask = cpumask_of(smp_processor_id()); clockevents_register_device(cd); setup_irq(cd->irq, &timer_iact); out: of_node_put(np); return; }