/* * srmmu.c: SRMMU specific routines for memory management. * * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com) * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be) * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org) */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Now the cpu specific definitions. */ #include #include #include #include #include #include #include #include enum mbus_module srmmu_modtype; static unsigned int hwbug_bitmask; int vac_cache_size; int vac_line_size; struct ctx_list *ctx_list_pool; struct ctx_list ctx_free; struct ctx_list ctx_used; extern struct resource sparc_iomap; extern unsigned long last_valid_pfn; static pgd_t *srmmu_swapper_pg_dir; #ifdef CONFIG_SMP #define FLUSH_BEGIN(mm) #define FLUSH_END #else #define FLUSH_BEGIN(mm) if((mm)->context != NO_CONTEXT) { #define FLUSH_END } #endif BTFIXUPDEF_CALL(void, flush_page_for_dma, unsigned long) #define flush_page_for_dma(page) BTFIXUP_CALL(flush_page_for_dma)(page) int flush_page_for_dma_global = 1; #ifdef CONFIG_SMP BTFIXUPDEF_CALL(void, local_flush_page_for_dma, unsigned long) #define local_flush_page_for_dma(page) BTFIXUP_CALL(local_flush_page_for_dma)(page) #endif char *srmmu_name; ctxd_t *srmmu_ctx_table_phys; static ctxd_t *srmmu_context_table; int viking_mxcc_present; static DEFINE_SPINLOCK(srmmu_context_spinlock); static int is_hypersparc; static int srmmu_cache_pagetables; /* these will be initialized in srmmu_nocache_calcsize() */ static unsigned long srmmu_nocache_size; static unsigned long srmmu_nocache_end; /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */ #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4) /* The context table is a nocache user with the biggest alignment needs. */ #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS) void *srmmu_nocache_pool; void *srmmu_nocache_bitmap; static struct bit_map srmmu_nocache_map; static inline unsigned long srmmu_pgd_page(pgd_t pgd) { return srmmu_device_memory(pgd_val(pgd))?~0:(unsigned long)__nocache_va((pgd_val(pgd) & SRMMU_PTD_PMASK) << 4); } static inline int srmmu_pte_none(pte_t pte) { return !(pte_val(pte) & 0xFFFFFFF); } static inline int srmmu_pte_present(pte_t pte) { return ((pte_val(pte) & SRMMU_ET_MASK) == SRMMU_ET_PTE); } static inline int srmmu_pmd_none(pmd_t pmd) { return !(pmd_val(pmd) & 0xFFFFFFF); } static inline pte_t srmmu_pte_wrprotect(pte_t pte) { return __pte(pte_val(pte) & ~SRMMU_WRITE);} static inline pte_t srmmu_pte_mkclean(pte_t pte) { return __pte(pte_val(pte) & ~SRMMU_DIRTY);} static inline pte_t srmmu_pte_mkold(pte_t pte) { return __pte(pte_val(pte) & ~SRMMU_REF);} static inline pte_t srmmu_pte_mkwrite(pte_t pte) { return __pte(pte_val(pte) | SRMMU_WRITE);} static inline pte_t srmmu_pte_mkdirty(pte_t pte) { return __pte(pte_val(pte) | SRMMU_DIRTY);} static inline pte_t srmmu_pte_mkyoung(pte_t pte) { return __pte(pte_val(pte) | SRMMU_REF);} /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ static pte_t srmmu_mk_pte(struct page *page, pgprot_t pgprot) { return __pte((page_to_pfn(page) << (PAGE_SHIFT-4)) | pgprot_val(pgprot)); } static pte_t srmmu_mk_pte_phys(unsigned long page, pgprot_t pgprot) { return __pte(((page) >> 4) | pgprot_val(pgprot)); } static pte_t srmmu_mk_pte_io(unsigned long page, pgprot_t pgprot, int space) { return __pte(((page) >> 4) | (space << 28) | pgprot_val(pgprot)); } /* XXX should we hyper_flush_whole_icache here - Anton */ static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp) { srmmu_set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); } static inline void srmmu_pgd_set(pgd_t * pgdp, pmd_t * pmdp) { srmmu_set_pte((pte_t *)pgdp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pmdp) >> 4))); } static void srmmu_pmd_set(pmd_t *pmdp, pte_t *ptep) { unsigned long ptp; /* Physical address, shifted right by 4 */ int i; ptp = __nocache_pa((unsigned long) ptep) >> 4; for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) { srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp); ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4); } } static void srmmu_pmd_populate(pmd_t *pmdp, struct page *ptep) { unsigned long ptp; /* Physical address, shifted right by 4 */ int i; ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4); /* watch for overflow */ for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) { srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp); ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4); } } static inline pte_t srmmu_pte_modify(pte_t pte, pgprot_t newprot) { return __pte((pte_val(pte) & SRMMU_CHG_MASK) | pgprot_val(newprot)); } /* to find an entry in a top-level page table... */ static inline pgd_t *srmmu_pgd_offset(struct mm_struct * mm, unsigned long address) { return mm->pgd + (address >> SRMMU_PGDIR_SHIFT); } /* Find an entry in the second-level page table.. */ static inline pmd_t *srmmu_pmd_offset(pgd_t * dir, unsigned long address) { return (pmd_t *) srmmu_pgd_page(*dir) + ((address >> PMD_SHIFT) & (PTRS_PER_PMD - 1)); } /* Find an entry in the third-level page table.. */ static inline pte_t *srmmu_pte_offset(pmd_t * dir, unsigned long address) { void *pte; pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4); return (pte_t *) pte + ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); } static unsigned long srmmu_swp_type(swp_entry_t entry) { return (entry.val >> SRMMU_SWP_TYPE_SHIFT) & SRMMU_SWP_TYPE_MASK; } static unsigned long srmmu_swp_offset(swp_entry_t entry) { return (entry.val >> SRMMU_SWP_OFF_SHIFT) & SRMMU_SWP_OFF_MASK; } static swp_entry_t srmmu_swp_entry(unsigned long type, unsigned long offset) { return (swp_entry_t) { (type & SRMMU_SWP_TYPE_MASK) << SRMMU_SWP_TYPE_SHIFT | (offset & SRMMU_SWP_OFF_MASK) << SRMMU_SWP_OFF_SHIFT }; } /* * size: bytes to allocate in the nocache area. * align: bytes, number to align at. * Returns the virtual address of the allocated area. */ static unsigned long __srmmu_get_nocache(int size, int align) { int offset; if (size < SRMMU_NOCACHE_BITMAP_SHIFT) { printk("Size 0x%x too small for nocache request\n", size); size = SRMMU_NOCACHE_BITMAP_SHIFT; } if (size & (SRMMU_NOCACHE_BITMAP_SHIFT-1)) { printk("Size 0x%x unaligned int nocache request\n", size); size += SRMMU_NOCACHE_BITMAP_SHIFT-1; } BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX); offset = bit_map_string_get(&srmmu_nocache_map, size >> SRMMU_NOCACHE_BITMAP_SHIFT, align >> SRMMU_NOCACHE_BITMAP_SHIFT); if (offset == -1) { printk("srmmu: out of nocache %d: %d/%d\n", size, (int) srmmu_nocache_size, srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT); return 0; } return (SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT)); } static unsigned long srmmu_get_nocache(int size, int align) { unsigned long tmp; tmp = __srmmu_get_nocache(size, align); if (tmp) memset((void *)tmp, 0, size); return tmp; } static void srmmu_free_nocache(unsigned long vaddr, int size) { int offset; if (vaddr < SRMMU_NOCACHE_VADDR) { printk("Vaddr %lx is smaller than nocache base 0x%lx\n", vaddr, (unsigned long)SRMMU_NOCACHE_VADDR); BUG(); } if (vaddr+size > srmmu_nocache_end) { printk("Vaddr %lx is bigger than nocache end 0x%lx\n", vaddr, srmmu_nocache_end); BUG(); } if (!is_power_of_2(size)) { printk("Size 0x%x is not a power of 2\n", size); BUG(); } if (size < SRMMU_NOCACHE_BITMAP_SHIFT) { printk("Size 0x%x is too small\n", size); BUG(); } if (vaddr & (size-1)) { printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size); BUG(); } offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT; size = size >> SRMMU_NOCACHE_BITMAP_SHIFT; bit_map_clear(&srmmu_nocache_map, offset, size); } static void srmmu_early_allocate_ptable_skeleton(unsigned long start, unsigned long end); extern unsigned long probe_memory(void); /* in fault.c */ /* * Reserve nocache dynamically proportionally to the amount of * system RAM. -- Tomas Szepe , June 2002 */ static void srmmu_nocache_calcsize(void) { unsigned long sysmemavail = probe_memory() / 1024; int srmmu_nocache_npages; srmmu_nocache_npages = sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256; /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */ // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256; if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES) srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES; /* anything above 1280 blows up */ if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES) srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES; srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE; srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size; } static void __init srmmu_nocache_init(void) { unsigned int bitmap_bits; pgd_t *pgd; pmd_t *pmd; pte_t *pte; unsigned long paddr, vaddr; unsigned long pteval; bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT; srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size, SRMMU_NOCACHE_ALIGN_MAX, 0UL); memset(srmmu_nocache_pool, 0, srmmu_nocache_size); srmmu_nocache_bitmap = __alloc_bootmem(bitmap_bits >> 3, SMP_CACHE_BYTES, 0UL); bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits); srmmu_swapper_pg_dir = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE); memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE); init_mm.pgd = srmmu_swapper_pg_dir; srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end); paddr = __pa((unsigned long)srmmu_nocache_pool); vaddr = SRMMU_NOCACHE_VADDR; while (vaddr < srmmu_nocache_end) { pgd = pgd_offset_k(vaddr); pmd = srmmu_pmd_offset(__nocache_fix(pgd), vaddr); pte = srmmu_pte_offset(__nocache_fix(pmd), vaddr); pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV); if (srmmu_cache_pagetables) pteval |= SRMMU_CACHE; srmmu_set_pte(__nocache_fix(pte), __pte(pteval)); vaddr += PAGE_SIZE; paddr += PAGE_SIZE; } flush_cache_all(); flush_tlb_all(); } static inline pgd_t *srmmu_get_pgd_fast(void) { pgd_t *pgd = NULL; pgd = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE); if (pgd) { pgd_t *init = pgd_offset_k(0); memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t)); memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD, (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t)); } return pgd; } static void srmmu_free_pgd_fast(pgd_t *pgd) { srmmu_free_nocache((unsigned long)pgd, SRMMU_PGD_TABLE_SIZE); } static pmd_t *srmmu_pmd_alloc_one(struct mm_struct *mm, unsigned long address) { return (pmd_t *)srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE); } static void srmmu_pmd_free(pmd_t * pmd) { srmmu_free_nocache((unsigned long)pmd, SRMMU_PMD_TABLE_SIZE); } /* * Hardware needs alignment to 256 only, but we align to whole page size * to reduce fragmentation problems due to the buddy principle. * XXX Provide actual fragmentation statistics in /proc. * * Alignments up to the page size are the same for physical and virtual * addresses of the nocache area. */ static pte_t * srmmu_pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address) { return (pte_t *)srmmu_get_nocache(PTE_SIZE, PTE_SIZE); } static pgtable_t srmmu_pte_alloc_one(struct mm_struct *mm, unsigned long address) { unsigned long pte; struct page *page; if ((pte = (unsigned long)srmmu_pte_alloc_one_kernel(mm, address)) == 0) return NULL; page = pfn_to_page( __nocache_pa(pte) >> PAGE_SHIFT ); pgtable_page_ctor(page); return page; } static void srmmu_free_pte_fast(pte_t *pte) { srmmu_free_nocache((unsigned long)pte, PTE_SIZE); } static void srmmu_pte_free(pgtable_t pte) { unsigned long p; pgtable_page_dtor(pte); p = (unsigned long)page_address(pte); /* Cached address (for test) */ if (p == 0) BUG(); p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */ p = (unsigned long) __nocache_va(p); /* Nocached virtual */ srmmu_free_nocache(p, PTE_SIZE); } /* */ static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm) { struct ctx_list *ctxp; ctxp = ctx_free.next; if(ctxp != &ctx_free) { remove_from_ctx_list(ctxp); add_to_used_ctxlist(ctxp); mm->context = ctxp->ctx_number; ctxp->ctx_mm = mm; return; } ctxp = ctx_used.next; if(ctxp->ctx_mm == old_mm) ctxp = ctxp->next; if(ctxp == &ctx_used) panic("out of mmu contexts"); flush_cache_mm(ctxp->ctx_mm); flush_tlb_mm(ctxp->ctx_mm); remove_from_ctx_list(ctxp); add_to_used_ctxlist(ctxp); ctxp->ctx_mm->context = NO_CONTEXT; ctxp->ctx_mm = mm; mm->context = ctxp->ctx_number; } static inline void free_context(int context) { struct ctx_list *ctx_old; ctx_old = ctx_list_pool + context; remove_from_ctx_list(ctx_old); add_to_free_ctxlist(ctx_old); } void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm, struct task_struct *tsk) { if(mm->context == NO_CONTEXT) { spin_lock(&srmmu_context_spinlock); alloc_context(old_mm, mm); spin_unlock(&srmmu_context_spinlock); srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd); } if (sparc_cpu_model == sparc_leon) leon_switch_mm(); if (is_hypersparc) hyper_flush_whole_icache(); srmmu_set_context(mm->context); } /* Low level IO area allocation on the SRMMU. */ static inline void srmmu_mapioaddr(unsigned long physaddr, unsigned long virt_addr, int bus_type) { pgd_t *pgdp; pmd_t *pmdp; pte_t *ptep; unsigned long tmp; physaddr &= PAGE_MASK; pgdp = pgd_offset_k(virt_addr); pmdp = srmmu_pmd_offset(pgdp, virt_addr); ptep = srmmu_pte_offset(pmdp, virt_addr); tmp = (physaddr >> 4) | SRMMU_ET_PTE; /* * I need to test whether this is consistent over all * sun4m's. The bus_type represents the upper 4 bits of * 36-bit physical address on the I/O space lines... */ tmp |= (bus_type << 28); tmp |= SRMMU_PRIV; __flush_page_to_ram(virt_addr); srmmu_set_pte(ptep, __pte(tmp)); } static void srmmu_mapiorange(unsigned int bus, unsigned long xpa, unsigned long xva, unsigned int len) { while (len != 0) { len -= PAGE_SIZE; srmmu_mapioaddr(xpa, xva, bus); xva += PAGE_SIZE; xpa += PAGE_SIZE; } flush_tlb_all(); } static inline void srmmu_unmapioaddr(unsigned long virt_addr) { pgd_t *pgdp; pmd_t *pmdp; pte_t *ptep; pgdp = pgd_offset_k(virt_addr); pmdp = srmmu_pmd_offset(pgdp, virt_addr); ptep = srmmu_pte_offset(pmdp, virt_addr); /* No need to flush uncacheable page. */ __pte_clear(ptep); } static void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len) { while (len != 0) { len -= PAGE_SIZE; srmmu_unmapioaddr(virt_addr); virt_addr += PAGE_SIZE; } flush_tlb_all(); } /* * On the SRMMU we do not have the problems with limited tlb entries * for mapping kernel pages, so we just take things from the free page * pool. As a side effect we are putting a little too much pressure * on the gfp() subsystem. This setup also makes the logic of the * iommu mapping code a lot easier as we can transparently handle * mappings on the kernel stack without any special code. */ struct thread_info *alloc_thread_info_node(struct task_struct *tsk, int node) { struct thread_info *ret; ret = (struct thread_info *)__get_free_pages(GFP_KERNEL, THREAD_INFO_ORDER); #ifdef CONFIG_DEBUG_STACK_USAGE if (ret) memset(ret, 0, PAGE_SIZE << THREAD_INFO_ORDER); #endif /* DEBUG_STACK_USAGE */ return ret; } void free_thread_info(struct thread_info *ti) { free_pages((unsigned long)ti, THREAD_INFO_ORDER); } /* tsunami.S */ extern void tsunami_flush_cache_all(void); extern void tsunami_flush_cache_mm(struct mm_struct *mm); extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page); extern void tsunami_flush_page_to_ram(unsigned long page); extern void tsunami_flush_page_for_dma(unsigned long page); extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr); extern void tsunami_flush_tlb_all(void); extern void tsunami_flush_tlb_mm(struct mm_struct *mm); extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); extern void tsunami_setup_blockops(void); /* * Workaround, until we find what's going on with Swift. When low on memory, * it sometimes loops in fault/handle_mm_fault incl. flush_tlb_page to find * out it is already in page tables/ fault again on the same instruction. * I really don't understand it, have checked it and contexts * are right, flush_tlb_all is done as well, and it faults again... * Strange. -jj * * The following code is a deadwood that may be necessary when * we start to make precise page flushes again. --zaitcev */ static void swift_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t *ptep) { #if 0 static unsigned long last; unsigned int val; /* unsigned int n; */ if (address == last) { val = srmmu_hwprobe(address); if (val != 0 && pte_val(*ptep) != val) { printk("swift_update_mmu_cache: " "addr %lx put %08x probed %08x from %pf\n", address, pte_val(*ptep), val, __builtin_return_address(0)); srmmu_flush_whole_tlb(); } } last = address; #endif } /* swift.S */ extern void swift_flush_cache_all(void); extern void swift_flush_cache_mm(struct mm_struct *mm); extern void swift_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page); extern void swift_flush_page_to_ram(unsigned long page); extern void swift_flush_page_for_dma(unsigned long page); extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr); extern void swift_flush_tlb_all(void); extern void swift_flush_tlb_mm(struct mm_struct *mm); extern void swift_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); #if 0 /* P3: deadwood to debug precise flushes on Swift. */ void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) { int cctx, ctx1; page &= PAGE_MASK; if ((ctx1 = vma->vm_mm->context) != -1) { cctx = srmmu_get_context(); /* Is context # ever different from current context? P3 */ if (cctx != ctx1) { printk("flush ctx %02x curr %02x\n", ctx1, cctx); srmmu_set_context(ctx1); swift_flush_page(page); __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : : "r" (page), "i" (ASI_M_FLUSH_PROBE)); srmmu_set_context(cctx); } else { /* Rm. prot. bits from virt. c. */ /* swift_flush_cache_all(); */ /* swift_flush_cache_page(vma, page); */ swift_flush_page(page); __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : : "r" (page), "i" (ASI_M_FLUSH_PROBE)); /* same as above: srmmu_flush_tlb_page() */ } } } #endif /* * The following are all MBUS based SRMMU modules, and therefore could * be found in a multiprocessor configuration. On the whole, these * chips seems to be much more touchy about DVMA and page tables * with respect to cache coherency. */ /* Cypress flushes. */ static void cypress_flush_cache_all(void) { volatile unsigned long cypress_sucks; unsigned long faddr, tagval; flush_user_windows(); for(faddr = 0; faddr < 0x10000; faddr += 0x20) { __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" : "=r" (tagval) : "r" (faddr), "r" (0x40000), "i" (ASI_M_DATAC_TAG)); /* If modified and valid, kick it. */ if((tagval & 0x60) == 0x60) cypress_sucks = *(unsigned long *)(0xf0020000 + faddr); } } static void cypress_flush_cache_mm(struct mm_struct *mm) { register unsigned long a, b, c, d, e, f, g; unsigned long flags, faddr; int octx; FLUSH_BEGIN(mm) flush_user_windows(); local_irq_save(flags); octx = srmmu_get_context(); srmmu_set_context(mm->context); a = 0x20; b = 0x40; c = 0x60; d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0; faddr = (0x10000 - 0x100); goto inside; do { faddr -= 0x100; inside: __asm__ __volatile__("sta %%g0, [%0] %1\n\t" "sta %%g0, [%0 + %2] %1\n\t" "sta %%g0, [%0 + %3] %1\n\t" "sta %%g0, [%0 + %4] %1\n\t" "sta %%g0, [%0 + %5] %1\n\t" "sta %%g0, [%0 + %6] %1\n\t" "sta %%g0, [%0 + %7] %1\n\t" "sta %%g0, [%0 + %8] %1\n\t" : : "r" (faddr), "i" (ASI_M_FLUSH_CTX), "r" (a), "r" (b), "r" (c), "r" (d), "r" (e), "r" (f), "r" (g)); } while(faddr); srmmu_set_context(octx); local_irq_restore(flags); FLUSH_END } static void cypress_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) { struct mm_struct *mm = vma->vm_mm; register unsigned long a, b, c, d, e, f, g; unsigned long flags, faddr; int octx; FLUSH_BEGIN(mm) flush_user_windows(); local_irq_save(flags); octx = srmmu_get_context(); srmmu_set_context(mm->context); a = 0x20; b = 0x40; c = 0x60; d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0; start &= SRMMU_REAL_PMD_MASK; while(start < end) { faddr = (start + (0x10000 - 0x100)); goto inside; do { faddr -= 0x100; inside: __asm__ __volatile__("sta %%g0, [%0] %1\n\t" "sta %%g0, [%0 + %2] %1\n\t" "sta %%g0, [%0 + %3] %1\n\t" "sta %%g0, [%0 + %4] %1\n\t" "sta %%g0, [%0 + %5] %1\n\t" "sta %%g0, [%0 + %6] %1\n\t" "sta %%g0, [%0 + %7] %1\n\t" "sta %%g0, [%0 + %8] %1\n\t" : : "r" (faddr), "i" (ASI_M_FLUSH_SEG), "r" (a), "r" (b), "r" (c), "r" (d), "r" (e), "r" (f), "r" (g)); } while (faddr != start); start += SRMMU_REAL_PMD_SIZE; } srmmu_set_context(octx); local_irq_restore(flags); FLUSH_END } static void cypress_flush_cache_page(struct vm_area_struct *vma, unsigned long page) { register unsigned long a, b, c, d, e, f, g; struct mm_struct *mm = vma->vm_mm; unsigned long flags, line; int octx; FLUSH_BEGIN(mm) flush_user_windows(); local_irq_save(flags); octx = srmmu_get_context(); srmmu_set_context(mm->context); a = 0x20; b = 0x40; c = 0x60; d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0; page &= PAGE_MASK; line = (page + PAGE_SIZE) - 0x100; goto inside; do { line -= 0x100; inside: __asm__ __volatile__("sta %%g0, [%0] %1\n\t" "sta %%g0, [%0 + %2] %1\n\t" "sta %%g0, [%0 + %3] %1\n\t" "sta %%g0, [%0 + %4] %1\n\t" "sta %%g0, [%0 + %5] %1\n\t" "sta %%g0, [%0 + %6] %1\n\t" "sta %%g0, [%0 + %7] %1\n\t" "sta %%g0, [%0 + %8] %1\n\t" : : "r" (line), "i" (ASI_M_FLUSH_PAGE), "r" (a), "r" (b), "r" (c), "r" (d), "r" (e), "r" (f), "r" (g)); } while(line != page); srmmu_set_context(octx); local_irq_restore(flags); FLUSH_END } /* Cypress is copy-back, at least that is how we configure it. */ static void cypress_flush_page_to_ram(unsigned long page) { register unsigned long a, b, c, d, e, f, g; unsigned long line; a = 0x20; b = 0x40; c = 0x60; d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0; page &= PAGE_MASK; line = (page + PAGE_SIZE) - 0x100; goto inside; do { line -= 0x100; inside: __asm__ __volatile__("sta %%g0, [%0] %1\n\t" "sta %%g0, [%0 + %2] %1\n\t" "sta %%g0, [%0 + %3] %1\n\t" "sta %%g0, [%0 + %4] %1\n\t" "sta %%g0, [%0 + %5] %1\n\t" "sta %%g0, [%0 + %6] %1\n\t" "sta %%g0, [%0 + %7] %1\n\t" "sta %%g0, [%0 + %8] %1\n\t" : : "r" (line), "i" (ASI_M_FLUSH_PAGE), "r" (a), "r" (b), "r" (c), "r" (d), "r" (e), "r" (f), "r" (g)); } while(line != page); } /* Cypress is also IO cache coherent. */ static void cypress_flush_page_for_dma(unsigned long page) { } /* Cypress has unified L2 VIPT, from which both instructions and data * are stored. It does not have an onboard icache of any sort, therefore * no flush is necessary. */ static void cypress_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr) { } static void cypress_flush_tlb_all(void) { srmmu_flush_whole_tlb(); } static void cypress_flush_tlb_mm(struct mm_struct *mm) { FLUSH_BEGIN(mm) __asm__ __volatile__( "lda [%0] %3, %%g5\n\t" "sta %2, [%0] %3\n\t" "sta %%g0, [%1] %4\n\t" "sta %%g5, [%0] %3\n" : /* no outputs */ : "r" (SRMMU_CTX_REG), "r" (0x300), "r" (mm->context), "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE) : "g5"); FLUSH_END } static void cypress_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) { struct mm_struct *mm = vma->vm_mm; unsigned long size; FLUSH_BEGIN(mm) start &= SRMMU_PGDIR_MASK; size = SRMMU_PGDIR_ALIGN(end) - start; __asm__ __volatile__( "lda [%0] %5, %%g5\n\t" "sta %1, [%0] %5\n" "1:\n\t" "subcc %3, %4, %3\n\t" "bne 1b\n\t" " sta %%g0, [%2 + %3] %6\n\t" "sta %%g5, [%0] %5\n" : /* no outputs */ : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (start | 0x200), "r" (size), "r" (SRMMU_PGDIR_SIZE), "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE) : "g5", "cc"); FLUSH_END } static void cypress_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) { struct mm_struct *mm = vma->vm_mm; FLUSH_BEGIN(mm) __asm__ __volatile__( "lda [%0] %3, %%g5\n\t" "sta %1, [%0] %3\n\t" "sta %%g0, [%2] %4\n\t" "sta %%g5, [%0] %3\n" : /* no outputs */ : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (page & PAGE_MASK), "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE) : "g5"); FLUSH_END } /* viking.S */ extern void viking_flush_cache_all(void); extern void viking_flush_cache_mm(struct mm_struct *mm); extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page); extern void viking_flush_page_to_ram(unsigned long page); extern void viking_flush_page_for_dma(unsigned long page); extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr); extern void viking_flush_page(unsigned long page); extern void viking_mxcc_flush_page(unsigned long page); extern void viking_flush_tlb_all(void); extern void viking_flush_tlb_mm(struct mm_struct *mm); extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); extern void viking_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); extern void sun4dsmp_flush_tlb_all(void); extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm); extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); /* hypersparc.S */ extern void hypersparc_flush_cache_all(void); extern void hypersparc_flush_cache_mm(struct mm_struct *mm); extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page); extern void hypersparc_flush_page_to_ram(unsigned long page); extern void hypersparc_flush_page_for_dma(unsigned long page); extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr); extern void hypersparc_flush_tlb_all(void); extern void hypersparc_flush_tlb_mm(struct mm_struct *mm); extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); extern void hypersparc_setup_blockops(void); /* * NOTE: All of this startup code assumes the low 16mb (approx.) of * kernel mappings are done with one single contiguous chunk of * ram. On small ram machines (classics mainly) we only get * around 8mb mapped for us. */ static void __init early_pgtable_allocfail(char *type) { prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type); prom_halt(); } static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start, unsigned long end) { pgd_t *pgdp; pmd_t *pmdp; pte_t *ptep; while(start < end) { pgdp = pgd_offset_k(start); if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) { pmdp = (pmd_t *) __srmmu_get_nocache( SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE); if (pmdp == NULL) early_pgtable_allocfail("pmd"); memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE); srmmu_pgd_set(__nocache_fix(pgdp), pmdp); } pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start); if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) { ptep = (pte_t *)__srmmu_get_nocache(PTE_SIZE, PTE_SIZE); if (ptep == NULL) early_pgtable_allocfail("pte"); memset(__nocache_fix(ptep), 0, PTE_SIZE); srmmu_pmd_set(__nocache_fix(pmdp), ptep); } if (start > (0xffffffffUL - PMD_SIZE)) break; start = (start + PMD_SIZE) & PMD_MASK; } } static void __init srmmu_allocate_ptable_skeleton(unsigned long start, unsigned long end) { pgd_t *pgdp; pmd_t *pmdp; pte_t *ptep; while(start < end) { pgdp = pgd_offset_k(start); if (pgd_none(*pgdp)) { pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE); if (pmdp == NULL) early_pgtable_allocfail("pmd"); memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE); srmmu_pgd_set(pgdp, pmdp); } pmdp = srmmu_pmd_offset(pgdp, start); if(srmmu_pmd_none(*pmdp)) { ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE, PTE_SIZE); if (ptep == NULL) early_pgtable_allocfail("pte"); memset(ptep, 0, PTE_SIZE); srmmu_pmd_set(pmdp, ptep); } if (start > (0xffffffffUL - PMD_SIZE)) break; start = (start + PMD_SIZE) & PMD_MASK; } } /* * This is much cleaner than poking around physical address space * looking at the prom's page table directly which is what most * other OS's do. Yuck... this is much better. */ static void __init srmmu_inherit_prom_mappings(unsigned long start, unsigned long end) { pgd_t *pgdp; pmd_t *pmdp; pte_t *ptep; int what = 0; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */ unsigned long prompte; while(start <= end) { if (start == 0) break; /* probably wrap around */ if(start == 0xfef00000) start = KADB_DEBUGGER_BEGVM; if(!(prompte = srmmu_hwprobe(start))) { start += PAGE_SIZE; continue; } /* A red snapper, see what it really is. */ what = 0; if(!(start & ~(SRMMU_REAL_PMD_MASK))) { if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_REAL_PMD_SIZE) == prompte) what = 1; } if(!(start & ~(SRMMU_PGDIR_MASK))) { if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_PGDIR_SIZE) == prompte) what = 2; } pgdp = pgd_offset_k(start); if(what == 2) { *(pgd_t *)__nocache_fix(pgdp) = __pgd(prompte); start += SRMMU_PGDIR_SIZE; continue; } if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) { pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE); if (pmdp == NULL) early_pgtable_allocfail("pmd"); memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE); srmmu_pgd_set(__nocache_fix(pgdp), pmdp); } pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start); if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) { ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE, PTE_SIZE); if (ptep == NULL) early_pgtable_allocfail("pte"); memset(__nocache_fix(ptep), 0, PTE_SIZE); srmmu_pmd_set(__nocache_fix(pmdp), ptep); } if(what == 1) { /* * We bend the rule where all 16 PTPs in a pmd_t point * inside the same PTE page, and we leak a perfectly * good hardware PTE piece. Alternatives seem worse. */ unsigned int x; /* Index of HW PMD in soft cluster */ x = (start >> PMD_SHIFT) & 15; *(unsigned long *)__nocache_fix(&pmdp->pmdv[x]) = prompte; start += SRMMU_REAL_PMD_SIZE; continue; } ptep = srmmu_pte_offset(__nocache_fix(pmdp), start); *(pte_t *)__nocache_fix(ptep) = __pte(prompte); start += PAGE_SIZE; } } #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID) /* Create a third-level SRMMU 16MB page mapping. */ static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base) { pgd_t *pgdp = pgd_offset_k(vaddr); unsigned long big_pte; big_pte = KERNEL_PTE(phys_base >> 4); *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte); } /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */ static unsigned long __init map_spbank(unsigned long vbase, int sp_entry) { unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK); unsigned long vstart = (vbase & SRMMU_PGDIR_MASK); unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes); /* Map "low" memory only */ const unsigned long min_vaddr = PAGE_OFFSET; const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM; if (vstart < min_vaddr || vstart >= max_vaddr) return vstart; if (vend > max_vaddr || vend < min_vaddr) vend = max_vaddr; while(vstart < vend) { do_large_mapping(vstart, pstart); vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE; } return vstart; } static inline void memprobe_error(char *msg) { prom_printf(msg); prom_printf("Halting now...\n"); prom_halt(); } static inline void map_kernel(void) { int i; if (phys_base > 0) { do_large_mapping(PAGE_OFFSET, phys_base); } for (i = 0; sp_banks[i].num_bytes != 0; i++) { map_spbank((unsigned long)__va(sp_banks[i].base_addr), i); } } /* Paging initialization on the Sparc Reference MMU. */ extern void sparc_context_init(int); void (*poke_srmmu)(void) __cpuinitdata = NULL; extern unsigned long bootmem_init(unsigned long *pages_avail); void __init srmmu_paging_init(void) { int i; phandle cpunode; char node_str[128]; pgd_t *pgd; pmd_t *pmd; pte_t *pte; unsigned long pages_avail; sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */ if (sparc_cpu_model == sun4d) num_contexts = 65536; /* We know it is Viking */ else { /* Find the number of contexts on the srmmu. */ cpunode = prom_getchild(prom_root_node); num_contexts = 0; while(cpunode != 0) { prom_getstring(cpunode, "device_type", node_str, sizeof(node_str)); if(!strcmp(node_str, "cpu")) { num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8); break; } cpunode = prom_getsibling(cpunode); } } if(!num_contexts) { prom_printf("Something wrong, can't find cpu node in paging_init.\n"); prom_halt(); } pages_avail = 0; last_valid_pfn = bootmem_init(&pages_avail); srmmu_nocache_calcsize(); srmmu_nocache_init(); srmmu_inherit_prom_mappings(0xfe400000,(LINUX_OPPROM_ENDVM-PAGE_SIZE)); map_kernel(); /* ctx table has to be physically aligned to its size */ srmmu_context_table = (ctxd_t *)__srmmu_get_nocache(num_contexts*sizeof(ctxd_t), num_contexts*sizeof(ctxd_t)); srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table); for(i = 0; i < num_contexts; i++) srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir); flush_cache_all(); srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys); #ifdef CONFIG_SMP /* Stop from hanging here... */ local_flush_tlb_all(); #else flush_tlb_all(); #endif poke_srmmu(); srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END); srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END); srmmu_allocate_ptable_skeleton( __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP); srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END); pgd = pgd_offset_k(PKMAP_BASE); pmd = srmmu_pmd_offset(pgd, PKMAP_BASE); pte = srmmu_pte_offset(pmd, PKMAP_BASE); pkmap_page_table = pte; flush_cache_all(); flush_tlb_all(); sparc_context_init(num_contexts); kmap_init(); { unsigned long zones_size[MAX_NR_ZONES]; unsigned long zholes_size[MAX_NR_ZONES]; unsigned long npages; int znum; for (znum = 0; znum < MAX_NR_ZONES; znum++) zones_size[znum] = zholes_size[znum] = 0; npages = max_low_pfn - pfn_base; zones_size[ZONE_DMA] = npages; zholes_size[ZONE_DMA] = npages - pages_avail; npages = highend_pfn - max_low_pfn; zones_size[ZONE_HIGHMEM] = npages; zholes_size[ZONE_HIGHMEM] = npages - calc_highpages(); free_area_init_node(0, zones_size, pfn_base, zholes_size); } } static void srmmu_mmu_info(struct seq_file *m) { seq_printf(m, "MMU type\t: %s\n" "contexts\t: %d\n" "nocache total\t: %ld\n" "nocache used\t: %d\n", srmmu_name, num_contexts, srmmu_nocache_size, srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT); } static void srmmu_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte) { } static void srmmu_destroy_context(struct mm_struct *mm) { if(mm->context != NO_CONTEXT) { flush_cache_mm(mm); srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir); flush_tlb_mm(mm); spin_lock(&srmmu_context_spinlock); free_context(mm->context); spin_unlock(&srmmu_context_spinlock); mm->context = NO_CONTEXT; } } /* Init various srmmu chip types. */ static void __init srmmu_is_bad(void) { prom_printf("Could not determine SRMMU chip type.\n"); prom_halt(); } static void __init init_vac_layout(void) { phandle nd; int cache_lines; char node_str[128]; #ifdef CONFIG_SMP int cpu = 0; unsigned long max_size = 0; unsigned long min_line_size = 0x10000000; #endif nd = prom_getchild(prom_root_node); while((nd = prom_getsibling(nd)) != 0) { prom_getstring(nd, "device_type", node_str, sizeof(node_str)); if(!strcmp(node_str, "cpu")) { vac_line_size = prom_getint(nd, "cache-line-size"); if (vac_line_size == -1) { prom_printf("can't determine cache-line-size, " "halting.\n"); prom_halt(); } cache_lines = prom_getint(nd, "cache-nlines"); if (cache_lines == -1) { prom_printf("can't determine cache-nlines, halting.\n"); prom_halt(); } vac_cache_size = cache_lines * vac_line_size; #ifdef CONFIG_SMP if(vac_cache_size > max_size) max_size = vac_cache_size; if(vac_line_size < min_line_size) min_line_size = vac_line_size; //FIXME: cpus not contiguous!! cpu++; if (cpu >= nr_cpu_ids || !cpu_online(cpu)) break; #else break; #endif } } if(nd == 0) { prom_printf("No CPU nodes found, halting.\n"); prom_halt(); } #ifdef CONFIG_SMP vac_cache_size = max_size; vac_line_size = min_line_size; #endif printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n", (int)vac_cache_size, (int)vac_line_size); } static void __cpuinit poke_hypersparc(void) { volatile unsigned long clear; unsigned long mreg = srmmu_get_mmureg(); hyper_flush_unconditional_combined(); mreg &= ~(HYPERSPARC_CWENABLE); mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE); mreg |= (HYPERSPARC_CMODE); srmmu_set_mmureg(mreg); #if 0 /* XXX I think this is bad news... -DaveM */ hyper_clear_all_tags(); #endif put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE); hyper_flush_whole_icache(); clear = srmmu_get_faddr(); clear = srmmu_get_fstatus(); } static void __init init_hypersparc(void) { srmmu_name = "ROSS HyperSparc"; srmmu_modtype = HyperSparc; init_vac_layout(); is_hypersparc = 1; BTFIXUPSET_CALL(flush_cache_all, hypersparc_flush_cache_all, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_cache_mm, hypersparc_flush_cache_mm, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_cache_range, hypersparc_flush_cache_range, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_cache_page, hypersparc_flush_cache_page, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_tlb_all, hypersparc_flush_tlb_all, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_tlb_mm, hypersparc_flush_tlb_mm, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_tlb_range, hypersparc_flush_tlb_range, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_tlb_page, hypersparc_flush_tlb_page, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(__flush_page_to_ram, hypersparc_flush_page_to_ram, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_sig_insns, hypersparc_flush_sig_insns, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_page_for_dma, hypersparc_flush_page_for_dma, BTFIXUPCALL_NOP); poke_srmmu = poke_hypersparc; hypersparc_setup_blockops(); } static void __cpuinit poke_cypress(void) { unsigned long mreg = srmmu_get_mmureg(); unsigned long faddr, tagval; volatile unsigned long cypress_sucks; volatile unsigned long clear; clear = srmmu_get_faddr(); clear = srmmu_get_fstatus(); if (!(mreg & CYPRESS_CENABLE)) { for(faddr = 0x0; faddr < 0x10000; faddr += 20) { __asm__ __volatile__("sta %%g0, [%0 + %1] %2\n\t" "sta %%g0, [%0] %2\n\t" : : "r" (faddr), "r" (0x40000), "i" (ASI_M_DATAC_TAG)); } } else { for(faddr = 0; faddr < 0x10000; faddr += 0x20) { __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" : "=r" (tagval) : "r" (faddr), "r" (0x40000), "i" (ASI_M_DATAC_TAG)); /* If modified and valid, kick it. */ if((tagval & 0x60) == 0x60) cypress_sucks = *(unsigned long *) (0xf0020000 + faddr); } } /* And one more, for our good neighbor, Mr. Broken Cypress. */ clear = srmmu_get_faddr(); clear = srmmu_get_fstatus(); mreg |= (CYPRESS_CENABLE | CYPRESS_CMODE); srmmu_set_mmureg(mreg); } static void __init init_cypress_common(void) { init_vac_layout(); BTFIXUPSET_CALL(flush_cache_all, cypress_flush_cache_all, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_cache_mm, cypress_flush_cache_mm, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_cache_range, cypress_flush_cache_range, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_cache_page, cypress_flush_cache_page, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_tlb_all, cypress_flush_tlb_all, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_tlb_mm, cypress_flush_tlb_mm, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_tlb_page, cypress_flush_tlb_page, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_tlb_range, cypress_flush_tlb_range, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(__flush_page_to_ram, cypress_flush_page_to_ram, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_sig_insns, cypress_flush_sig_insns, BTFIXUPCALL_NOP); BTFIXUPSET_CALL(flush_page_for_dma, cypress_flush_page_for_dma, BTFIXUPCALL_NOP); poke_srmmu = poke_cypress; } static void __init init_cypress_604(void) { srmmu_name = "ROSS Cypress-604(UP)"; srmmu_modtype = Cypress; init_cypress_common(); } static void __init init_cypress_605(unsigned long mrev) { srmmu_name = "ROSS Cypress-605(MP)"; if(mrev == 0xe) { srmmu_modtype = Cypress_vE; hwbug_bitmask |= HWBUG_COPYBACK_BROKEN; } else { if(mrev == 0xd) { srmmu_modtype = Cypress_vD; hwbug_bitmask |= HWBUG_ASIFLUSH_BROKEN; } else { srmmu_modtype = Cypress; } } init_cypress_common(); } static void __cpuinit poke_swift(void) { unsigned long mreg; /* Clear any crap from the cache or else... */ swift_flush_cache_all(); /* Enable I & D caches */ mreg = srmmu_get_mmureg(); mreg |= (SWIFT_IE | SWIFT_DE); /* * The Swift branch folding logic is completely broken. At * trap time, if things are just right, if can mistakenly * think that a trap is coming from kernel mode when in fact * it is coming from user mode (it mis-executes the branch in * the trap code). So you see things like crashme completely * hosing your machine which is completely unacceptable. Turn * this shit off... nice job Fujitsu. */ mreg &= ~(SWIFT_BF); srmmu_set_mmureg(mreg); } #define SWIFT_MASKID_ADDR 0x10003018 static void __init init_swift(void) { unsigned long swift_rev; __asm__ __volatile__("lda [%1] %2, %0\n\t" "srl %0, 0x18, %0\n\t" : "=r" (swift_rev) : "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS)); srmmu_name = "Fujitsu Swift"; switch(swift_rev) { case 0x11: case 0x20: case 0x23: case 0x30: srmmu_modtype = Swift_lots_o_bugs; hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN); /* * Gee george, I wonder why Sun is so hush hush about * this hardware bug... really braindamage stuff going * on here. However I think we can find a way to avoid * all of the workaround overhead under Linux. Basically, * any page fault can cause kernel pages to become user * accessible (the mmu gets confused and clears some of * the ACC bits in kernel ptes). Aha, sounds pretty * horrible eh? But wait, after extensive testing it appears * that if you use pgd_t level large kernel pte's (like the * 4MB pages on the Pentium) the bug does not get tripped * at all. This avoids almost all of the major overhead. * Welcome to a world where your vendor tells you to, * "apply this kernel patch" instead of "sorry for the * broken hardware, send it back and we'll give you * properly functioning parts" */ break; case 0x25: case 0x31: srmmu_modtype = Swift_bad_c; hwbug_bitmask |= HWBUG_KERN_CBITBROKEN; /* * You see Sun allude to this hardware bug but never * admit things directly, they'll say things like, * "the Swift chip cache problems" or similar. */ break; default: srmmu_modtype = Swift_ok; break; } BTFIXUPSET_CALL(flush_cache_all, swift_flush_cache_all, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_cache_mm, swift_flush_cache_mm, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_cache_page, swift_flush_cache_page, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_cache_range, swift_flush_cache_range, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_tlb_all, swift_flush_tlb_all, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_tlb_mm, swift_flush_tlb_mm, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_tlb_page, swift_flush_tlb_page, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_tlb_range, swift_flush_tlb_range, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(__flush_page_to_ram, swift_flush_page_to_ram, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_sig_insns, swift_flush_sig_insns, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_page_for_dma, swift_flush_page_for_dma, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(update_mmu_cache, swift_update_mmu_cache, BTFIXUPCALL_NORM); flush_page_for_dma_global = 0; /* * Are you now convinced that the Swift is one of the * biggest VLSI abortions of all time? Bravo Fujitsu! * Fujitsu, the !#?!%$'d up processor people. I bet if * you examined the microcode of the Swift you'd find * XXX's all over the place. */ poke_srmmu = poke_swift; } static void turbosparc_flush_cache_all(void) { flush_user_windows(); turbosparc_idflash_clear(); } static void turbosparc_flush_cache_mm(struct mm_struct *mm) { FLUSH_BEGIN(mm) flush_user_windows(); turbosparc_idflash_clear(); FLUSH_END } static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) { FLUSH_BEGIN(vma->vm_mm) flush_user_windows(); turbosparc_idflash_clear(); FLUSH_END } static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page) { FLUSH_BEGIN(vma->vm_mm) flush_user_windows(); if (vma->vm_flags & VM_EXEC) turbosparc_flush_icache(); turbosparc_flush_dcache(); FLUSH_END } /* TurboSparc is copy-back, if we turn it on, but this does not work. */ static void turbosparc_flush_page_to_ram(unsigned long page) { #ifdef TURBOSPARC_WRITEBACK volatile unsigned long clear; if (srmmu_hwprobe(page)) turbosparc_flush_page_cache(page); clear = srmmu_get_fstatus(); #endif } static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr) { } static void turbosparc_flush_page_for_dma(unsigned long page) { turbosparc_flush_dcache(); } static void turbosparc_flush_tlb_all(void) { srmmu_flush_whole_tlb(); } static void turbosparc_flush_tlb_mm(struct mm_struct *mm) { FLUSH_BEGIN(mm) srmmu_flush_whole_tlb(); FLUSH_END } static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) { FLUSH_BEGIN(vma->vm_mm) srmmu_flush_whole_tlb(); FLUSH_END } static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) { FLUSH_BEGIN(vma->vm_mm) srmmu_flush_whole_tlb(); FLUSH_END } static void __cpuinit poke_turbosparc(void) { unsigned long mreg = srmmu_get_mmureg(); unsigned long ccreg; /* Clear any crap from the cache or else... */ turbosparc_flush_cache_all(); mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* Temporarily disable I & D caches */ mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */ srmmu_set_mmureg(mreg); ccreg = turbosparc_get_ccreg(); #ifdef TURBOSPARC_WRITEBACK ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */ ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE); /* Write-back D-cache, emulate VLSI * abortion number three, not number one */ #else /* For now let's play safe, optimize later */ ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE); /* Do DVMA snooping in Dcache, Write-thru D-cache */ ccreg &= ~(TURBOSPARC_uS2); /* Emulate VLSI abortion number three, not number one */ #endif switch (ccreg & 7) { case 0: /* No SE cache */ case 7: /* Test mode */ break; default: ccreg |= (TURBOSPARC_SCENABLE); } turbosparc_set_ccreg (ccreg); mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */ mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */ srmmu_set_mmureg(mreg); } static void __init init_turbosparc(void) { srmmu_name = "Fujitsu TurboSparc"; srmmu_modtype = TurboSparc; BTFIXUPSET_CALL(flush_cache_all, turbosparc_flush_cache_all, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_cache_mm, turbosparc_flush_cache_mm, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_cache_page, turbosparc_flush_cache_page, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_cache_range, turbosparc_flush_cache_range, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_tlb_all, turbosparc_flush_tlb_all, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_tlb_mm, turbosparc_flush_tlb_mm, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_tlb_page, turbosparc_flush_tlb_page, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_tlb_range, turbosparc_flush_tlb_range, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(__flush_page_to_ram, turbosparc_flush_page_to_ram, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_sig_insns, turbosparc_flush_sig_insns, BTFIXUPCALL_NOP); BTFIXUPSET_CALL(flush_page_for_dma, turbosparc_flush_page_for_dma, BTFIXUPCALL_NORM); poke_srmmu = poke_turbosparc; } static void __cpuinit poke_tsunami(void) { unsigned long mreg = srmmu_get_mmureg(); tsunami_flush_icache(); tsunami_flush_dcache(); mreg &= ~TSUNAMI_ITD; mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB); srmmu_set_mmureg(mreg); } static void __init init_tsunami(void) { /* * Tsunami's pretty sane, Sun and TI actually got it * somewhat right this time. Fujitsu should have * taken some lessons from them. */ srmmu_name = "TI Tsunami"; srmmu_modtype = Tsunami; BTFIXUPSET_CALL(flush_cache_all, tsunami_flush_cache_all, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_cache_mm, tsunami_flush_cache_mm, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_cache_page, tsunami_flush_cache_page, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_cache_range, tsunami_flush_cache_range, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_tlb_all, tsunami_flush_tlb_all, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_tlb_mm, tsunami_flush_tlb_mm, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_tlb_page, tsunami_flush_tlb_page, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_tlb_range, tsunami_flush_tlb_range, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(__flush_page_to_ram, tsunami_flush_page_to_ram, BTFIXUPCALL_NOP); BTFIXUPSET_CALL(flush_sig_insns, tsunami_flush_sig_insns, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_page_for_dma, tsunami_flush_page_for_dma, BTFIXUPCALL_NORM); poke_srmmu = poke_tsunami; tsunami_setup_blockops(); } static void __cpuinit poke_viking(void) { unsigned long mreg = srmmu_get_mmureg(); static int smp_catch; if(viking_mxcc_present) { unsigned long mxcc_control = mxcc_get_creg(); mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE); mxcc_control &= ~(MXCC_CTL_RRC); mxcc_set_creg(mxcc_control); /* * We don't need memory parity checks. * XXX This is a mess, have to dig out later. ecd. viking_mxcc_turn_off_parity(&mreg, &mxcc_control); */ /* We do cache ptables on MXCC. */ mreg |= VIKING_TCENABLE; } else { unsigned long bpreg; mreg &= ~(VIKING_TCENABLE); if(smp_catch++) { /* Must disable mixed-cmd mode here for other cpu's. */ bpreg = viking_get_bpreg(); bpreg &= ~(VIKING_ACTION_MIX); viking_set_bpreg(bpreg); /* Just in case PROM does something funny. */ msi_set_sync(); } } mreg |= VIKING_SPENABLE; mreg |= (VIKING_ICENABLE | VIKING_DCENABLE); mreg |= VIKING_SBENABLE; mreg &= ~(VIKING_ACENABLE); srmmu_set_mmureg(mreg); } static void __init init_viking(void) { unsigned long mreg = srmmu_get_mmureg(); /* Ahhh, the viking. SRMMU VLSI abortion number two... */ if(mreg & VIKING_MMODE) { srmmu_name = "TI Viking"; viking_mxcc_present = 0; msi_set_sync(); /* * We need this to make sure old viking takes no hits * on it's cache for dma snoops to workaround the * "load from non-cacheable memory" interrupt bug. * This is only necessary because of the new way in * which we use the IOMMU. */ BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page, BTFIXUPCALL_NORM); flush_page_for_dma_global = 0; } else { srmmu_name = "TI Viking/MXCC"; viking_mxcc_present = 1; srmmu_cache_pagetables = 1; /* MXCC vikings lack the DMA snooping bug. */ BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page_for_dma, BTFIXUPCALL_NOP); } BTFIXUPSET_CALL(flush_cache_all, viking_flush_cache_all, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_cache_mm, viking_flush_cache_mm, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_cache_page, viking_flush_cache_page, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_cache_range, viking_flush_cache_range, BTFIXUPCALL_NORM); #ifdef CONFIG_SMP if (sparc_cpu_model == sun4d) { BTFIXUPSET_CALL(flush_tlb_all, sun4dsmp_flush_tlb_all, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_tlb_mm, sun4dsmp_flush_tlb_mm, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_tlb_page, sun4dsmp_flush_tlb_page, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_tlb_range, sun4dsmp_flush_tlb_range, BTFIXUPCALL_NORM); } else #endif { BTFIXUPSET_CALL(flush_tlb_all, viking_flush_tlb_all, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_tlb_mm, viking_flush_tlb_mm, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_tlb_page, viking_flush_tlb_page, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_tlb_range, viking_flush_tlb_range, BTFIXUPCALL_NORM); } BTFIXUPSET_CALL(__flush_page_to_ram, viking_flush_page_to_ram, BTFIXUPCALL_NOP); BTFIXUPSET_CALL(flush_sig_insns, viking_flush_sig_insns, BTFIXUPCALL_NOP); poke_srmmu = poke_viking; } #ifdef CONFIG_SPARC_LEON void __init poke_leonsparc(void) { } void __init init_leon(void) { srmmu_name = "LEON"; BTFIXUPSET_CALL(flush_cache_all, leon_flush_cache_all, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_cache_mm, leon_flush_cache_all, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_cache_page, leon_flush_pcache_all, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_cache_range, leon_flush_cache_all, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_page_for_dma, leon_flush_dcache_all, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_tlb_all, leon_flush_tlb_all, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_tlb_mm, leon_flush_tlb_all, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_tlb_page, leon_flush_tlb_all, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_tlb_range, leon_flush_tlb_all, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(__flush_page_to_ram, leon_flush_cache_all, BTFIXUPCALL_NOP); BTFIXUPSET_CALL(flush_sig_insns, leon_flush_cache_all, BTFIXUPCALL_NOP); poke_srmmu = poke_leonsparc; srmmu_cache_pagetables = 0; leon_flush_during_switch = leon_flush_needed(); } #endif /* Probe for the srmmu chip version. */ static void __init get_srmmu_type(void) { unsigned long mreg, psr; unsigned long mod_typ, mod_rev, psr_typ, psr_vers; srmmu_modtype = SRMMU_INVAL_MOD; hwbug_bitmask = 0; mreg = srmmu_get_mmureg(); psr = get_psr(); mod_typ = (mreg & 0xf0000000) >> 28; mod_rev = (mreg & 0x0f000000) >> 24; psr_typ = (psr >> 28) & 0xf; psr_vers = (psr >> 24) & 0xf; /* First, check for sparc-leon. */ if (sparc_cpu_model == sparc_leon) { init_leon(); return; } /* Second, check for HyperSparc or Cypress. */ if(mod_typ == 1) { switch(mod_rev) { case 7: /* UP or MP Hypersparc */ init_hypersparc(); break; case 0: case 2: /* Uniprocessor Cypress */ init_cypress_604(); break; case 10: case 11: case 12: /* _REALLY OLD_ Cypress MP chips... */ case 13: case 14: case 15: /* MP Cypress mmu/cache-controller */ init_cypress_605(mod_rev); break; default: /* Some other Cypress revision, assume a 605. */ init_cypress_605(mod_rev); break; } return; } /* * Now Fujitsu TurboSparc. It might happen that it is * in Swift emulation mode, so we will check later... */ if (psr_typ == 0 && psr_vers == 5) { init_turbosparc(); return; } /* Next check for Fujitsu Swift. */ if(psr_typ == 0 && psr_vers == 4) { phandle cpunode; char node_str[128]; /* Look if it is not a TurboSparc emulating Swift... */ cpunode = prom_getchild(prom_root_node); while((cpunode = prom_getsibling(cpunode)) != 0) { prom_getstring(cpunode, "device_type", node_str, sizeof(node_str)); if(!strcmp(node_str, "cpu")) { if (!prom_getintdefault(cpunode, "psr-implementation", 1) && prom_getintdefault(cpunode, "psr-version", 1) == 5) { init_turbosparc(); return; } break; } } init_swift(); return; } /* Now the Viking family of srmmu. */ if(psr_typ == 4 && ((psr_vers == 0) || ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) { init_viking(); return; } /* Finally the Tsunami. */ if(psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) { init_tsunami(); return; } /* Oh well */ srmmu_is_bad(); } extern unsigned long spwin_mmu_patchme, fwin_mmu_patchme, tsetup_mmu_patchme, rtrap_mmu_patchme; extern unsigned long spwin_srmmu_stackchk, srmmu_fwin_stackchk, tsetup_srmmu_stackchk, srmmu_rett_stackchk; #ifdef CONFIG_SMP /* Local cross-calls. */ static void smp_flush_page_for_dma(unsigned long page) { xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_for_dma), page); local_flush_page_for_dma(page); } #endif /* Load up routines and constants for sun4m and sun4d mmu */ void __init load_mmu(void) { extern void ld_mmu_iommu(void); extern void ld_mmu_iounit(void); extern void ___xchg32_sun4md(void); /* Functions */ #ifndef CONFIG_SMP BTFIXUPSET_CALL(___xchg32, ___xchg32_sun4md, BTFIXUPCALL_SWAPG1G2); #endif BTFIXUPSET_CALL(set_pte, srmmu_set_pte, BTFIXUPCALL_SWAPO0O1); BTFIXUPSET_CALL(pgd_page_vaddr, srmmu_pgd_page, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(pte_present, srmmu_pte_present, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(mk_pte, srmmu_mk_pte, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(mk_pte_phys, srmmu_mk_pte_phys, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(mk_pte_io, srmmu_mk_pte_io, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(pgd_set, srmmu_pgd_set, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(pmd_set, srmmu_pmd_set, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(pmd_populate, srmmu_pmd_populate, BTFIXUPCALL_NORM); BTFIXUPSET_INT(pte_modify_mask, SRMMU_CHG_MASK); BTFIXUPSET_CALL(pmd_offset, srmmu_pmd_offset, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(pte_offset_kernel, srmmu_pte_offset, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(free_pte_fast, srmmu_free_pte_fast, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(pte_free, srmmu_pte_free, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(pte_alloc_one_kernel, srmmu_pte_alloc_one_kernel, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(pte_alloc_one, srmmu_pte_alloc_one, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(free_pmd_fast, srmmu_pmd_free, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(pmd_alloc_one, srmmu_pmd_alloc_one, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(free_pgd_fast, srmmu_free_pgd_fast, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(get_pgd_fast, srmmu_get_pgd_fast, BTFIXUPCALL_NORM); BTFIXUPSET_HALF(pte_writei, SRMMU_WRITE); BTFIXUPSET_HALF(pte_dirtyi, SRMMU_DIRTY); BTFIXUPSET_HALF(pte_youngi, SRMMU_REF); BTFIXUPSET_HALF(pte_filei, SRMMU_FILE); BTFIXUPSET_HALF(pte_wrprotecti, SRMMU_WRITE); BTFIXUPSET_HALF(pte_mkcleani, SRMMU_DIRTY); BTFIXUPSET_HALF(pte_mkoldi, SRMMU_REF); BTFIXUPSET_CALL(pte_mkwrite, srmmu_pte_mkwrite, BTFIXUPCALL_ORINT(SRMMU_WRITE)); BTFIXUPSET_CALL(pte_mkdirty, srmmu_pte_mkdirty, BTFIXUPCALL_ORINT(SRMMU_DIRTY)); BTFIXUPSET_CALL(pte_mkyoung, srmmu_pte_mkyoung, BTFIXUPCALL_ORINT(SRMMU_REF)); BTFIXUPSET_CALL(update_mmu_cache, srmmu_update_mmu_cache, BTFIXUPCALL_NOP); BTFIXUPSET_CALL(destroy_context, srmmu_destroy_context, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(sparc_mapiorange, srmmu_mapiorange, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(sparc_unmapiorange, srmmu_unmapiorange, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(__swp_type, srmmu_swp_type, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(__swp_offset, srmmu_swp_offset, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(__swp_entry, srmmu_swp_entry, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(mmu_info, srmmu_mmu_info, BTFIXUPCALL_NORM); get_srmmu_type(); #ifdef CONFIG_SMP /* El switcheroo... */ BTFIXUPCOPY_CALL(local_flush_cache_all, flush_cache_all); BTFIXUPCOPY_CALL(local_flush_cache_mm, flush_cache_mm); BTFIXUPCOPY_CALL(local_flush_cache_range, flush_cache_range); BTFIXUPCOPY_CALL(local_flush_cache_page, flush_cache_page); BTFIXUPCOPY_CALL(local_flush_tlb_all, flush_tlb_all); BTFIXUPCOPY_CALL(local_flush_tlb_mm, flush_tlb_mm); BTFIXUPCOPY_CALL(local_flush_tlb_range, flush_tlb_range); BTFIXUPCOPY_CALL(local_flush_tlb_page, flush_tlb_page); BTFIXUPCOPY_CALL(local_flush_page_to_ram, __flush_page_to_ram); BTFIXUPCOPY_CALL(local_flush_sig_insns, flush_sig_insns); BTFIXUPCOPY_CALL(local_flush_page_for_dma, flush_page_for_dma); BTFIXUPSET_CALL(flush_cache_all, smp_flush_cache_all, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_cache_mm, smp_flush_cache_mm, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_cache_range, smp_flush_cache_range, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_cache_page, smp_flush_cache_page, BTFIXUPCALL_NORM); if (sparc_cpu_model != sun4d && sparc_cpu_model != sparc_leon) { BTFIXUPSET_CALL(flush_tlb_all, smp_flush_tlb_all, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_tlb_mm, smp_flush_tlb_mm, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_tlb_range, smp_flush_tlb_range, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_tlb_page, smp_flush_tlb_page, BTFIXUPCALL_NORM); } BTFIXUPSET_CALL(__flush_page_to_ram, smp_flush_page_to_ram, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_sig_insns, smp_flush_sig_insns, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_page_for_dma, smp_flush_page_for_dma, BTFIXUPCALL_NORM); if (poke_srmmu == poke_viking) { /* Avoid unnecessary cross calls. */ BTFIXUPCOPY_CALL(flush_cache_all, local_flush_cache_all); BTFIXUPCOPY_CALL(flush_cache_mm, local_flush_cache_mm); BTFIXUPCOPY_CALL(flush_cache_range, local_flush_cache_range); BTFIXUPCOPY_CALL(flush_cache_page, local_flush_cache_page); BTFIXUPCOPY_CALL(__flush_page_to_ram, local_flush_page_to_ram); BTFIXUPCOPY_CALL(flush_sig_insns, local_flush_sig_insns); BTFIXUPCOPY_CALL(flush_page_for_dma, local_flush_page_for_dma); } #endif if (sparc_cpu_model == sun4d) ld_mmu_iounit(); else ld_mmu_iommu(); #ifdef CONFIG_SMP if (sparc_cpu_model == sun4d) sun4d_init_smp(); else if (sparc_cpu_model == sparc_leon) leon_init_smp(); else sun4m_init_smp(); #endif btfixup(); }