// SPDX-License-Identifier: GPL-2.0 /* * Shared application/kernel submission and completion ring pairs, for * supporting fast/efficient IO. * * A note on the read/write ordering memory barriers that are matched between * the application and kernel side. * * After the application reads the CQ ring tail, it must use an * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses * before writing the tail (using smp_load_acquire to read the tail will * do). It also needs a smp_mb() before updating CQ head (ordering the * entry load(s) with the head store), pairing with an implicit barrier * through a control-dependency in io_get_cqring (smp_store_release to * store head will do). Failure to do so could lead to reading invalid * CQ entries. * * Likewise, the application must use an appropriate smp_wmb() before * writing the SQ tail (ordering SQ entry stores with the tail store), * which pairs with smp_load_acquire in io_get_sqring (smp_store_release * to store the tail will do). And it needs a barrier ordering the SQ * head load before writing new SQ entries (smp_load_acquire to read * head will do). * * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* * updating the SQ tail; a full memory barrier smp_mb() is needed * between. * * Also see the examples in the liburing library: * * git://git.kernel.dk/liburing * * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens * from data shared between the kernel and application. This is done both * for ordering purposes, but also to ensure that once a value is loaded from * data that the application could potentially modify, it remains stable. * * Copyright (C) 2018-2019 Jens Axboe * Copyright (c) 2018-2019 Christoph Hellwig */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "internal.h" #define IORING_MAX_ENTRIES 32768 #define IORING_MAX_FIXED_FILES 1024 struct io_uring { u32 head ____cacheline_aligned_in_smp; u32 tail ____cacheline_aligned_in_smp; }; /* * This data is shared with the application through the mmap at offsets * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING. * * The offsets to the member fields are published through struct * io_sqring_offsets when calling io_uring_setup. */ struct io_rings { /* * Head and tail offsets into the ring; the offsets need to be * masked to get valid indices. * * The kernel controls head of the sq ring and the tail of the cq ring, * and the application controls tail of the sq ring and the head of the * cq ring. */ struct io_uring sq, cq; /* * Bitmasks to apply to head and tail offsets (constant, equals * ring_entries - 1) */ u32 sq_ring_mask, cq_ring_mask; /* Ring sizes (constant, power of 2) */ u32 sq_ring_entries, cq_ring_entries; /* * Number of invalid entries dropped by the kernel due to * invalid index stored in array * * Written by the kernel, shouldn't be modified by the * application (i.e. get number of "new events" by comparing to * cached value). * * After a new SQ head value was read by the application this * counter includes all submissions that were dropped reaching * the new SQ head (and possibly more). */ u32 sq_dropped; /* * Runtime flags * * Written by the kernel, shouldn't be modified by the * application. * * The application needs a full memory barrier before checking * for IORING_SQ_NEED_WAKEUP after updating the sq tail. */ u32 sq_flags; /* * Number of completion events lost because the queue was full; * this should be avoided by the application by making sure * there are not more requests pending thatn there is space in * the completion queue. * * Written by the kernel, shouldn't be modified by the * application (i.e. get number of "new events" by comparing to * cached value). * * As completion events come in out of order this counter is not * ordered with any other data. */ u32 cq_overflow; /* * Ring buffer of completion events. * * The kernel writes completion events fresh every time they are * produced, so the application is allowed to modify pending * entries. */ struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp; }; struct io_mapped_ubuf { u64 ubuf; size_t len; struct bio_vec *bvec; unsigned int nr_bvecs; }; struct async_list { spinlock_t lock; atomic_t cnt; struct list_head list; struct file *file; off_t io_start; size_t io_len; }; struct io_ring_ctx { struct { struct percpu_ref refs; } ____cacheline_aligned_in_smp; struct { unsigned int flags; bool compat; bool account_mem; /* * Ring buffer of indices into array of io_uring_sqe, which is * mmapped by the application using the IORING_OFF_SQES offset. * * This indirection could e.g. be used to assign fixed * io_uring_sqe entries to operations and only submit them to * the queue when needed. * * The kernel modifies neither the indices array nor the entries * array. */ u32 *sq_array; unsigned cached_sq_head; unsigned sq_entries; unsigned sq_mask; unsigned sq_thread_idle; unsigned cached_sq_dropped; struct io_uring_sqe *sq_sqes; struct list_head defer_list; struct list_head timeout_list; } ____cacheline_aligned_in_smp; /* IO offload */ struct workqueue_struct *sqo_wq[2]; struct task_struct *sqo_thread; /* if using sq thread polling */ struct mm_struct *sqo_mm; wait_queue_head_t sqo_wait; struct completion sqo_thread_started; struct { unsigned cached_cq_tail; atomic_t cached_cq_overflow; unsigned cq_entries; unsigned cq_mask; struct wait_queue_head cq_wait; struct fasync_struct *cq_fasync; struct eventfd_ctx *cq_ev_fd; atomic_t cq_timeouts; } ____cacheline_aligned_in_smp; struct io_rings *rings; /* * If used, fixed file set. Writers must ensure that ->refs is dead, * readers must ensure that ->refs is alive as long as the file* is * used. Only updated through io_uring_register(2). */ struct file **user_files; unsigned nr_user_files; /* if used, fixed mapped user buffers */ unsigned nr_user_bufs; struct io_mapped_ubuf *user_bufs; struct user_struct *user; const struct cred *creds; struct completion ctx_done; struct { struct mutex uring_lock; wait_queue_head_t wait; } ____cacheline_aligned_in_smp; struct { spinlock_t completion_lock; bool poll_multi_file; /* * ->poll_list is protected by the ctx->uring_lock for * io_uring instances that don't use IORING_SETUP_SQPOLL. * For SQPOLL, only the single threaded io_sq_thread() will * manipulate the list, hence no extra locking is needed there. */ struct list_head poll_list; struct list_head cancel_list; } ____cacheline_aligned_in_smp; struct async_list pending_async[2]; #if defined(CONFIG_UNIX) struct socket *ring_sock; #endif }; struct sqe_submit { const struct io_uring_sqe *sqe; unsigned short index; u32 sequence; bool has_user; bool needs_lock; bool needs_fixed_file; }; /* * First field must be the file pointer in all the * iocb unions! See also 'struct kiocb' in */ struct io_poll_iocb { struct file *file; struct wait_queue_head *head; __poll_t events; bool done; bool canceled; struct wait_queue_entry wait; }; struct io_timeout { struct file *file; struct hrtimer timer; }; /* * NOTE! Each of the iocb union members has the file pointer * as the first entry in their struct definition. So you can * access the file pointer through any of the sub-structs, * or directly as just 'ki_filp' in this struct. */ struct io_kiocb { union { struct file *file; struct kiocb rw; struct io_poll_iocb poll; struct io_timeout timeout; }; struct sqe_submit submit; struct io_ring_ctx *ctx; struct list_head list; struct list_head link_list; unsigned int flags; refcount_t refs; #define REQ_F_NOWAIT 1 /* must not punt to workers */ #define REQ_F_IOPOLL_COMPLETED 2 /* polled IO has completed */ #define REQ_F_FIXED_FILE 4 /* ctx owns file */ #define REQ_F_SEQ_PREV 8 /* sequential with previous */ #define REQ_F_IO_DRAIN 16 /* drain existing IO first */ #define REQ_F_IO_DRAINED 32 /* drain done */ #define REQ_F_LINK 64 /* linked sqes */ #define REQ_F_LINK_DONE 128 /* linked sqes done */ #define REQ_F_FAIL_LINK 256 /* fail rest of links */ #define REQ_F_SHADOW_DRAIN 512 /* link-drain shadow req */ #define REQ_F_TIMEOUT 1024 /* timeout request */ #define REQ_F_ISREG 2048 /* regular file */ #define REQ_F_MUST_PUNT 4096 /* must be punted even for NONBLOCK */ #define REQ_F_TIMEOUT_NOSEQ 8192 /* no timeout sequence */ u64 user_data; u32 result; u32 sequence; struct work_struct work; }; #define IO_PLUG_THRESHOLD 2 #define IO_IOPOLL_BATCH 8 struct io_submit_state { struct blk_plug plug; /* * io_kiocb alloc cache */ void *reqs[IO_IOPOLL_BATCH]; unsigned int free_reqs; unsigned int cur_req; /* * File reference cache */ struct file *file; unsigned int fd; unsigned int has_refs; unsigned int used_refs; unsigned int ios_left; }; static void io_sq_wq_submit_work(struct work_struct *work); static void io_cqring_fill_event(struct io_ring_ctx *ctx, u64 ki_user_data, long res); static void __io_free_req(struct io_kiocb *req); static struct kmem_cache *req_cachep; static const struct file_operations io_uring_fops; struct sock *io_uring_get_socket(struct file *file) { #if defined(CONFIG_UNIX) if (file->f_op == &io_uring_fops) { struct io_ring_ctx *ctx = file->private_data; return ctx->ring_sock->sk; } #endif return NULL; } EXPORT_SYMBOL(io_uring_get_socket); static void io_ring_ctx_ref_free(struct percpu_ref *ref) { struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); complete(&ctx->ctx_done); } static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) { struct io_ring_ctx *ctx; int i; ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); if (!ctx) return NULL; if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, PERCPU_REF_ALLOW_REINIT, GFP_KERNEL)) { kfree(ctx); return NULL; } ctx->flags = p->flags; init_waitqueue_head(&ctx->cq_wait); init_completion(&ctx->ctx_done); init_completion(&ctx->sqo_thread_started); mutex_init(&ctx->uring_lock); init_waitqueue_head(&ctx->wait); for (i = 0; i < ARRAY_SIZE(ctx->pending_async); i++) { spin_lock_init(&ctx->pending_async[i].lock); INIT_LIST_HEAD(&ctx->pending_async[i].list); atomic_set(&ctx->pending_async[i].cnt, 0); } spin_lock_init(&ctx->completion_lock); INIT_LIST_HEAD(&ctx->poll_list); INIT_LIST_HEAD(&ctx->cancel_list); INIT_LIST_HEAD(&ctx->defer_list); INIT_LIST_HEAD(&ctx->timeout_list); return ctx; } static inline bool __io_sequence_defer(struct io_ring_ctx *ctx, struct io_kiocb *req) { return req->sequence != ctx->cached_cq_tail + ctx->cached_sq_dropped + atomic_read(&ctx->cached_cq_overflow); } static inline bool io_sequence_defer(struct io_ring_ctx *ctx, struct io_kiocb *req) { if ((req->flags & (REQ_F_IO_DRAIN|REQ_F_IO_DRAINED)) != REQ_F_IO_DRAIN) return false; return __io_sequence_defer(ctx, req); } static struct io_kiocb *io_get_deferred_req(struct io_ring_ctx *ctx) { struct io_kiocb *req; req = list_first_entry_or_null(&ctx->defer_list, struct io_kiocb, list); if (req && !io_sequence_defer(ctx, req)) { list_del_init(&req->list); return req; } return NULL; } static struct io_kiocb *io_get_timeout_req(struct io_ring_ctx *ctx) { struct io_kiocb *req; req = list_first_entry_or_null(&ctx->timeout_list, struct io_kiocb, list); if (req) { if (req->flags & REQ_F_TIMEOUT_NOSEQ) return NULL; if (!__io_sequence_defer(ctx, req)) { list_del_init(&req->list); return req; } } return NULL; } static void __io_commit_cqring(struct io_ring_ctx *ctx) { struct io_rings *rings = ctx->rings; if (ctx->cached_cq_tail != READ_ONCE(rings->cq.tail)) { /* order cqe stores with ring update */ smp_store_release(&rings->cq.tail, ctx->cached_cq_tail); if (wq_has_sleeper(&ctx->cq_wait)) { wake_up_interruptible(&ctx->cq_wait); kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN); } } } static inline void io_queue_async_work(struct io_ring_ctx *ctx, struct io_kiocb *req) { int rw = 0; if (req->submit.sqe) { switch (req->submit.sqe->opcode) { case IORING_OP_WRITEV: case IORING_OP_WRITE_FIXED: rw = !(req->rw.ki_flags & IOCB_DIRECT); break; } } queue_work(ctx->sqo_wq[rw], &req->work); } static void io_kill_timeout(struct io_kiocb *req) { int ret; ret = hrtimer_try_to_cancel(&req->timeout.timer); if (ret != -1) { atomic_inc(&req->ctx->cq_timeouts); list_del(&req->list); io_cqring_fill_event(req->ctx, req->user_data, 0); __io_free_req(req); } } static void io_kill_timeouts(struct io_ring_ctx *ctx) { struct io_kiocb *req, *tmp; spin_lock_irq(&ctx->completion_lock); list_for_each_entry_safe(req, tmp, &ctx->timeout_list, list) io_kill_timeout(req); spin_unlock_irq(&ctx->completion_lock); } static void io_commit_cqring(struct io_ring_ctx *ctx) { struct io_kiocb *req; while ((req = io_get_timeout_req(ctx)) != NULL) io_kill_timeout(req); __io_commit_cqring(ctx); while ((req = io_get_deferred_req(ctx)) != NULL) { if (req->flags & REQ_F_SHADOW_DRAIN) { /* Just for drain, free it. */ __io_free_req(req); continue; } req->flags |= REQ_F_IO_DRAINED; io_queue_async_work(ctx, req); } } static struct io_uring_cqe *io_get_cqring(struct io_ring_ctx *ctx) { struct io_rings *rings = ctx->rings; unsigned tail; tail = ctx->cached_cq_tail; /* * writes to the cq entry need to come after reading head; the * control dependency is enough as we're using WRITE_ONCE to * fill the cq entry */ if (tail - READ_ONCE(rings->cq.head) == rings->cq_ring_entries) return NULL; ctx->cached_cq_tail++; return &rings->cqes[tail & ctx->cq_mask]; } static void io_cqring_fill_event(struct io_ring_ctx *ctx, u64 ki_user_data, long res) { struct io_uring_cqe *cqe; /* * If we can't get a cq entry, userspace overflowed the * submission (by quite a lot). Increment the overflow count in * the ring. */ cqe = io_get_cqring(ctx); if (cqe) { WRITE_ONCE(cqe->user_data, ki_user_data); WRITE_ONCE(cqe->res, res); WRITE_ONCE(cqe->flags, 0); } else { WRITE_ONCE(ctx->rings->cq_overflow, atomic_inc_return(&ctx->cached_cq_overflow)); } } static void io_cqring_ev_posted(struct io_ring_ctx *ctx) { if (waitqueue_active(&ctx->wait)) wake_up(&ctx->wait); if (waitqueue_active(&ctx->sqo_wait)) wake_up(&ctx->sqo_wait); if (ctx->cq_ev_fd) eventfd_signal(ctx->cq_ev_fd, 1); } static void io_cqring_add_event(struct io_ring_ctx *ctx, u64 user_data, long res) { unsigned long flags; spin_lock_irqsave(&ctx->completion_lock, flags); io_cqring_fill_event(ctx, user_data, res); io_commit_cqring(ctx); spin_unlock_irqrestore(&ctx->completion_lock, flags); io_cqring_ev_posted(ctx); } static struct io_kiocb *io_get_req(struct io_ring_ctx *ctx, struct io_submit_state *state) { gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; struct io_kiocb *req; if (!percpu_ref_tryget(&ctx->refs)) return NULL; if (!state) { req = kmem_cache_alloc(req_cachep, gfp); if (unlikely(!req)) goto out; } else if (!state->free_reqs) { size_t sz; int ret; sz = min_t(size_t, state->ios_left, ARRAY_SIZE(state->reqs)); ret = kmem_cache_alloc_bulk(req_cachep, gfp, sz, state->reqs); /* * Bulk alloc is all-or-nothing. If we fail to get a batch, * retry single alloc to be on the safe side. */ if (unlikely(ret <= 0)) { state->reqs[0] = kmem_cache_alloc(req_cachep, gfp); if (!state->reqs[0]) goto out; ret = 1; } state->free_reqs = ret - 1; state->cur_req = 1; req = state->reqs[0]; } else { req = state->reqs[state->cur_req]; state->free_reqs--; state->cur_req++; } req->file = NULL; req->ctx = ctx; req->flags = 0; /* one is dropped after submission, the other at completion */ refcount_set(&req->refs, 2); req->result = 0; return req; out: percpu_ref_put(&ctx->refs); return NULL; } static void io_free_req_many(struct io_ring_ctx *ctx, void **reqs, int *nr) { if (*nr) { kmem_cache_free_bulk(req_cachep, *nr, reqs); percpu_ref_put_many(&ctx->refs, *nr); *nr = 0; } } static void __io_free_req(struct io_kiocb *req) { if (req->file && !(req->flags & REQ_F_FIXED_FILE)) fput(req->file); percpu_ref_put(&req->ctx->refs); kmem_cache_free(req_cachep, req); } static void io_req_link_next(struct io_kiocb *req) { struct io_kiocb *nxt; /* * The list should never be empty when we are called here. But could * potentially happen if the chain is messed up, check to be on the * safe side. */ nxt = list_first_entry_or_null(&req->link_list, struct io_kiocb, list); if (nxt) { list_del(&nxt->list); if (!list_empty(&req->link_list)) { INIT_LIST_HEAD(&nxt->link_list); list_splice(&req->link_list, &nxt->link_list); nxt->flags |= REQ_F_LINK; } nxt->flags |= REQ_F_LINK_DONE; INIT_WORK(&nxt->work, io_sq_wq_submit_work); io_queue_async_work(req->ctx, nxt); } } /* * Called if REQ_F_LINK is set, and we fail the head request */ static void io_fail_links(struct io_kiocb *req) { struct io_kiocb *link; while (!list_empty(&req->link_list)) { link = list_first_entry(&req->link_list, struct io_kiocb, list); list_del(&link->list); io_cqring_add_event(req->ctx, link->user_data, -ECANCELED); __io_free_req(link); } } static void io_free_req(struct io_kiocb *req) { /* * If LINK is set, we have dependent requests in this chain. If we * didn't fail this request, queue the first one up, moving any other * dependencies to the next request. In case of failure, fail the rest * of the chain. */ if (req->flags & REQ_F_LINK) { if (req->flags & REQ_F_FAIL_LINK) io_fail_links(req); else io_req_link_next(req); } __io_free_req(req); } static void io_put_req(struct io_kiocb *req) { if (refcount_dec_and_test(&req->refs)) io_free_req(req); } static unsigned io_cqring_events(struct io_rings *rings) { /* See comment at the top of this file */ smp_rmb(); return READ_ONCE(rings->cq.tail) - READ_ONCE(rings->cq.head); } static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx) { struct io_rings *rings = ctx->rings; /* make sure SQ entry isn't read before tail */ return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head; } /* * Find and free completed poll iocbs */ static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events, struct list_head *done) { void *reqs[IO_IOPOLL_BATCH]; struct io_kiocb *req; int to_free; to_free = 0; while (!list_empty(done)) { req = list_first_entry(done, struct io_kiocb, list); list_del(&req->list); io_cqring_fill_event(ctx, req->user_data, req->result); (*nr_events)++; if (refcount_dec_and_test(&req->refs)) { /* If we're not using fixed files, we have to pair the * completion part with the file put. Use regular * completions for those, only batch free for fixed * file and non-linked commands. */ if ((req->flags & (REQ_F_FIXED_FILE|REQ_F_LINK)) == REQ_F_FIXED_FILE) { reqs[to_free++] = req; if (to_free == ARRAY_SIZE(reqs)) io_free_req_many(ctx, reqs, &to_free); } else { io_free_req(req); } } } io_commit_cqring(ctx); io_free_req_many(ctx, reqs, &to_free); } static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events, long min) { struct io_kiocb *req, *tmp; LIST_HEAD(done); bool spin; int ret; /* * Only spin for completions if we don't have multiple devices hanging * off our complete list, and we're under the requested amount. */ spin = !ctx->poll_multi_file && *nr_events < min; ret = 0; list_for_each_entry_safe(req, tmp, &ctx->poll_list, list) { struct kiocb *kiocb = &req->rw; /* * Move completed entries to our local list. If we find a * request that requires polling, break out and complete * the done list first, if we have entries there. */ if (req->flags & REQ_F_IOPOLL_COMPLETED) { list_move_tail(&req->list, &done); continue; } if (!list_empty(&done)) break; ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin); if (ret < 0) break; if (ret && spin) spin = false; ret = 0; } if (!list_empty(&done)) io_iopoll_complete(ctx, nr_events, &done); return ret; } /* * Poll for a mininum of 'min' events. Note that if min == 0 we consider that a * non-spinning poll check - we'll still enter the driver poll loop, but only * as a non-spinning completion check. */ static int io_iopoll_getevents(struct io_ring_ctx *ctx, unsigned int *nr_events, long min) { while (!list_empty(&ctx->poll_list) && !need_resched()) { int ret; ret = io_do_iopoll(ctx, nr_events, min); if (ret < 0) return ret; if (!min || *nr_events >= min) return 0; } return 1; } /* * We can't just wait for polled events to come to us, we have to actively * find and complete them. */ static void io_iopoll_reap_events(struct io_ring_ctx *ctx) { if (!(ctx->flags & IORING_SETUP_IOPOLL)) return; mutex_lock(&ctx->uring_lock); while (!list_empty(&ctx->poll_list)) { unsigned int nr_events = 0; io_iopoll_getevents(ctx, &nr_events, 1); /* * Ensure we allow local-to-the-cpu processing to take place, * in this case we need to ensure that we reap all events. */ cond_resched(); } mutex_unlock(&ctx->uring_lock); } static int __io_iopoll_check(struct io_ring_ctx *ctx, unsigned *nr_events, long min) { int iters = 0, ret = 0; do { int tmin = 0; /* * Don't enter poll loop if we already have events pending. * If we do, we can potentially be spinning for commands that * already triggered a CQE (eg in error). */ if (io_cqring_events(ctx->rings)) break; /* * If a submit got punted to a workqueue, we can have the * application entering polling for a command before it gets * issued. That app will hold the uring_lock for the duration * of the poll right here, so we need to take a breather every * now and then to ensure that the issue has a chance to add * the poll to the issued list. Otherwise we can spin here * forever, while the workqueue is stuck trying to acquire the * very same mutex. */ if (!(++iters & 7)) { mutex_unlock(&ctx->uring_lock); mutex_lock(&ctx->uring_lock); } if (*nr_events < min) tmin = min - *nr_events; ret = io_iopoll_getevents(ctx, nr_events, tmin); if (ret <= 0) break; ret = 0; } while (min && !*nr_events && !need_resched()); return ret; } static int io_iopoll_check(struct io_ring_ctx *ctx, unsigned *nr_events, long min) { int ret; /* * We disallow the app entering submit/complete with polling, but we * still need to lock the ring to prevent racing with polled issue * that got punted to a workqueue. */ mutex_lock(&ctx->uring_lock); ret = __io_iopoll_check(ctx, nr_events, min); mutex_unlock(&ctx->uring_lock); return ret; } static void kiocb_end_write(struct io_kiocb *req) { /* * Tell lockdep we inherited freeze protection from submission * thread. */ if (req->flags & REQ_F_ISREG) { struct inode *inode = file_inode(req->file); __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE); } file_end_write(req->file); } static void io_complete_rw(struct kiocb *kiocb, long res, long res2) { struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw); if (kiocb->ki_flags & IOCB_WRITE) kiocb_end_write(req); if ((req->flags & REQ_F_LINK) && res != req->result) req->flags |= REQ_F_FAIL_LINK; io_cqring_add_event(req->ctx, req->user_data, res); io_put_req(req); } static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2) { struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw); if (kiocb->ki_flags & IOCB_WRITE) kiocb_end_write(req); if ((req->flags & REQ_F_LINK) && res != req->result) req->flags |= REQ_F_FAIL_LINK; req->result = res; if (res != -EAGAIN) req->flags |= REQ_F_IOPOLL_COMPLETED; } /* * After the iocb has been issued, it's safe to be found on the poll list. * Adding the kiocb to the list AFTER submission ensures that we don't * find it from a io_iopoll_getevents() thread before the issuer is done * accessing the kiocb cookie. */ static void io_iopoll_req_issued(struct io_kiocb *req) { struct io_ring_ctx *ctx = req->ctx; /* * Track whether we have multiple files in our lists. This will impact * how we do polling eventually, not spinning if we're on potentially * different devices. */ if (list_empty(&ctx->poll_list)) { ctx->poll_multi_file = false; } else if (!ctx->poll_multi_file) { struct io_kiocb *list_req; list_req = list_first_entry(&ctx->poll_list, struct io_kiocb, list); if (list_req->rw.ki_filp != req->rw.ki_filp) ctx->poll_multi_file = true; } /* * For fast devices, IO may have already completed. If it has, add * it to the front so we find it first. */ if (req->flags & REQ_F_IOPOLL_COMPLETED) list_add(&req->list, &ctx->poll_list); else list_add_tail(&req->list, &ctx->poll_list); } static void io_file_put(struct io_submit_state *state) { if (state->file) { int diff = state->has_refs - state->used_refs; if (diff) fput_many(state->file, diff); state->file = NULL; } } /* * Get as many references to a file as we have IOs left in this submission, * assuming most submissions are for one file, or at least that each file * has more than one submission. */ static struct file *io_file_get(struct io_submit_state *state, int fd) { if (!state) return fget(fd); if (state->file) { if (state->fd == fd) { state->used_refs++; state->ios_left--; return state->file; } io_file_put(state); } state->file = fget_many(fd, state->ios_left); if (!state->file) return NULL; state->fd = fd; state->has_refs = state->ios_left; state->used_refs = 1; state->ios_left--; return state->file; } /* * If we tracked the file through the SCM inflight mechanism, we could support * any file. For now, just ensure that anything potentially problematic is done * inline. */ static bool io_file_supports_async(struct file *file) { umode_t mode = file_inode(file)->i_mode; if (S_ISBLK(mode) || S_ISCHR(mode)) return true; if (S_ISREG(mode) && file->f_op != &io_uring_fops) return true; return false; } static int io_prep_rw(struct io_kiocb *req, const struct sqe_submit *s, bool force_nonblock) { const struct io_uring_sqe *sqe = s->sqe; struct io_ring_ctx *ctx = req->ctx; struct kiocb *kiocb = &req->rw; unsigned ioprio; int ret; if (!req->file) return -EBADF; if (S_ISREG(file_inode(req->file)->i_mode)) req->flags |= REQ_F_ISREG; /* * If the file doesn't support async, mark it as REQ_F_MUST_PUNT so * we know to async punt it even if it was opened O_NONBLOCK */ if (force_nonblock && !io_file_supports_async(req->file)) { req->flags |= REQ_F_MUST_PUNT; return -EAGAIN; } kiocb->ki_pos = READ_ONCE(sqe->off); kiocb->ki_flags = iocb_flags(kiocb->ki_filp); kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp)); ioprio = READ_ONCE(sqe->ioprio); if (ioprio) { ret = ioprio_check_cap(ioprio); if (ret) return ret; kiocb->ki_ioprio = ioprio; } else kiocb->ki_ioprio = get_current_ioprio(); ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags)); if (unlikely(ret)) return ret; /* don't allow async punt if RWF_NOWAIT was requested */ if ((kiocb->ki_flags & IOCB_NOWAIT) || (req->file->f_flags & O_NONBLOCK)) req->flags |= REQ_F_NOWAIT; if (force_nonblock) kiocb->ki_flags |= IOCB_NOWAIT; if (ctx->flags & IORING_SETUP_IOPOLL) { if (!(kiocb->ki_flags & IOCB_DIRECT) || !kiocb->ki_filp->f_op->iopoll) return -EOPNOTSUPP; kiocb->ki_flags |= IOCB_HIPRI; kiocb->ki_complete = io_complete_rw_iopoll; req->result = 0; } else { if (kiocb->ki_flags & IOCB_HIPRI) return -EINVAL; kiocb->ki_complete = io_complete_rw; } return 0; } static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret) { switch (ret) { case -EIOCBQUEUED: break; case -ERESTARTSYS: case -ERESTARTNOINTR: case -ERESTARTNOHAND: case -ERESTART_RESTARTBLOCK: /* * We can't just restart the syscall, since previously * submitted sqes may already be in progress. Just fail this * IO with EINTR. */ ret = -EINTR; /* fall through */ default: kiocb->ki_complete(kiocb, ret, 0); } } static int io_import_fixed(struct io_ring_ctx *ctx, int rw, const struct io_uring_sqe *sqe, struct iov_iter *iter) { size_t len = READ_ONCE(sqe->len); struct io_mapped_ubuf *imu; unsigned index, buf_index; size_t offset; u64 buf_addr; /* attempt to use fixed buffers without having provided iovecs */ if (unlikely(!ctx->user_bufs)) return -EFAULT; buf_index = READ_ONCE(sqe->buf_index); if (unlikely(buf_index >= ctx->nr_user_bufs)) return -EFAULT; index = array_index_nospec(buf_index, ctx->nr_user_bufs); imu = &ctx->user_bufs[index]; buf_addr = READ_ONCE(sqe->addr); /* overflow */ if (buf_addr + len < buf_addr) return -EFAULT; /* not inside the mapped region */ if (buf_addr < imu->ubuf || buf_addr + len > imu->ubuf + imu->len) return -EFAULT; /* * May not be a start of buffer, set size appropriately * and advance us to the beginning. */ offset = buf_addr - imu->ubuf; iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len); if (offset) { /* * Don't use iov_iter_advance() here, as it's really slow for * using the latter parts of a big fixed buffer - it iterates * over each segment manually. We can cheat a bit here, because * we know that: * * 1) it's a BVEC iter, we set it up * 2) all bvecs are PAGE_SIZE in size, except potentially the * first and last bvec * * So just find our index, and adjust the iterator afterwards. * If the offset is within the first bvec (or the whole first * bvec, just use iov_iter_advance(). This makes it easier * since we can just skip the first segment, which may not * be PAGE_SIZE aligned. */ const struct bio_vec *bvec = imu->bvec; if (offset <= bvec->bv_len) { iov_iter_advance(iter, offset); } else { unsigned long seg_skip; /* skip first vec */ offset -= bvec->bv_len; seg_skip = 1 + (offset >> PAGE_SHIFT); iter->bvec = bvec + seg_skip; iter->nr_segs -= seg_skip; iter->count -= bvec->bv_len + offset; iter->iov_offset = offset & ~PAGE_MASK; } } return len; } static ssize_t io_import_iovec(struct io_ring_ctx *ctx, int rw, const struct sqe_submit *s, struct iovec **iovec, struct iov_iter *iter) { const struct io_uring_sqe *sqe = s->sqe; void __user *buf = u64_to_user_ptr(READ_ONCE(sqe->addr)); size_t sqe_len = READ_ONCE(sqe->len); u8 opcode; /* * We're reading ->opcode for the second time, but the first read * doesn't care whether it's _FIXED or not, so it doesn't matter * whether ->opcode changes concurrently. The first read does care * about whether it is a READ or a WRITE, so we don't trust this read * for that purpose and instead let the caller pass in the read/write * flag. */ opcode = READ_ONCE(sqe->opcode); if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) { ssize_t ret = io_import_fixed(ctx, rw, sqe, iter); *iovec = NULL; return ret; } if (!s->has_user) return -EFAULT; #ifdef CONFIG_COMPAT if (ctx->compat) return compat_import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter); #endif return import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter); } static inline bool io_should_merge(struct async_list *al, struct kiocb *kiocb) { if (al->file == kiocb->ki_filp) { off_t start, end; /* * Allow merging if we're anywhere in the range of the same * page. Generally this happens for sub-page reads or writes, * and it's beneficial to allow the first worker to bring the * page in and the piggy backed work can then work on the * cached page. */ start = al->io_start & PAGE_MASK; end = (al->io_start + al->io_len + PAGE_SIZE - 1) & PAGE_MASK; if (kiocb->ki_pos >= start && kiocb->ki_pos <= end) return true; } al->file = NULL; return false; } /* * Make a note of the last file/offset/direction we punted to async * context. We'll use this information to see if we can piggy back a * sequential request onto the previous one, if it's still hasn't been * completed by the async worker. */ static void io_async_list_note(int rw, struct io_kiocb *req, size_t len) { struct async_list *async_list = &req->ctx->pending_async[rw]; struct kiocb *kiocb = &req->rw; struct file *filp = kiocb->ki_filp; if (io_should_merge(async_list, kiocb)) { unsigned long max_bytes; /* Use 8x RA size as a decent limiter for both reads/writes */ max_bytes = filp->f_ra.ra_pages << (PAGE_SHIFT + 3); if (!max_bytes) max_bytes = VM_READAHEAD_PAGES << (PAGE_SHIFT + 3); /* If max len are exceeded, reset the state */ if (async_list->io_len + len <= max_bytes) { req->flags |= REQ_F_SEQ_PREV; async_list->io_len += len; } else { async_list->file = NULL; } } /* New file? Reset state. */ if (async_list->file != filp) { async_list->io_start = kiocb->ki_pos; async_list->io_len = len; async_list->file = filp; } } /* * For files that don't have ->read_iter() and ->write_iter(), handle them * by looping over ->read() or ->write() manually. */ static ssize_t loop_rw_iter(int rw, struct file *file, struct kiocb *kiocb, struct iov_iter *iter) { ssize_t ret = 0; /* * Don't support polled IO through this interface, and we can't * support non-blocking either. For the latter, this just causes * the kiocb to be handled from an async context. */ if (kiocb->ki_flags & IOCB_HIPRI) return -EOPNOTSUPP; if (kiocb->ki_flags & IOCB_NOWAIT) return -EAGAIN; while (iov_iter_count(iter)) { struct iovec iovec; ssize_t nr; if (!iov_iter_is_bvec(iter)) { iovec = iov_iter_iovec(iter); } else { /* fixed buffers import bvec */ iovec.iov_base = kmap(iter->bvec->bv_page) + iter->iov_offset; iovec.iov_len = min(iter->count, iter->bvec->bv_len - iter->iov_offset); } if (rw == READ) { nr = file->f_op->read(file, iovec.iov_base, iovec.iov_len, &kiocb->ki_pos); } else { nr = file->f_op->write(file, iovec.iov_base, iovec.iov_len, &kiocb->ki_pos); } if (iov_iter_is_bvec(iter)) kunmap(iter->bvec->bv_page); if (nr < 0) { if (!ret) ret = nr; break; } ret += nr; if (nr != iovec.iov_len) break; iov_iter_advance(iter, nr); } return ret; } static int io_read(struct io_kiocb *req, const struct sqe_submit *s, bool force_nonblock) { struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs; struct kiocb *kiocb = &req->rw; struct iov_iter iter; struct file *file; size_t iov_count; ssize_t read_size, ret; ret = io_prep_rw(req, s, force_nonblock); if (ret) return ret; file = kiocb->ki_filp; if (unlikely(!(file->f_mode & FMODE_READ))) return -EBADF; ret = io_import_iovec(req->ctx, READ, s, &iovec, &iter); if (ret < 0) return ret; read_size = ret; if (req->flags & REQ_F_LINK) req->result = read_size; iov_count = iov_iter_count(&iter); ret = rw_verify_area(READ, file, &kiocb->ki_pos, iov_count); if (!ret) { ssize_t ret2; if (file->f_op->read_iter) ret2 = call_read_iter(file, kiocb, &iter); else ret2 = loop_rw_iter(READ, file, kiocb, &iter); /* * In case of a short read, punt to async. This can happen * if we have data partially cached. Alternatively we can * return the short read, in which case the application will * need to issue another SQE and wait for it. That SQE will * need async punt anyway, so it's more efficient to do it * here. */ if (force_nonblock && !(req->flags & REQ_F_NOWAIT) && (req->flags & REQ_F_ISREG) && ret2 > 0 && ret2 < read_size) ret2 = -EAGAIN; /* Catch -EAGAIN return for forced non-blocking submission */ if (!force_nonblock || ret2 != -EAGAIN) { io_rw_done(kiocb, ret2); } else { /* * If ->needs_lock is true, we're already in async * context. */ if (!s->needs_lock) io_async_list_note(READ, req, iov_count); ret = -EAGAIN; } } kfree(iovec); return ret; } static int io_write(struct io_kiocb *req, const struct sqe_submit *s, bool force_nonblock) { struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs; struct kiocb *kiocb = &req->rw; struct iov_iter iter; struct file *file; size_t iov_count; ssize_t ret; ret = io_prep_rw(req, s, force_nonblock); if (ret) return ret; file = kiocb->ki_filp; if (unlikely(!(file->f_mode & FMODE_WRITE))) return -EBADF; ret = io_import_iovec(req->ctx, WRITE, s, &iovec, &iter); if (ret < 0) return ret; if (req->flags & REQ_F_LINK) req->result = ret; iov_count = iov_iter_count(&iter); ret = -EAGAIN; if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT)) { /* If ->needs_lock is true, we're already in async context. */ if (!s->needs_lock) io_async_list_note(WRITE, req, iov_count); goto out_free; } ret = rw_verify_area(WRITE, file, &kiocb->ki_pos, iov_count); if (!ret) { ssize_t ret2; /* * Open-code file_start_write here to grab freeze protection, * which will be released by another thread in * io_complete_rw(). Fool lockdep by telling it the lock got * released so that it doesn't complain about the held lock when * we return to userspace. */ if (req->flags & REQ_F_ISREG) { __sb_start_write(file_inode(file)->i_sb, SB_FREEZE_WRITE, true); __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE); } kiocb->ki_flags |= IOCB_WRITE; if (file->f_op->write_iter) ret2 = call_write_iter(file, kiocb, &iter); else ret2 = loop_rw_iter(WRITE, file, kiocb, &iter); if (!force_nonblock || ret2 != -EAGAIN) { io_rw_done(kiocb, ret2); } else { /* * If ->needs_lock is true, we're already in async * context. */ if (!s->needs_lock) io_async_list_note(WRITE, req, iov_count); ret = -EAGAIN; } } out_free: kfree(iovec); return ret; } /* * IORING_OP_NOP just posts a completion event, nothing else. */ static int io_nop(struct io_kiocb *req, u64 user_data) { struct io_ring_ctx *ctx = req->ctx; long err = 0; if (unlikely(ctx->flags & IORING_SETUP_IOPOLL)) return -EINVAL; io_cqring_add_event(ctx, user_data, err); io_put_req(req); return 0; } static int io_prep_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe) { struct io_ring_ctx *ctx = req->ctx; if (!req->file) return -EBADF; if (unlikely(ctx->flags & IORING_SETUP_IOPOLL)) return -EINVAL; if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index)) return -EINVAL; return 0; } static int io_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe, bool force_nonblock) { loff_t sqe_off = READ_ONCE(sqe->off); loff_t sqe_len = READ_ONCE(sqe->len); loff_t end = sqe_off + sqe_len; unsigned fsync_flags; int ret; fsync_flags = READ_ONCE(sqe->fsync_flags); if (unlikely(fsync_flags & ~IORING_FSYNC_DATASYNC)) return -EINVAL; ret = io_prep_fsync(req, sqe); if (ret) return ret; /* fsync always requires a blocking context */ if (force_nonblock) return -EAGAIN; ret = vfs_fsync_range(req->rw.ki_filp, sqe_off, end > 0 ? end : LLONG_MAX, fsync_flags & IORING_FSYNC_DATASYNC); if (ret < 0 && (req->flags & REQ_F_LINK)) req->flags |= REQ_F_FAIL_LINK; io_cqring_add_event(req->ctx, sqe->user_data, ret); io_put_req(req); return 0; } static int io_prep_sfr(struct io_kiocb *req, const struct io_uring_sqe *sqe) { struct io_ring_ctx *ctx = req->ctx; int ret = 0; if (!req->file) return -EBADF; if (unlikely(ctx->flags & IORING_SETUP_IOPOLL)) return -EINVAL; if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index)) return -EINVAL; return ret; } static int io_sync_file_range(struct io_kiocb *req, const struct io_uring_sqe *sqe, bool force_nonblock) { loff_t sqe_off; loff_t sqe_len; unsigned flags; int ret; ret = io_prep_sfr(req, sqe); if (ret) return ret; /* sync_file_range always requires a blocking context */ if (force_nonblock) return -EAGAIN; sqe_off = READ_ONCE(sqe->off); sqe_len = READ_ONCE(sqe->len); flags = READ_ONCE(sqe->sync_range_flags); ret = sync_file_range(req->rw.ki_filp, sqe_off, sqe_len, flags); if (ret < 0 && (req->flags & REQ_F_LINK)) req->flags |= REQ_F_FAIL_LINK; io_cqring_add_event(req->ctx, sqe->user_data, ret); io_put_req(req); return 0; } #if defined(CONFIG_NET) static int io_send_recvmsg(struct io_kiocb *req, const struct io_uring_sqe *sqe, bool force_nonblock, long (*fn)(struct socket *, struct user_msghdr __user *, unsigned int)) { struct socket *sock; int ret; if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL)) return -EINVAL; sock = sock_from_file(req->file, &ret); if (sock) { struct user_msghdr __user *msg; unsigned flags; flags = READ_ONCE(sqe->msg_flags); if (flags & MSG_DONTWAIT) req->flags |= REQ_F_NOWAIT; else if (force_nonblock) flags |= MSG_DONTWAIT; msg = (struct user_msghdr __user *) (unsigned long) READ_ONCE(sqe->addr); ret = fn(sock, msg, flags); if (force_nonblock && ret == -EAGAIN) return ret; if (ret == -ERESTARTSYS) ret = -EINTR; } io_cqring_add_event(req->ctx, sqe->user_data, ret); io_put_req(req); return 0; } #endif static int io_sendmsg(struct io_kiocb *req, const struct io_uring_sqe *sqe, bool force_nonblock) { #if defined(CONFIG_NET) return io_send_recvmsg(req, sqe, force_nonblock, __sys_sendmsg_sock); #else return -EOPNOTSUPP; #endif } static int io_recvmsg(struct io_kiocb *req, const struct io_uring_sqe *sqe, bool force_nonblock) { #if defined(CONFIG_NET) return io_send_recvmsg(req, sqe, force_nonblock, __sys_recvmsg_sock); #else return -EOPNOTSUPP; #endif } static void io_poll_remove_one(struct io_kiocb *req) { struct io_poll_iocb *poll = &req->poll; spin_lock(&poll->head->lock); WRITE_ONCE(poll->canceled, true); if (!list_empty(&poll->wait.entry)) { list_del_init(&poll->wait.entry); io_queue_async_work(req->ctx, req); } spin_unlock(&poll->head->lock); list_del_init(&req->list); } static void io_poll_remove_all(struct io_ring_ctx *ctx) { struct io_kiocb *req; spin_lock_irq(&ctx->completion_lock); while (!list_empty(&ctx->cancel_list)) { req = list_first_entry(&ctx->cancel_list, struct io_kiocb,list); io_poll_remove_one(req); } spin_unlock_irq(&ctx->completion_lock); } /* * Find a running poll command that matches one specified in sqe->addr, * and remove it if found. */ static int io_poll_remove(struct io_kiocb *req, const struct io_uring_sqe *sqe) { struct io_ring_ctx *ctx = req->ctx; struct io_kiocb *poll_req, *next; int ret = -ENOENT; if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL)) return -EINVAL; if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index || sqe->poll_events) return -EINVAL; spin_lock_irq(&ctx->completion_lock); list_for_each_entry_safe(poll_req, next, &ctx->cancel_list, list) { if (READ_ONCE(sqe->addr) == poll_req->user_data) { io_poll_remove_one(poll_req); ret = 0; break; } } spin_unlock_irq(&ctx->completion_lock); io_cqring_add_event(req->ctx, sqe->user_data, ret); io_put_req(req); return 0; } static void io_poll_complete(struct io_ring_ctx *ctx, struct io_kiocb *req, __poll_t mask) { req->poll.done = true; io_cqring_fill_event(ctx, req->user_data, mangle_poll(mask)); io_commit_cqring(ctx); } static void io_poll_complete_work(struct work_struct *work) { struct io_kiocb *req = container_of(work, struct io_kiocb, work); struct io_poll_iocb *poll = &req->poll; struct poll_table_struct pt = { ._key = poll->events }; struct io_ring_ctx *ctx = req->ctx; const struct cred *old_cred; __poll_t mask = 0; old_cred = override_creds(ctx->creds); if (!READ_ONCE(poll->canceled)) mask = vfs_poll(poll->file, &pt) & poll->events; /* * Note that ->ki_cancel callers also delete iocb from active_reqs after * calling ->ki_cancel. We need the ctx_lock roundtrip here to * synchronize with them. In the cancellation case the list_del_init * itself is not actually needed, but harmless so we keep it in to * avoid further branches in the fast path. */ spin_lock_irq(&ctx->completion_lock); if (!mask && !READ_ONCE(poll->canceled)) { add_wait_queue(poll->head, &poll->wait); spin_unlock_irq(&ctx->completion_lock); goto out; } list_del_init(&req->list); io_poll_complete(ctx, req, mask); spin_unlock_irq(&ctx->completion_lock); io_cqring_ev_posted(ctx); io_put_req(req); out: revert_creds(old_cred); } static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync, void *key) { struct io_poll_iocb *poll = container_of(wait, struct io_poll_iocb, wait); struct io_kiocb *req = container_of(poll, struct io_kiocb, poll); struct io_ring_ctx *ctx = req->ctx; __poll_t mask = key_to_poll(key); unsigned long flags; /* for instances that support it check for an event match first: */ if (mask && !(mask & poll->events)) return 0; list_del_init(&poll->wait.entry); if (mask && spin_trylock_irqsave(&ctx->completion_lock, flags)) { list_del(&req->list); io_poll_complete(ctx, req, mask); spin_unlock_irqrestore(&ctx->completion_lock, flags); io_cqring_ev_posted(ctx); io_put_req(req); } else { io_queue_async_work(ctx, req); } return 1; } struct io_poll_table { struct poll_table_struct pt; struct io_kiocb *req; int error; }; static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head, struct poll_table_struct *p) { struct io_poll_table *pt = container_of(p, struct io_poll_table, pt); if (unlikely(pt->req->poll.head)) { pt->error = -EINVAL; return; } pt->error = 0; pt->req->poll.head = head; add_wait_queue(head, &pt->req->poll.wait); } static int io_poll_add(struct io_kiocb *req, const struct io_uring_sqe *sqe) { struct io_poll_iocb *poll = &req->poll; struct io_ring_ctx *ctx = req->ctx; struct io_poll_table ipt; bool cancel = false; __poll_t mask; u16 events; if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL)) return -EINVAL; if (sqe->addr || sqe->ioprio || sqe->off || sqe->len || sqe->buf_index) return -EINVAL; if (!poll->file) return -EBADF; req->submit.sqe = NULL; INIT_WORK(&req->work, io_poll_complete_work); events = READ_ONCE(sqe->poll_events); poll->events = demangle_poll(events) | EPOLLERR | EPOLLHUP; poll->head = NULL; poll->done = false; poll->canceled = false; ipt.pt._qproc = io_poll_queue_proc; ipt.pt._key = poll->events; ipt.req = req; ipt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */ /* initialized the list so that we can do list_empty checks */ INIT_LIST_HEAD(&poll->wait.entry); init_waitqueue_func_entry(&poll->wait, io_poll_wake); INIT_LIST_HEAD(&req->list); mask = vfs_poll(poll->file, &ipt.pt) & poll->events; spin_lock_irq(&ctx->completion_lock); if (likely(poll->head)) { spin_lock(&poll->head->lock); if (unlikely(list_empty(&poll->wait.entry))) { if (ipt.error) cancel = true; ipt.error = 0; mask = 0; } if (mask || ipt.error) list_del_init(&poll->wait.entry); else if (cancel) WRITE_ONCE(poll->canceled, true); else if (!poll->done) /* actually waiting for an event */ list_add_tail(&req->list, &ctx->cancel_list); spin_unlock(&poll->head->lock); } if (mask) { /* no async, we'd stolen it */ ipt.error = 0; io_poll_complete(ctx, req, mask); } spin_unlock_irq(&ctx->completion_lock); if (mask) { io_cqring_ev_posted(ctx); io_put_req(req); } return ipt.error; } static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer) { struct io_ring_ctx *ctx; struct io_kiocb *req, *prev; unsigned long flags; req = container_of(timer, struct io_kiocb, timeout.timer); ctx = req->ctx; atomic_inc(&ctx->cq_timeouts); spin_lock_irqsave(&ctx->completion_lock, flags); /* * Adjust the reqs sequence before the current one because it * will consume a slot in the cq_ring and the the cq_tail pointer * will be increased, otherwise other timeout reqs may return in * advance without waiting for enough wait_nr. */ prev = req; list_for_each_entry_continue_reverse(prev, &ctx->timeout_list, list) prev->sequence++; list_del(&req->list); io_cqring_fill_event(ctx, req->user_data, -ETIME); io_commit_cqring(ctx); spin_unlock_irqrestore(&ctx->completion_lock, flags); io_cqring_ev_posted(ctx); io_put_req(req); return HRTIMER_NORESTART; } static int io_timeout(struct io_kiocb *req, const struct io_uring_sqe *sqe) { unsigned count; struct io_ring_ctx *ctx = req->ctx; struct list_head *entry; struct timespec64 ts; unsigned span = 0; if (unlikely(ctx->flags & IORING_SETUP_IOPOLL)) return -EINVAL; if (sqe->flags || sqe->ioprio || sqe->buf_index || sqe->timeout_flags || sqe->len != 1) return -EINVAL; if (get_timespec64(&ts, u64_to_user_ptr(sqe->addr))) return -EFAULT; req->flags |= REQ_F_TIMEOUT; /* * sqe->off holds how many events that need to occur for this * timeout event to be satisfied. If it isn't set, then this is * a pure timeout request, sequence isn't used. */ count = READ_ONCE(sqe->off); if (!count) { req->flags |= REQ_F_TIMEOUT_NOSEQ; spin_lock_irq(&ctx->completion_lock); entry = ctx->timeout_list.prev; goto add; } req->sequence = ctx->cached_sq_head + count - 1; /* reuse it to store the count */ req->submit.sequence = count; /* * Insertion sort, ensuring the first entry in the list is always * the one we need first. */ spin_lock_irq(&ctx->completion_lock); list_for_each_prev(entry, &ctx->timeout_list) { struct io_kiocb *nxt = list_entry(entry, struct io_kiocb, list); unsigned nxt_sq_head; long long tmp, tmp_nxt; if (nxt->flags & REQ_F_TIMEOUT_NOSEQ) continue; /* * Since cached_sq_head + count - 1 can overflow, use type long * long to store it. */ tmp = (long long)ctx->cached_sq_head + count - 1; nxt_sq_head = nxt->sequence - nxt->submit.sequence + 1; tmp_nxt = (long long)nxt_sq_head + nxt->submit.sequence - 1; /* * cached_sq_head may overflow, and it will never overflow twice * once there is some timeout req still be valid. */ if (ctx->cached_sq_head < nxt_sq_head) tmp += UINT_MAX; if (tmp > tmp_nxt) break; /* * Sequence of reqs after the insert one and itself should * be adjusted because each timeout req consumes a slot. */ span++; nxt->sequence++; } req->sequence -= span; add: list_add(&req->list, entry); spin_unlock_irq(&ctx->completion_lock); hrtimer_init(&req->timeout.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); req->timeout.timer.function = io_timeout_fn; hrtimer_start(&req->timeout.timer, timespec64_to_ktime(ts), HRTIMER_MODE_REL); return 0; } static int io_req_defer(struct io_ring_ctx *ctx, struct io_kiocb *req, struct sqe_submit *s) { struct io_uring_sqe *sqe_copy; if (!io_sequence_defer(ctx, req) && list_empty(&ctx->defer_list)) return 0; sqe_copy = kmalloc(sizeof(*sqe_copy), GFP_KERNEL); if (!sqe_copy) return -EAGAIN; spin_lock_irq(&ctx->completion_lock); if (!io_sequence_defer(ctx, req) && list_empty(&ctx->defer_list)) { spin_unlock_irq(&ctx->completion_lock); kfree(sqe_copy); return 0; } memcpy(&req->submit, s, sizeof(*s)); memcpy(sqe_copy, s->sqe, sizeof(*sqe_copy)); req->submit.sqe = sqe_copy; INIT_WORK(&req->work, io_sq_wq_submit_work); list_add_tail(&req->list, &ctx->defer_list); spin_unlock_irq(&ctx->completion_lock); return -EIOCBQUEUED; } static int __io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, const struct sqe_submit *s, bool force_nonblock) { int ret, opcode; req->user_data = READ_ONCE(s->sqe->user_data); if (unlikely(s->index >= ctx->sq_entries)) return -EINVAL; opcode = READ_ONCE(s->sqe->opcode); switch (opcode) { case IORING_OP_NOP: ret = io_nop(req, req->user_data); break; case IORING_OP_READV: if (unlikely(s->sqe->buf_index)) return -EINVAL; ret = io_read(req, s, force_nonblock); break; case IORING_OP_WRITEV: if (unlikely(s->sqe->buf_index)) return -EINVAL; ret = io_write(req, s, force_nonblock); break; case IORING_OP_READ_FIXED: ret = io_read(req, s, force_nonblock); break; case IORING_OP_WRITE_FIXED: ret = io_write(req, s, force_nonblock); break; case IORING_OP_FSYNC: ret = io_fsync(req, s->sqe, force_nonblock); break; case IORING_OP_POLL_ADD: ret = io_poll_add(req, s->sqe); break; case IORING_OP_POLL_REMOVE: ret = io_poll_remove(req, s->sqe); break; case IORING_OP_SYNC_FILE_RANGE: ret = io_sync_file_range(req, s->sqe, force_nonblock); break; case IORING_OP_SENDMSG: ret = io_sendmsg(req, s->sqe, force_nonblock); break; case IORING_OP_RECVMSG: ret = io_recvmsg(req, s->sqe, force_nonblock); break; case IORING_OP_TIMEOUT: ret = io_timeout(req, s->sqe); break; default: ret = -EINVAL; break; } if (ret) return ret; if (ctx->flags & IORING_SETUP_IOPOLL) { if (req->result == -EAGAIN) return -EAGAIN; /* workqueue context doesn't hold uring_lock, grab it now */ if (s->needs_lock) mutex_lock(&ctx->uring_lock); io_iopoll_req_issued(req); if (s->needs_lock) mutex_unlock(&ctx->uring_lock); } return 0; } static struct async_list *io_async_list_from_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe *sqe) { switch (sqe->opcode) { case IORING_OP_READV: case IORING_OP_READ_FIXED: return &ctx->pending_async[READ]; case IORING_OP_WRITEV: case IORING_OP_WRITE_FIXED: return &ctx->pending_async[WRITE]; default: return NULL; } } static inline bool io_sqe_needs_user(const struct io_uring_sqe *sqe) { u8 opcode = READ_ONCE(sqe->opcode); return !(opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED); } static void io_sq_wq_submit_work(struct work_struct *work) { struct io_kiocb *req = container_of(work, struct io_kiocb, work); struct io_ring_ctx *ctx = req->ctx; struct mm_struct *cur_mm = NULL; struct async_list *async_list; const struct cred *old_cred; LIST_HEAD(req_list); mm_segment_t old_fs; int ret; old_cred = override_creds(ctx->creds); async_list = io_async_list_from_sqe(ctx, req->submit.sqe); restart: do { struct sqe_submit *s = &req->submit; const struct io_uring_sqe *sqe = s->sqe; unsigned int flags = req->flags; /* Ensure we clear previously set non-block flag */ req->rw.ki_flags &= ~IOCB_NOWAIT; ret = 0; if (io_sqe_needs_user(sqe) && !cur_mm) { if (!mmget_not_zero(ctx->sqo_mm)) { ret = -EFAULT; } else { cur_mm = ctx->sqo_mm; use_mm(cur_mm); old_fs = get_fs(); set_fs(USER_DS); } } if (!ret) { s->has_user = cur_mm != NULL; s->needs_lock = true; do { ret = __io_submit_sqe(ctx, req, s, false); /* * We can get EAGAIN for polled IO even though * we're forcing a sync submission from here, * since we can't wait for request slots on the * block side. */ if (ret != -EAGAIN) break; cond_resched(); } while (1); } /* drop submission reference */ io_put_req(req); if (ret) { io_cqring_add_event(ctx, sqe->user_data, ret); io_put_req(req); } /* async context always use a copy of the sqe */ kfree(sqe); /* req from defer and link list needn't decrease async cnt */ if (flags & (REQ_F_IO_DRAINED | REQ_F_LINK_DONE)) goto out; if (!async_list) break; if (!list_empty(&req_list)) { req = list_first_entry(&req_list, struct io_kiocb, list); list_del(&req->list); continue; } if (list_empty(&async_list->list)) break; req = NULL; spin_lock(&async_list->lock); if (list_empty(&async_list->list)) { spin_unlock(&async_list->lock); break; } list_splice_init(&async_list->list, &req_list); spin_unlock(&async_list->lock); req = list_first_entry(&req_list, struct io_kiocb, list); list_del(&req->list); } while (req); /* * Rare case of racing with a submitter. If we find the count has * dropped to zero AND we have pending work items, then restart * the processing. This is a tiny race window. */ if (async_list) { ret = atomic_dec_return(&async_list->cnt); while (!ret && !list_empty(&async_list->list)) { spin_lock(&async_list->lock); atomic_inc(&async_list->cnt); list_splice_init(&async_list->list, &req_list); spin_unlock(&async_list->lock); if (!list_empty(&req_list)) { req = list_first_entry(&req_list, struct io_kiocb, list); list_del(&req->list); goto restart; } ret = atomic_dec_return(&async_list->cnt); } } out: if (cur_mm) { set_fs(old_fs); unuse_mm(cur_mm); mmput(cur_mm); } revert_creds(old_cred); } /* * See if we can piggy back onto previously submitted work, that is still * running. We currently only allow this if the new request is sequential * to the previous one we punted. */ static bool io_add_to_prev_work(struct async_list *list, struct io_kiocb *req) { bool ret; if (!list) return false; if (!(req->flags & REQ_F_SEQ_PREV)) return false; if (!atomic_read(&list->cnt)) return false; ret = true; spin_lock(&list->lock); list_add_tail(&req->list, &list->list); /* * Ensure we see a simultaneous modification from io_sq_wq_submit_work() */ smp_mb(); if (!atomic_read(&list->cnt)) { list_del_init(&req->list); ret = false; } spin_unlock(&list->lock); return ret; } static bool io_op_needs_file(const struct io_uring_sqe *sqe) { int op = READ_ONCE(sqe->opcode); switch (op) { case IORING_OP_NOP: case IORING_OP_POLL_REMOVE: case IORING_OP_TIMEOUT: return false; default: return true; } } static int io_req_set_file(struct io_ring_ctx *ctx, const struct sqe_submit *s, struct io_submit_state *state, struct io_kiocb *req) { unsigned flags; int fd; flags = READ_ONCE(s->sqe->flags); fd = READ_ONCE(s->sqe->fd); if (flags & IOSQE_IO_DRAIN) req->flags |= REQ_F_IO_DRAIN; /* * All io need record the previous position, if LINK vs DARIN, * it can be used to mark the position of the first IO in the * link list. */ req->sequence = s->sequence; if (!io_op_needs_file(s->sqe)) return 0; if (flags & IOSQE_FIXED_FILE) { if (unlikely(!ctx->user_files || (unsigned) fd >= ctx->nr_user_files)) return -EBADF; req->file = ctx->user_files[fd]; req->flags |= REQ_F_FIXED_FILE; } else { if (s->needs_fixed_file) return -EBADF; req->file = io_file_get(state, fd); if (unlikely(!req->file)) return -EBADF; } return 0; } static int __io_queue_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, struct sqe_submit *s) { int ret; ret = __io_submit_sqe(ctx, req, s, true); /* * We async punt it if the file wasn't marked NOWAIT, or if the file * doesn't support non-blocking read/write attempts */ if (ret == -EAGAIN && (!(req->flags & REQ_F_NOWAIT) || (req->flags & REQ_F_MUST_PUNT))) { struct io_uring_sqe *sqe_copy; sqe_copy = kmemdup(s->sqe, sizeof(*sqe_copy), GFP_KERNEL); if (sqe_copy) { struct async_list *list; s->sqe = sqe_copy; memcpy(&req->submit, s, sizeof(*s)); list = io_async_list_from_sqe(ctx, s->sqe); if (!io_add_to_prev_work(list, req)) { if (list) atomic_inc(&list->cnt); INIT_WORK(&req->work, io_sq_wq_submit_work); io_queue_async_work(ctx, req); } /* * Queued up for async execution, worker will release * submit reference when the iocb is actually submitted. */ return 0; } } /* drop submission reference */ io_put_req(req); /* and drop final reference, if we failed */ if (ret) { io_cqring_add_event(ctx, req->user_data, ret); if (req->flags & REQ_F_LINK) req->flags |= REQ_F_FAIL_LINK; io_put_req(req); } return ret; } static int io_queue_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, struct sqe_submit *s) { int ret; ret = io_req_defer(ctx, req, s); if (ret) { if (ret != -EIOCBQUEUED) { io_free_req(req); io_cqring_add_event(ctx, s->sqe->user_data, ret); } return 0; } return __io_queue_sqe(ctx, req, s); } static int io_queue_link_head(struct io_ring_ctx *ctx, struct io_kiocb *req, struct sqe_submit *s, struct io_kiocb *shadow) { int ret; int need_submit = false; if (!shadow) return io_queue_sqe(ctx, req, s); /* * Mark the first IO in link list as DRAIN, let all the following * IOs enter the defer list. all IO needs to be completed before link * list. */ req->flags |= REQ_F_IO_DRAIN; ret = io_req_defer(ctx, req, s); if (ret) { if (ret != -EIOCBQUEUED) { io_free_req(req); __io_free_req(shadow); io_cqring_add_event(ctx, s->sqe->user_data, ret); return 0; } } else { /* * If ret == 0 means that all IOs in front of link io are * running done. let's queue link head. */ need_submit = true; } /* Insert shadow req to defer_list, blocking next IOs */ spin_lock_irq(&ctx->completion_lock); list_add_tail(&shadow->list, &ctx->defer_list); spin_unlock_irq(&ctx->completion_lock); if (need_submit) return __io_queue_sqe(ctx, req, s); return 0; } #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK) static void io_submit_sqe(struct io_ring_ctx *ctx, struct sqe_submit *s, struct io_submit_state *state, struct io_kiocb **link) { struct io_uring_sqe *sqe_copy; struct io_kiocb *req; int ret; /* enforce forwards compatibility on users */ if (unlikely(s->sqe->flags & ~SQE_VALID_FLAGS)) { ret = -EINVAL; goto err; } req = io_get_req(ctx, state); if (unlikely(!req)) { ret = -EAGAIN; goto err; } ret = io_req_set_file(ctx, s, state, req); if (unlikely(ret)) { err_req: io_free_req(req); err: io_cqring_add_event(ctx, s->sqe->user_data, ret); return; } req->user_data = s->sqe->user_data; /* * If we already have a head request, queue this one for async * submittal once the head completes. If we don't have a head but * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be * submitted sync once the chain is complete. If none of those * conditions are true (normal request), then just queue it. */ if (*link) { struct io_kiocb *prev = *link; sqe_copy = kmemdup(s->sqe, sizeof(*sqe_copy), GFP_KERNEL); if (!sqe_copy) { ret = -EAGAIN; goto err_req; } s->sqe = sqe_copy; memcpy(&req->submit, s, sizeof(*s)); list_add_tail(&req->list, &prev->link_list); } else if (s->sqe->flags & IOSQE_IO_LINK) { req->flags |= REQ_F_LINK; memcpy(&req->submit, s, sizeof(*s)); INIT_LIST_HEAD(&req->link_list); *link = req; } else { io_queue_sqe(ctx, req, s); } } /* * Batched submission is done, ensure local IO is flushed out. */ static void io_submit_state_end(struct io_submit_state *state) { blk_finish_plug(&state->plug); io_file_put(state); if (state->free_reqs) kmem_cache_free_bulk(req_cachep, state->free_reqs, &state->reqs[state->cur_req]); } /* * Start submission side cache. */ static void io_submit_state_start(struct io_submit_state *state, struct io_ring_ctx *ctx, unsigned max_ios) { blk_start_plug(&state->plug); state->free_reqs = 0; state->file = NULL; state->ios_left = max_ios; } static void io_commit_sqring(struct io_ring_ctx *ctx) { struct io_rings *rings = ctx->rings; if (ctx->cached_sq_head != READ_ONCE(rings->sq.head)) { /* * Ensure any loads from the SQEs are done at this point, * since once we write the new head, the application could * write new data to them. */ smp_store_release(&rings->sq.head, ctx->cached_sq_head); } } /* * Fetch an sqe, if one is available. Note that s->sqe will point to memory * that is mapped by userspace. This means that care needs to be taken to * ensure that reads are stable, as we cannot rely on userspace always * being a good citizen. If members of the sqe are validated and then later * used, it's important that those reads are done through READ_ONCE() to * prevent a re-load down the line. */ static bool io_get_sqring(struct io_ring_ctx *ctx, struct sqe_submit *s) { struct io_rings *rings = ctx->rings; u32 *sq_array = ctx->sq_array; unsigned head; /* * The cached sq head (or cq tail) serves two purposes: * * 1) allows us to batch the cost of updating the user visible * head updates. * 2) allows the kernel side to track the head on its own, even * though the application is the one updating it. */ head = ctx->cached_sq_head; /* make sure SQ entry isn't read before tail */ if (head == smp_load_acquire(&rings->sq.tail)) return false; head = READ_ONCE(sq_array[head & ctx->sq_mask]); if (head < ctx->sq_entries) { s->index = head; s->sqe = &ctx->sq_sqes[head]; s->sequence = ctx->cached_sq_head; ctx->cached_sq_head++; return true; } /* drop invalid entries */ ctx->cached_sq_head++; ctx->cached_sq_dropped++; WRITE_ONCE(rings->sq_dropped, ctx->cached_sq_dropped); return false; } static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr, bool has_user, bool mm_fault) { struct io_submit_state state, *statep = NULL; struct io_kiocb *link = NULL; struct io_kiocb *shadow_req = NULL; bool prev_was_link = false; int i, submitted = 0; if (nr > IO_PLUG_THRESHOLD) { io_submit_state_start(&state, ctx, nr); statep = &state; } for (i = 0; i < nr; i++) { struct sqe_submit s; if (!io_get_sqring(ctx, &s)) break; /* * If previous wasn't linked and we have a linked command, * that's the end of the chain. Submit the previous link. */ if (!prev_was_link && link) { io_queue_link_head(ctx, link, &link->submit, shadow_req); link = NULL; shadow_req = NULL; } prev_was_link = (s.sqe->flags & IOSQE_IO_LINK) != 0; if (link && (s.sqe->flags & IOSQE_IO_DRAIN)) { if (!shadow_req) { shadow_req = io_get_req(ctx, NULL); if (unlikely(!shadow_req)) goto out; shadow_req->flags |= (REQ_F_IO_DRAIN | REQ_F_SHADOW_DRAIN); refcount_dec(&shadow_req->refs); } shadow_req->sequence = s.sequence; } out: if (unlikely(mm_fault)) { io_cqring_add_event(ctx, s.sqe->user_data, -EFAULT); } else { s.has_user = has_user; s.needs_lock = true; s.needs_fixed_file = true; io_submit_sqe(ctx, &s, statep, &link); submitted++; } } if (link) io_queue_link_head(ctx, link, &link->submit, shadow_req); if (statep) io_submit_state_end(&state); return submitted; } static int io_sq_thread(void *data) { struct io_ring_ctx *ctx = data; struct mm_struct *cur_mm = NULL; const struct cred *old_cred; mm_segment_t old_fs; DEFINE_WAIT(wait); unsigned inflight; unsigned long timeout; complete(&ctx->sqo_thread_started); old_fs = get_fs(); set_fs(USER_DS); old_cred = override_creds(ctx->creds); timeout = inflight = 0; while (!kthread_should_park()) { bool mm_fault = false; unsigned int to_submit; if (inflight) { unsigned nr_events = 0; if (ctx->flags & IORING_SETUP_IOPOLL) { /* * inflight is the count of the maximum possible * entries we submitted, but it can be smaller * if we dropped some of them. If we don't have * poll entries available, then we know that we * have nothing left to poll for. Reset the * inflight count to zero in that case. */ mutex_lock(&ctx->uring_lock); if (!list_empty(&ctx->poll_list)) __io_iopoll_check(ctx, &nr_events, 0); else inflight = 0; mutex_unlock(&ctx->uring_lock); } else { /* * Normal IO, just pretend everything completed. * We don't have to poll completions for that. */ nr_events = inflight; } inflight -= nr_events; if (!inflight) timeout = jiffies + ctx->sq_thread_idle; } to_submit = io_sqring_entries(ctx); if (!to_submit) { /* * We're polling. If we're within the defined idle * period, then let us spin without work before going * to sleep. */ if (inflight || !time_after(jiffies, timeout)) { cond_resched(); continue; } /* * Drop cur_mm before scheduling, we can't hold it for * long periods (or over schedule()). Do this before * adding ourselves to the waitqueue, as the unuse/drop * may sleep. */ if (cur_mm) { unuse_mm(cur_mm); mmput(cur_mm); cur_mm = NULL; } prepare_to_wait(&ctx->sqo_wait, &wait, TASK_INTERRUPTIBLE); /* Tell userspace we may need a wakeup call */ ctx->rings->sq_flags |= IORING_SQ_NEED_WAKEUP; /* make sure to read SQ tail after writing flags */ smp_mb(); to_submit = io_sqring_entries(ctx); if (!to_submit) { if (kthread_should_park()) { finish_wait(&ctx->sqo_wait, &wait); break; } if (signal_pending(current)) flush_signals(current); schedule(); finish_wait(&ctx->sqo_wait, &wait); ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP; continue; } finish_wait(&ctx->sqo_wait, &wait); ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP; } /* Unless all new commands are FIXED regions, grab mm */ if (!cur_mm) { mm_fault = !mmget_not_zero(ctx->sqo_mm); if (!mm_fault) { use_mm(ctx->sqo_mm); cur_mm = ctx->sqo_mm; } } to_submit = min(to_submit, ctx->sq_entries); inflight += io_submit_sqes(ctx, to_submit, cur_mm != NULL, mm_fault); /* Commit SQ ring head once we've consumed all SQEs */ io_commit_sqring(ctx); } set_fs(old_fs); if (cur_mm) { unuse_mm(cur_mm); mmput(cur_mm); } revert_creds(old_cred); kthread_parkme(); return 0; } static int io_ring_submit(struct io_ring_ctx *ctx, unsigned int to_submit) { struct io_submit_state state, *statep = NULL; struct io_kiocb *link = NULL; struct io_kiocb *shadow_req = NULL; bool prev_was_link = false; int i, submit = 0; if (to_submit > IO_PLUG_THRESHOLD) { io_submit_state_start(&state, ctx, to_submit); statep = &state; } for (i = 0; i < to_submit; i++) { struct sqe_submit s; if (!io_get_sqring(ctx, &s)) break; /* * If previous wasn't linked and we have a linked command, * that's the end of the chain. Submit the previous link. */ if (!prev_was_link && link) { io_queue_link_head(ctx, link, &link->submit, shadow_req); link = NULL; shadow_req = NULL; } prev_was_link = (s.sqe->flags & IOSQE_IO_LINK) != 0; if (link && (s.sqe->flags & IOSQE_IO_DRAIN)) { if (!shadow_req) { shadow_req = io_get_req(ctx, NULL); if (unlikely(!shadow_req)) goto out; shadow_req->flags |= (REQ_F_IO_DRAIN | REQ_F_SHADOW_DRAIN); refcount_dec(&shadow_req->refs); } shadow_req->sequence = s.sequence; } out: s.has_user = true; s.needs_lock = false; s.needs_fixed_file = false; submit++; io_submit_sqe(ctx, &s, statep, &link); } if (link) io_queue_link_head(ctx, link, &link->submit, shadow_req); if (statep) io_submit_state_end(statep); io_commit_sqring(ctx); return submit; } struct io_wait_queue { struct wait_queue_entry wq; struct io_ring_ctx *ctx; unsigned to_wait; unsigned nr_timeouts; }; static inline bool io_should_wake(struct io_wait_queue *iowq) { struct io_ring_ctx *ctx = iowq->ctx; /* * Wake up if we have enough events, or if a timeout occured since we * started waiting. For timeouts, we always want to return to userspace, * regardless of event count. */ return io_cqring_events(ctx->rings) >= iowq->to_wait || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts; } static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, int wake_flags, void *key) { struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq); if (!io_should_wake(iowq)) return -1; return autoremove_wake_function(curr, mode, wake_flags, key); } /* * Wait until events become available, if we don't already have some. The * application must reap them itself, as they reside on the shared cq ring. */ static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, const sigset_t __user *sig, size_t sigsz) { struct io_wait_queue iowq = { .wq = { .private = current, .func = io_wake_function, .entry = LIST_HEAD_INIT(iowq.wq.entry), }, .ctx = ctx, .to_wait = min_events, }; struct io_rings *rings = ctx->rings; int ret; if (io_cqring_events(rings) >= min_events) return 0; if (sig) { #ifdef CONFIG_COMPAT if (in_compat_syscall()) ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig, sigsz); else #endif ret = set_user_sigmask(sig, sigsz); if (ret) return ret; } ret = 0; iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); do { prepare_to_wait_exclusive(&ctx->wait, &iowq.wq, TASK_INTERRUPTIBLE); if (io_should_wake(&iowq)) break; schedule(); if (signal_pending(current)) { ret = -ERESTARTSYS; break; } } while (1); finish_wait(&ctx->wait, &iowq.wq); restore_saved_sigmask_unless(ret == -ERESTARTSYS); if (ret == -ERESTARTSYS) ret = -EINTR; return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; } static void __io_sqe_files_unregister(struct io_ring_ctx *ctx) { #if defined(CONFIG_UNIX) if (ctx->ring_sock) { struct sock *sock = ctx->ring_sock->sk; struct sk_buff *skb; while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL) kfree_skb(skb); } #else int i; for (i = 0; i < ctx->nr_user_files; i++) fput(ctx->user_files[i]); #endif } static int io_sqe_files_unregister(struct io_ring_ctx *ctx) { if (!ctx->user_files) return -ENXIO; __io_sqe_files_unregister(ctx); kfree(ctx->user_files); ctx->user_files = NULL; ctx->nr_user_files = 0; return 0; } static void io_sq_thread_stop(struct io_ring_ctx *ctx) { if (ctx->sqo_thread) { wait_for_completion(&ctx->sqo_thread_started); /* * The park is a bit of a work-around, without it we get * warning spews on shutdown with SQPOLL set and affinity * set to a single CPU. */ kthread_park(ctx->sqo_thread); kthread_stop(ctx->sqo_thread); ctx->sqo_thread = NULL; } } static void io_finish_async(struct io_ring_ctx *ctx) { int i; io_sq_thread_stop(ctx); for (i = 0; i < ARRAY_SIZE(ctx->sqo_wq); i++) { if (ctx->sqo_wq[i]) { destroy_workqueue(ctx->sqo_wq[i]); ctx->sqo_wq[i] = NULL; } } } #if defined(CONFIG_UNIX) static void io_destruct_skb(struct sk_buff *skb) { struct io_ring_ctx *ctx = skb->sk->sk_user_data; int i; for (i = 0; i < ARRAY_SIZE(ctx->sqo_wq); i++) if (ctx->sqo_wq[i]) flush_workqueue(ctx->sqo_wq[i]); unix_destruct_scm(skb); } /* * Ensure the UNIX gc is aware of our file set, so we are certain that * the io_uring can be safely unregistered on process exit, even if we have * loops in the file referencing. */ static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset) { struct sock *sk = ctx->ring_sock->sk; struct scm_fp_list *fpl; struct sk_buff *skb; int i; if (!capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) { unsigned long inflight = ctx->user->unix_inflight + nr; if (inflight > task_rlimit(current, RLIMIT_NOFILE)) return -EMFILE; } fpl = kzalloc(sizeof(*fpl), GFP_KERNEL); if (!fpl) return -ENOMEM; skb = alloc_skb(0, GFP_KERNEL); if (!skb) { kfree(fpl); return -ENOMEM; } skb->sk = sk; skb->destructor = io_destruct_skb; fpl->user = get_uid(ctx->user); for (i = 0; i < nr; i++) { fpl->fp[i] = get_file(ctx->user_files[i + offset]); unix_inflight(fpl->user, fpl->fp[i]); } fpl->max = fpl->count = nr; UNIXCB(skb).fp = fpl; refcount_add(skb->truesize, &sk->sk_wmem_alloc); skb_queue_head(&sk->sk_receive_queue, skb); for (i = 0; i < nr; i++) fput(fpl->fp[i]); return 0; } /* * If UNIX sockets are enabled, fd passing can cause a reference cycle which * causes regular reference counting to break down. We rely on the UNIX * garbage collection to take care of this problem for us. */ static int io_sqe_files_scm(struct io_ring_ctx *ctx) { unsigned left, total; int ret = 0; total = 0; left = ctx->nr_user_files; while (left) { unsigned this_files = min_t(unsigned, left, SCM_MAX_FD); ret = __io_sqe_files_scm(ctx, this_files, total); if (ret) break; left -= this_files; total += this_files; } if (!ret) return 0; while (total < ctx->nr_user_files) { fput(ctx->user_files[total]); total++; } return ret; } #else static int io_sqe_files_scm(struct io_ring_ctx *ctx) { return 0; } #endif static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args) { __s32 __user *fds = (__s32 __user *) arg; int fd, ret = 0; unsigned i; if (ctx->user_files) return -EBUSY; if (!nr_args) return -EINVAL; if (nr_args > IORING_MAX_FIXED_FILES) return -EMFILE; ctx->user_files = kcalloc(nr_args, sizeof(struct file *), GFP_KERNEL); if (!ctx->user_files) return -ENOMEM; for (i = 0; i < nr_args; i++) { ret = -EFAULT; if (copy_from_user(&fd, &fds[i], sizeof(fd))) break; ctx->user_files[i] = fget(fd); ret = -EBADF; if (!ctx->user_files[i]) break; /* * Don't allow io_uring instances to be registered. If UNIX * isn't enabled, then this causes a reference cycle and this * instance can never get freed. If UNIX is enabled we'll * handle it just fine, but there's still no point in allowing * a ring fd as it doesn't support regular read/write anyway. */ if (ctx->user_files[i]->f_op == &io_uring_fops) { fput(ctx->user_files[i]); break; } ctx->nr_user_files++; ret = 0; } if (ret) { for (i = 0; i < ctx->nr_user_files; i++) fput(ctx->user_files[i]); kfree(ctx->user_files); ctx->user_files = NULL; ctx->nr_user_files = 0; return ret; } ret = io_sqe_files_scm(ctx); if (ret) io_sqe_files_unregister(ctx); return ret; } static int io_sq_offload_start(struct io_ring_ctx *ctx, struct io_uring_params *p) { int ret; init_waitqueue_head(&ctx->sqo_wait); mmgrab(current->mm); ctx->sqo_mm = current->mm; if (ctx->flags & IORING_SETUP_SQPOLL) { ret = -EPERM; if (!capable(CAP_SYS_ADMIN)) goto err; ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle); if (!ctx->sq_thread_idle) ctx->sq_thread_idle = HZ; if (p->flags & IORING_SETUP_SQ_AFF) { int cpu = p->sq_thread_cpu; ret = -EINVAL; if (cpu >= nr_cpu_ids) goto err; if (!cpu_online(cpu)) goto err; ctx->sqo_thread = kthread_create_on_cpu(io_sq_thread, ctx, cpu, "io_uring-sq"); } else { ctx->sqo_thread = kthread_create(io_sq_thread, ctx, "io_uring-sq"); } if (IS_ERR(ctx->sqo_thread)) { ret = PTR_ERR(ctx->sqo_thread); ctx->sqo_thread = NULL; goto err; } wake_up_process(ctx->sqo_thread); } else if (p->flags & IORING_SETUP_SQ_AFF) { /* Can't have SQ_AFF without SQPOLL */ ret = -EINVAL; goto err; } /* Do QD, or 2 * CPUS, whatever is smallest */ ctx->sqo_wq[0] = alloc_workqueue("io_ring-wq", WQ_UNBOUND | WQ_FREEZABLE, min(ctx->sq_entries - 1, 2 * num_online_cpus())); if (!ctx->sqo_wq[0]) { ret = -ENOMEM; goto err; } /* * This is for buffered writes, where we want to limit the parallelism * due to file locking in file systems. As "normal" buffered writes * should parellelize on writeout quite nicely, limit us to having 2 * pending. This avoids massive contention on the inode when doing * buffered async writes. */ ctx->sqo_wq[1] = alloc_workqueue("io_ring-write-wq", WQ_UNBOUND | WQ_FREEZABLE, 2); if (!ctx->sqo_wq[1]) { ret = -ENOMEM; goto err; } return 0; err: io_finish_async(ctx); mmdrop(ctx->sqo_mm); ctx->sqo_mm = NULL; return ret; } static void io_unaccount_mem(struct user_struct *user, unsigned long nr_pages) { atomic_long_sub(nr_pages, &user->locked_vm); } static int io_account_mem(struct user_struct *user, unsigned long nr_pages) { unsigned long page_limit, cur_pages, new_pages; /* Don't allow more pages than we can safely lock */ page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; do { cur_pages = atomic_long_read(&user->locked_vm); new_pages = cur_pages + nr_pages; if (new_pages > page_limit) return -ENOMEM; } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages, new_pages) != cur_pages); return 0; } static void io_mem_free(void *ptr) { struct page *page; if (!ptr) return; page = virt_to_head_page(ptr); if (put_page_testzero(page)) free_compound_page(page); } static void *io_mem_alloc(size_t size) { gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP | __GFP_NORETRY; return (void *) __get_free_pages(gfp_flags, get_order(size)); } static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries, size_t *sq_offset) { struct io_rings *rings; size_t off, sq_array_size; off = struct_size(rings, cqes, cq_entries); if (off == SIZE_MAX) return SIZE_MAX; #ifdef CONFIG_SMP off = ALIGN(off, SMP_CACHE_BYTES); if (off == 0) return SIZE_MAX; #endif sq_array_size = array_size(sizeof(u32), sq_entries); if (sq_array_size == SIZE_MAX) return SIZE_MAX; if (check_add_overflow(off, sq_array_size, &off)) return SIZE_MAX; if (sq_offset) *sq_offset = off; return off; } static unsigned long ring_pages(unsigned sq_entries, unsigned cq_entries) { size_t pages; pages = (size_t)1 << get_order( rings_size(sq_entries, cq_entries, NULL)); pages += (size_t)1 << get_order( array_size(sizeof(struct io_uring_sqe), sq_entries)); return pages; } static int io_sqe_buffer_unregister(struct io_ring_ctx *ctx) { int i, j; if (!ctx->user_bufs) return -ENXIO; for (i = 0; i < ctx->nr_user_bufs; i++) { struct io_mapped_ubuf *imu = &ctx->user_bufs[i]; for (j = 0; j < imu->nr_bvecs; j++) put_user_page(imu->bvec[j].bv_page); if (ctx->account_mem) io_unaccount_mem(ctx->user, imu->nr_bvecs); kvfree(imu->bvec); imu->nr_bvecs = 0; } kfree(ctx->user_bufs); ctx->user_bufs = NULL; ctx->nr_user_bufs = 0; return 0; } static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst, void __user *arg, unsigned index) { struct iovec __user *src; #ifdef CONFIG_COMPAT if (ctx->compat) { struct compat_iovec __user *ciovs; struct compat_iovec ciov; ciovs = (struct compat_iovec __user *) arg; if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov))) return -EFAULT; dst->iov_base = (void __user *) (unsigned long) ciov.iov_base; dst->iov_len = ciov.iov_len; return 0; } #endif src = (struct iovec __user *) arg; if (copy_from_user(dst, &src[index], sizeof(*dst))) return -EFAULT; return 0; } static int io_sqe_buffer_register(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args) { struct vm_area_struct **vmas = NULL; struct page **pages = NULL; int i, j, got_pages = 0; int ret = -EINVAL; if (ctx->user_bufs) return -EBUSY; if (!nr_args || nr_args > UIO_MAXIOV) return -EINVAL; ctx->user_bufs = kcalloc(nr_args, sizeof(struct io_mapped_ubuf), GFP_KERNEL); if (!ctx->user_bufs) return -ENOMEM; for (i = 0; i < nr_args; i++) { struct io_mapped_ubuf *imu = &ctx->user_bufs[i]; unsigned long off, start, end, ubuf; int pret, nr_pages; struct iovec iov; size_t size; ret = io_copy_iov(ctx, &iov, arg, i); if (ret) goto err; /* * Don't impose further limits on the size and buffer * constraints here, we'll -EINVAL later when IO is * submitted if they are wrong. */ ret = -EFAULT; if (!iov.iov_base || !iov.iov_len) goto err; /* arbitrary limit, but we need something */ if (iov.iov_len > SZ_1G) goto err; ubuf = (unsigned long) iov.iov_base; end = (ubuf + iov.iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT; start = ubuf >> PAGE_SHIFT; nr_pages = end - start; if (ctx->account_mem) { ret = io_account_mem(ctx->user, nr_pages); if (ret) goto err; } ret = 0; if (!pages || nr_pages > got_pages) { kfree(vmas); kfree(pages); pages = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL); vmas = kvmalloc_array(nr_pages, sizeof(struct vm_area_struct *), GFP_KERNEL); if (!pages || !vmas) { ret = -ENOMEM; if (ctx->account_mem) io_unaccount_mem(ctx->user, nr_pages); goto err; } got_pages = nr_pages; } imu->bvec = kvmalloc_array(nr_pages, sizeof(struct bio_vec), GFP_KERNEL); ret = -ENOMEM; if (!imu->bvec) { if (ctx->account_mem) io_unaccount_mem(ctx->user, nr_pages); goto err; } ret = 0; down_read(¤t->mm->mmap_sem); pret = get_user_pages(ubuf, nr_pages, FOLL_WRITE | FOLL_LONGTERM, pages, vmas); if (pret == nr_pages) { /* don't support file backed memory */ for (j = 0; j < nr_pages; j++) { struct vm_area_struct *vma = vmas[j]; if (vma->vm_file && !is_file_hugepages(vma->vm_file)) { ret = -EOPNOTSUPP; break; } } } else { ret = pret < 0 ? pret : -EFAULT; } up_read(¤t->mm->mmap_sem); if (ret) { /* * if we did partial map, or found file backed vmas, * release any pages we did get */ if (pret > 0) put_user_pages(pages, pret); if (ctx->account_mem) io_unaccount_mem(ctx->user, nr_pages); kvfree(imu->bvec); goto err; } off = ubuf & ~PAGE_MASK; size = iov.iov_len; for (j = 0; j < nr_pages; j++) { size_t vec_len; vec_len = min_t(size_t, size, PAGE_SIZE - off); imu->bvec[j].bv_page = pages[j]; imu->bvec[j].bv_len = vec_len; imu->bvec[j].bv_offset = off; off = 0; size -= vec_len; } /* store original address for later verification */ imu->ubuf = ubuf; imu->len = iov.iov_len; imu->nr_bvecs = nr_pages; ctx->nr_user_bufs++; } kvfree(pages); kvfree(vmas); return 0; err: kvfree(pages); kvfree(vmas); io_sqe_buffer_unregister(ctx); return ret; } static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg) { __s32 __user *fds = arg; int fd; if (ctx->cq_ev_fd) return -EBUSY; if (copy_from_user(&fd, fds, sizeof(*fds))) return -EFAULT; ctx->cq_ev_fd = eventfd_ctx_fdget(fd); if (IS_ERR(ctx->cq_ev_fd)) { int ret = PTR_ERR(ctx->cq_ev_fd); ctx->cq_ev_fd = NULL; return ret; } return 0; } static int io_eventfd_unregister(struct io_ring_ctx *ctx) { if (ctx->cq_ev_fd) { eventfd_ctx_put(ctx->cq_ev_fd); ctx->cq_ev_fd = NULL; return 0; } return -ENXIO; } static void io_ring_ctx_free(struct io_ring_ctx *ctx) { io_finish_async(ctx); if (ctx->sqo_mm) mmdrop(ctx->sqo_mm); io_iopoll_reap_events(ctx); io_sqe_buffer_unregister(ctx); io_sqe_files_unregister(ctx); io_eventfd_unregister(ctx); #if defined(CONFIG_UNIX) if (ctx->ring_sock) { ctx->ring_sock->file = NULL; /* so that iput() is called */ sock_release(ctx->ring_sock); } #endif io_mem_free(ctx->rings); io_mem_free(ctx->sq_sqes); percpu_ref_exit(&ctx->refs); if (ctx->account_mem) io_unaccount_mem(ctx->user, ring_pages(ctx->sq_entries, ctx->cq_entries)); free_uid(ctx->user); if (ctx->creds) put_cred(ctx->creds); kfree(ctx); } static __poll_t io_uring_poll(struct file *file, poll_table *wait) { struct io_ring_ctx *ctx = file->private_data; __poll_t mask = 0; poll_wait(file, &ctx->cq_wait, wait); /* * synchronizes with barrier from wq_has_sleeper call in * io_commit_cqring */ smp_rmb(); if (READ_ONCE(ctx->rings->sq.tail) - ctx->cached_sq_head != ctx->rings->sq_ring_entries) mask |= EPOLLOUT | EPOLLWRNORM; if (READ_ONCE(ctx->rings->cq.head) != ctx->cached_cq_tail) mask |= EPOLLIN | EPOLLRDNORM; return mask; } static int io_uring_fasync(int fd, struct file *file, int on) { struct io_ring_ctx *ctx = file->private_data; return fasync_helper(fd, file, on, &ctx->cq_fasync); } static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) { mutex_lock(&ctx->uring_lock); percpu_ref_kill(&ctx->refs); mutex_unlock(&ctx->uring_lock); io_kill_timeouts(ctx); io_poll_remove_all(ctx); io_iopoll_reap_events(ctx); wait_for_completion(&ctx->ctx_done); io_ring_ctx_free(ctx); } static int io_uring_release(struct inode *inode, struct file *file) { struct io_ring_ctx *ctx = file->private_data; file->private_data = NULL; io_ring_ctx_wait_and_kill(ctx); return 0; } static int io_uring_mmap(struct file *file, struct vm_area_struct *vma) { loff_t offset = (loff_t) vma->vm_pgoff << PAGE_SHIFT; unsigned long sz = vma->vm_end - vma->vm_start; struct io_ring_ctx *ctx = file->private_data; unsigned long pfn; struct page *page; void *ptr; switch (offset) { case IORING_OFF_SQ_RING: case IORING_OFF_CQ_RING: ptr = ctx->rings; break; case IORING_OFF_SQES: ptr = ctx->sq_sqes; break; default: return -EINVAL; } page = virt_to_head_page(ptr); if (sz > page_size(page)) return -EINVAL; pfn = virt_to_phys(ptr) >> PAGE_SHIFT; return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot); } SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, u32, min_complete, u32, flags, const sigset_t __user *, sig, size_t, sigsz) { struct io_ring_ctx *ctx; long ret = -EBADF; int submitted = 0; struct fd f; if (flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP)) return -EINVAL; f = fdget(fd); if (!f.file) return -EBADF; ret = -EOPNOTSUPP; if (f.file->f_op != &io_uring_fops) goto out_fput; ret = -ENXIO; ctx = f.file->private_data; if (!percpu_ref_tryget(&ctx->refs)) goto out_fput; /* * For SQ polling, the thread will do all submissions and completions. * Just return the requested submit count, and wake the thread if * we were asked to. */ ret = 0; if (ctx->flags & IORING_SETUP_SQPOLL) { if (flags & IORING_ENTER_SQ_WAKEUP) wake_up(&ctx->sqo_wait); submitted = to_submit; } else if (to_submit) { if (current->mm != ctx->sqo_mm || current_cred() != ctx->creds) { ret = -EPERM; goto out; } to_submit = min(to_submit, ctx->sq_entries); mutex_lock(&ctx->uring_lock); submitted = io_ring_submit(ctx, to_submit); mutex_unlock(&ctx->uring_lock); if (submitted != to_submit) goto out; } if (flags & IORING_ENTER_GETEVENTS) { unsigned nr_events = 0; min_complete = min(min_complete, ctx->cq_entries); if (ctx->flags & IORING_SETUP_IOPOLL) { ret = io_iopoll_check(ctx, &nr_events, min_complete); } else { ret = io_cqring_wait(ctx, min_complete, sig, sigsz); } } out: percpu_ref_put(&ctx->refs); out_fput: fdput(f); return submitted ? submitted : ret; } static const struct file_operations io_uring_fops = { .release = io_uring_release, .mmap = io_uring_mmap, .poll = io_uring_poll, .fasync = io_uring_fasync, }; static int io_allocate_scq_urings(struct io_ring_ctx *ctx, struct io_uring_params *p) { struct io_rings *rings; size_t size, sq_array_offset; size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset); if (size == SIZE_MAX) return -EOVERFLOW; rings = io_mem_alloc(size); if (!rings) return -ENOMEM; ctx->rings = rings; ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); rings->sq_ring_mask = p->sq_entries - 1; rings->cq_ring_mask = p->cq_entries - 1; rings->sq_ring_entries = p->sq_entries; rings->cq_ring_entries = p->cq_entries; ctx->sq_mask = rings->sq_ring_mask; ctx->cq_mask = rings->cq_ring_mask; ctx->sq_entries = rings->sq_ring_entries; ctx->cq_entries = rings->cq_ring_entries; size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); if (size == SIZE_MAX) { io_mem_free(ctx->rings); ctx->rings = NULL; return -EOVERFLOW; } ctx->sq_sqes = io_mem_alloc(size); if (!ctx->sq_sqes) { io_mem_free(ctx->rings); ctx->rings = NULL; return -ENOMEM; } return 0; } /* * Allocate an anonymous fd, this is what constitutes the application * visible backing of an io_uring instance. The application mmaps this * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled, * we have to tie this fd to a socket for file garbage collection purposes. */ static int io_uring_get_fd(struct io_ring_ctx *ctx) { struct file *file; int ret; #if defined(CONFIG_UNIX) ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP, &ctx->ring_sock); if (ret) return ret; #endif ret = get_unused_fd_flags(O_RDWR | O_CLOEXEC); if (ret < 0) goto err; file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx, O_RDWR | O_CLOEXEC); if (IS_ERR(file)) { put_unused_fd(ret); ret = PTR_ERR(file); goto err; } #if defined(CONFIG_UNIX) ctx->ring_sock->file = file; ctx->ring_sock->sk->sk_user_data = ctx; #endif fd_install(ret, file); return ret; err: #if defined(CONFIG_UNIX) sock_release(ctx->ring_sock); ctx->ring_sock = NULL; #endif return ret; } static int io_uring_create(unsigned entries, struct io_uring_params *p) { struct user_struct *user = NULL; struct io_ring_ctx *ctx; bool account_mem; int ret; if (!entries || entries > IORING_MAX_ENTRIES) return -EINVAL; /* * Use twice as many entries for the CQ ring. It's possible for the * application to drive a higher depth than the size of the SQ ring, * since the sqes are only used at submission time. This allows for * some flexibility in overcommitting a bit. */ p->sq_entries = roundup_pow_of_two(entries); p->cq_entries = 2 * p->sq_entries; user = get_uid(current_user()); account_mem = !capable(CAP_IPC_LOCK); if (account_mem) { ret = io_account_mem(user, ring_pages(p->sq_entries, p->cq_entries)); if (ret) { free_uid(user); return ret; } } ctx = io_ring_ctx_alloc(p); if (!ctx) { if (account_mem) io_unaccount_mem(user, ring_pages(p->sq_entries, p->cq_entries)); free_uid(user); return -ENOMEM; } ctx->compat = in_compat_syscall(); ctx->account_mem = account_mem; ctx->user = user; ctx->creds = get_current_cred(); if (!ctx->creds) { ret = -ENOMEM; goto err; } ret = io_allocate_scq_urings(ctx, p); if (ret) goto err; ret = io_sq_offload_start(ctx, p); if (ret) goto err; memset(&p->sq_off, 0, sizeof(p->sq_off)); p->sq_off.head = offsetof(struct io_rings, sq.head); p->sq_off.tail = offsetof(struct io_rings, sq.tail); p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); p->sq_off.flags = offsetof(struct io_rings, sq_flags); p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; memset(&p->cq_off, 0, sizeof(p->cq_off)); p->cq_off.head = offsetof(struct io_rings, cq.head); p->cq_off.tail = offsetof(struct io_rings, cq.tail); p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); p->cq_off.cqes = offsetof(struct io_rings, cqes); /* * Install ring fd as the very last thing, so we don't risk someone * having closed it before we finish setup */ ret = io_uring_get_fd(ctx); if (ret < 0) goto err; p->features = IORING_FEAT_SINGLE_MMAP; return ret; err: io_ring_ctx_wait_and_kill(ctx); return ret; } /* * Sets up an aio uring context, and returns the fd. Applications asks for a * ring size, we return the actual sq/cq ring sizes (among other things) in the * params structure passed in. */ static long io_uring_setup(u32 entries, struct io_uring_params __user *params) { struct io_uring_params p; long ret; int i; if (copy_from_user(&p, params, sizeof(p))) return -EFAULT; for (i = 0; i < ARRAY_SIZE(p.resv); i++) { if (p.resv[i]) return -EINVAL; } if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | IORING_SETUP_SQ_AFF)) return -EINVAL; ret = io_uring_create(entries, &p); if (ret < 0) return ret; if (copy_to_user(params, &p, sizeof(p))) return -EFAULT; return ret; } SYSCALL_DEFINE2(io_uring_setup, u32, entries, struct io_uring_params __user *, params) { return io_uring_setup(entries, params); } static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode, void __user *arg, unsigned nr_args) __releases(ctx->uring_lock) __acquires(ctx->uring_lock) { int ret; /* * We're inside the ring mutex, if the ref is already dying, then * someone else killed the ctx or is already going through * io_uring_register(). */ if (percpu_ref_is_dying(&ctx->refs)) return -ENXIO; percpu_ref_kill(&ctx->refs); /* * Drop uring mutex before waiting for references to exit. If another * thread is currently inside io_uring_enter() it might need to grab * the uring_lock to make progress. If we hold it here across the drain * wait, then we can deadlock. It's safe to drop the mutex here, since * no new references will come in after we've killed the percpu ref. */ mutex_unlock(&ctx->uring_lock); wait_for_completion(&ctx->ctx_done); mutex_lock(&ctx->uring_lock); switch (opcode) { case IORING_REGISTER_BUFFERS: ret = io_sqe_buffer_register(ctx, arg, nr_args); break; case IORING_UNREGISTER_BUFFERS: ret = -EINVAL; if (arg || nr_args) break; ret = io_sqe_buffer_unregister(ctx); break; case IORING_REGISTER_FILES: ret = io_sqe_files_register(ctx, arg, nr_args); break; case IORING_UNREGISTER_FILES: ret = -EINVAL; if (arg || nr_args) break; ret = io_sqe_files_unregister(ctx); break; case IORING_REGISTER_EVENTFD: ret = -EINVAL; if (nr_args != 1) break; ret = io_eventfd_register(ctx, arg); break; case IORING_UNREGISTER_EVENTFD: ret = -EINVAL; if (arg || nr_args) break; ret = io_eventfd_unregister(ctx); break; default: ret = -EINVAL; break; } /* bring the ctx back to life */ reinit_completion(&ctx->ctx_done); percpu_ref_reinit(&ctx->refs); return ret; } SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode, void __user *, arg, unsigned int, nr_args) { struct io_ring_ctx *ctx; long ret = -EBADF; struct fd f; f = fdget(fd); if (!f.file) return -EBADF; ret = -EOPNOTSUPP; if (f.file->f_op != &io_uring_fops) goto out_fput; ctx = f.file->private_data; mutex_lock(&ctx->uring_lock); ret = __io_uring_register(ctx, opcode, arg, nr_args); mutex_unlock(&ctx->uring_lock); out_fput: fdput(f); return ret; } static int __init io_uring_init(void) { req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC); return 0; }; __initcall(io_uring_init);