#include #include #include "kerncompat.h" #include "radix-tree.h" #include "ctree.h" #include "disk-io.h" #include "print-tree.h" static int split_node(struct ctree_root *root, struct ctree_path *path, int level); static int split_leaf(struct ctree_root *root, struct ctree_path *path, int data_size); static int push_node_left(struct ctree_root *root, struct ctree_path *path, int level); static int push_node_right(struct ctree_root *root, struct ctree_path *path, int level); static int del_ptr(struct ctree_root *root, struct ctree_path *path, int level); inline void init_path(struct ctree_path *p) { memset(p, 0, sizeof(*p)); } void release_path(struct ctree_root *root, struct ctree_path *p) { int i; for (i = 0; i < MAX_LEVEL; i++) { if (!p->nodes[i]) break; tree_block_release(root, p->nodes[i]); } memset(p, 0, sizeof(*p)); } /* * The leaf data grows from end-to-front in the node. * this returns the address of the start of the last item, * which is the stop of the leaf data stack */ static inline unsigned int leaf_data_end(struct leaf *leaf) { unsigned int nr = leaf->header.nritems; if (nr == 0) return sizeof(leaf->data); return leaf->items[nr-1].offset; } /* * The space between the end of the leaf items and * the start of the leaf data. IOW, how much room * the leaf has left for both items and data */ int leaf_free_space(struct leaf *leaf) { int data_end = leaf_data_end(leaf); int nritems = leaf->header.nritems; char *items_end = (char *)(leaf->items + nritems + 1); return (char *)(leaf->data + data_end) - (char *)items_end; } /* * compare two keys in a memcmp fashion */ int comp_keys(struct key *k1, struct key *k2) { if (k1->objectid > k2->objectid) return 1; if (k1->objectid < k2->objectid) return -1; if (k1->flags > k2->flags) return 1; if (k1->flags < k2->flags) return -1; if (k1->offset > k2->offset) return 1; if (k1->offset < k2->offset) return -1; return 0; } int check_node(struct ctree_path *path, int level) { int i; struct node *parent = NULL; struct node *node = &path->nodes[level]->node; int parent_slot; if (path->nodes[level + 1]) parent = &path->nodes[level + 1]->node; parent_slot = path->slots[level + 1]; if (parent && node->header.nritems > 0) { struct key *parent_key; parent_key = &parent->keys[parent_slot]; BUG_ON(memcmp(parent_key, node->keys, sizeof(struct key))); BUG_ON(parent->blockptrs[parent_slot] != node->header.blocknr); } BUG_ON(node->header.nritems > NODEPTRS_PER_BLOCK); for (i = 0; i < node->header.nritems - 2; i++) { BUG_ON(comp_keys(&node->keys[i], &node->keys[i+1]) >= 0); } return 0; } int check_leaf(struct ctree_path *path, int level) { int i; struct leaf *leaf = &path->nodes[level]->leaf; struct node *parent = NULL; int parent_slot; if (path->nodes[level + 1]) parent = &path->nodes[level + 1]->node; parent_slot = path->slots[level + 1]; if (parent && leaf->header.nritems > 0) { struct key *parent_key; parent_key = &parent->keys[parent_slot]; BUG_ON(memcmp(parent_key, &leaf->items[0].key, sizeof(struct key))); BUG_ON(parent->blockptrs[parent_slot] != leaf->header.blocknr); } for (i = 0; i < leaf->header.nritems - 2; i++) { BUG_ON(comp_keys(&leaf->items[i].key, &leaf->items[i+1].key) >= 0); BUG_ON(leaf->items[i].offset != leaf->items[i + 1].offset + leaf->items[i + 1].size); if (i == 0) { BUG_ON(leaf->items[i].offset + leaf->items[i].size != LEAF_DATA_SIZE); } } BUG_ON(leaf_free_space(leaf) < 0); return 0; } int check_block(struct ctree_path *path, int level) { if (level == 0) return check_leaf(path, level); return check_node(path, level); } /* * search for key in the array p. items p are item_size apart * and there are 'max' items in p * the slot in the array is returned via slot, and it points to * the place where you would insert key if it is not found in * the array. * * slot may point to max if the key is bigger than all of the keys */ int generic_bin_search(char *p, int item_size, struct key *key, int max, int *slot) { int low = 0; int high = max; int mid; int ret; struct key *tmp; while(low < high) { mid = (low + high) / 2; tmp = (struct key *)(p + mid * item_size); ret = comp_keys(tmp, key); if (ret < 0) low = mid + 1; else if (ret > 0) high = mid; else { *slot = mid; return 0; } } *slot = low; return 1; } /* * simple bin_search frontend that does the right thing for * leaves vs nodes */ int bin_search(struct node *c, struct key *key, int *slot) { if (is_leaf(c->header.flags)) { struct leaf *l = (struct leaf *)c; return generic_bin_search((void *)l->items, sizeof(struct item), key, c->header.nritems, slot); } else { return generic_bin_search((void *)c->keys, sizeof(struct key), key, c->header.nritems, slot); } return -1; } /* * look for key in the tree. path is filled in with nodes along the way * if key is found, we return zero and you can find the item in the leaf * level of the path (level 0) * * If the key isn't found, the path points to the slot where it should * be inserted, and 1 is returned. If there are other errors during the * search a negative error number is returned. * * if ins_len > 0, nodes and leaves will be split as we walk down the * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if * possible) */ int search_slot(struct ctree_root *root, struct key *key, struct ctree_path *p, int ins_len) { struct tree_buffer *b = root->node; struct node *c; int slot; int ret; int level; b->count++; while (b) { c = &b->node; level = node_level(c->header.flags); p->nodes[level] = b; ret = check_block(p, level); if (ret) return -1; ret = bin_search(c, key, &slot); if (!is_leaf(c->header.flags)) { if (ret && slot > 0) slot -= 1; p->slots[level] = slot; if (ins_len > 0 && c->header.nritems == NODEPTRS_PER_BLOCK) { int sret = split_node(root, p, level); BUG_ON(sret > 0); if (sret) return sret; b = p->nodes[level]; c = &b->node; slot = p->slots[level]; } b = read_tree_block(root, c->blockptrs[slot]); continue; } else { struct leaf *l = (struct leaf *)c; p->slots[level] = slot; if (ins_len > 0 && leaf_free_space(l) < sizeof(struct item) + ins_len) { int sret = split_leaf(root, p, ins_len); BUG_ON(sret > 0); if (sret) return sret; } return ret; } } return 1; } /* * adjust the pointers going up the tree, starting at level * making sure the right key of each node is points to 'key'. * This is used after shifting pointers to the left, so it stops * fixing up pointers when a given leaf/node is not in slot 0 of the * higher levels * * If this fails to write a tree block, it returns -1, but continues * fixing up the blocks in ram so the tree is consistent. */ static int fixup_low_keys(struct ctree_root *root, struct ctree_path *path, struct key *key, int level) { int i; int ret = 0; int wret; for (i = level; i < MAX_LEVEL; i++) { struct node *t; int tslot = path->slots[i]; if (!path->nodes[i]) break; t = &path->nodes[i]->node; memcpy(t->keys + tslot, key, sizeof(*key)); wret = write_tree_block(root, path->nodes[i]); if (wret) ret = wret; if (tslot != 0) break; } return ret; } /* * try to push data from one node into the next node left in the * tree. The src node is found at specified level in the path. * If some bytes were pushed, return 0, otherwise return 1. * * Lower nodes/leaves in the path are not touched, higher nodes may * be modified to reflect the push. * * The path is altered to reflect the push. * * returns 0 if some ptrs were pushed left, < 0 if there was some horrible * error, and > 0 if there was no room in the left hand block. */ static int push_node_left(struct ctree_root *root, struct ctree_path *path, int level) { int slot; struct node *left; struct node *right; int push_items = 0; int left_nritems; int right_nritems; struct tree_buffer *t; struct tree_buffer *right_buf; int ret = 0; int wret; if (level == MAX_LEVEL - 1 || path->nodes[level + 1] == 0) return 1; slot = path->slots[level + 1]; if (slot == 0) return 1; t = read_tree_block(root, path->nodes[level + 1]->node.blockptrs[slot - 1]); left = &t->node; right_buf = path->nodes[level]; right = &right_buf->node; left_nritems = left->header.nritems; right_nritems = right->header.nritems; push_items = NODEPTRS_PER_BLOCK - (left_nritems + 1); if (push_items <= 0) { tree_block_release(root, t); return 1; } if (right_nritems < push_items) push_items = right_nritems; memcpy(left->keys + left_nritems, right->keys, push_items * sizeof(struct key)); memcpy(left->blockptrs + left_nritems, right->blockptrs, push_items * sizeof(u64)); memmove(right->keys, right->keys + push_items, (right_nritems - push_items) * sizeof(struct key)); memmove(right->blockptrs, right->blockptrs + push_items, (right_nritems - push_items) * sizeof(u64)); right->header.nritems -= push_items; left->header.nritems += push_items; /* adjust the pointers going up the tree */ wret = fixup_low_keys(root, path, right->keys, level + 1); if (wret < 0) ret = wret; wret = write_tree_block(root, t); if (wret < 0) ret = wret; wret = write_tree_block(root, right_buf); if (wret < 0) ret = wret; /* then fixup the leaf pointer in the path */ if (path->slots[level] < push_items) { path->slots[level] += left_nritems; tree_block_release(root, path->nodes[level]); path->nodes[level] = t; path->slots[level + 1] -= 1; } else { path->slots[level] -= push_items; tree_block_release(root, t); } return ret; } /* * try to push data from one node into the next node right in the * tree. The src node is found at specified level in the path. * If some bytes were pushed, return 0, otherwise return 1. * * Lower nodes/leaves in the path are not touched, higher nodes may * be modified to reflect the push. * * The path is altered to reflect the push. * * returns 0 if some ptrs were pushed, < 0 if there was some horrible * error, and > 0 if there was no room in the right hand block. */ static int push_node_right(struct ctree_root *root, struct ctree_path *path, int level) { int slot; struct tree_buffer *t; struct tree_buffer *src_buffer; struct node *dst; struct node *src; int push_items = 0; int dst_nritems; int src_nritems; /* can't push from the root */ if (level == MAX_LEVEL - 1 || path->nodes[level + 1] == 0) return 1; /* only try to push inside the node higher up */ slot = path->slots[level + 1]; if (slot == NODEPTRS_PER_BLOCK - 1) return 1; if (slot >= path->nodes[level + 1]->node.header.nritems -1) return 1; t = read_tree_block(root, path->nodes[level + 1]->node.blockptrs[slot + 1]); dst = &t->node; src_buffer = path->nodes[level]; src = &src_buffer->node; dst_nritems = dst->header.nritems; src_nritems = src->header.nritems; push_items = NODEPTRS_PER_BLOCK - (dst_nritems + 1); if (push_items <= 0) { tree_block_release(root, t); return 1; } if (src_nritems < push_items) push_items = src_nritems; memmove(dst->keys + push_items, dst->keys, dst_nritems * sizeof(struct key)); memcpy(dst->keys, src->keys + src_nritems - push_items, push_items * sizeof(struct key)); memmove(dst->blockptrs + push_items, dst->blockptrs, dst_nritems * sizeof(u64)); memcpy(dst->blockptrs, src->blockptrs + src_nritems - push_items, push_items * sizeof(u64)); src->header.nritems -= push_items; dst->header.nritems += push_items; /* adjust the pointers going up the tree */ memcpy(path->nodes[level + 1]->node.keys + path->slots[level + 1] + 1, dst->keys, sizeof(struct key)); write_tree_block(root, path->nodes[level + 1]); write_tree_block(root, t); write_tree_block(root, src_buffer); /* then fixup the pointers in the path */ if (path->slots[level] >= src->header.nritems) { path->slots[level] -= src->header.nritems; tree_block_release(root, path->nodes[level]); path->nodes[level] = t; path->slots[level + 1] += 1; } else { tree_block_release(root, t); } return 0; } /* * helper function to insert a new root level in the tree. * A new node is allocated, and a single item is inserted to * point to the existing root * * returns zero on success or < 0 on failure. */ static int insert_new_root(struct ctree_root *root, struct ctree_path *path, int level) { struct tree_buffer *t; struct node *lower; struct node *c; struct key *lower_key; BUG_ON(path->nodes[level]); BUG_ON(path->nodes[level-1] != root->node); t = alloc_free_block(root); c = &t->node; memset(c, 0, sizeof(c)); c->header.nritems = 1; c->header.flags = node_level(level); c->header.blocknr = t->blocknr; c->header.parentid = root->node->node.header.parentid; lower = &path->nodes[level-1]->node; if (is_leaf(lower->header.flags)) lower_key = &((struct leaf *)lower)->items[0].key; else lower_key = lower->keys; memcpy(c->keys, lower_key, sizeof(struct key)); c->blockptrs[0] = path->nodes[level-1]->blocknr; /* the super has an extra ref to root->node */ tree_block_release(root, root->node); root->node = t; t->count++; write_tree_block(root, t); path->nodes[level] = t; path->slots[level] = 0; return 0; } /* * worker function to insert a single pointer in a node. * the node should have enough room for the pointer already * * slot and level indicate where you want the key to go, and * blocknr is the block the key points to. * * returns zero on success and < 0 on any error */ static int insert_ptr(struct ctree_root *root, struct ctree_path *path, struct key *key, u64 blocknr, int slot, int level) { struct node *lower; int nritems; BUG_ON(!path->nodes[level]); lower = &path->nodes[level]->node; nritems = lower->header.nritems; if (slot > nritems) BUG(); if (nritems == NODEPTRS_PER_BLOCK) BUG(); if (slot != nritems) { memmove(lower->keys + slot + 1, lower->keys + slot, (nritems - slot) * sizeof(struct key)); memmove(lower->blockptrs + slot + 1, lower->blockptrs + slot, (nritems - slot) * sizeof(u64)); } memcpy(lower->keys + slot, key, sizeof(struct key)); lower->blockptrs[slot] = blocknr; lower->header.nritems++; if (lower->keys[1].objectid == 0) BUG(); write_tree_block(root, path->nodes[level]); return 0; } /* * split the node at the specified level in path in two. * The path is corrected to point to the appropriate node after the split * * Before splitting this tries to make some room in the node by pushing * left and right, if either one works, it returns right away. * * returns 0 on success and < 0 on failure */ static int split_node(struct ctree_root *root, struct ctree_path *path, int level) { struct tree_buffer *t; struct node *c; struct tree_buffer *split_buffer; struct node *split; int mid; int ret; int wret; ret = push_node_left(root, path, level); if (!ret) return 0; if (ret < 0) return ret; ret = push_node_right(root, path, level); if (!ret) return 0; if (ret < 0) return ret; t = path->nodes[level]; c = &t->node; if (t == root->node) { /* trying to split the root, lets make a new one */ ret = insert_new_root(root, path, level + 1); if (ret) return ret; } split_buffer = alloc_free_block(root); split = &split_buffer->node; split->header.flags = c->header.flags; split->header.blocknr = split_buffer->blocknr; split->header.parentid = root->node->node.header.parentid; mid = (c->header.nritems + 1) / 2; memcpy(split->keys, c->keys + mid, (c->header.nritems - mid) * sizeof(struct key)); memcpy(split->blockptrs, c->blockptrs + mid, (c->header.nritems - mid) * sizeof(u64)); split->header.nritems = c->header.nritems - mid; c->header.nritems = mid; ret = 0; wret = write_tree_block(root, t); if (wret) ret = wret; wret = write_tree_block(root, split_buffer); if (wret) ret = wret; wret = insert_ptr(root, path, split->keys, split_buffer->blocknr, path->slots[level + 1] + 1, level + 1); if (wret) ret = wret; if (path->slots[level] >= mid) { path->slots[level] -= mid; tree_block_release(root, t); path->nodes[level] = split_buffer; path->slots[level + 1] += 1; } else { tree_block_release(root, split_buffer); } return ret; } /* * how many bytes are required to store the items in a leaf. start * and nr indicate which items in the leaf to check. This totals up the * space used both by the item structs and the item data */ static int leaf_space_used(struct leaf *l, int start, int nr) { int data_len; int end = start + nr - 1; if (!nr) return 0; data_len = l->items[start].offset + l->items[start].size; data_len = data_len - l->items[end].offset; data_len += sizeof(struct item) * nr; return data_len; } /* * push some data in the path leaf to the right, trying to free up at * least data_size bytes. returns zero if the push worked, nonzero otherwise * * returns 1 if the push failed because the other node didn't have enough * room, 0 if everything worked out and < 0 if there were major errors. */ static int push_leaf_right(struct ctree_root *root, struct ctree_path *path, int data_size) { struct tree_buffer *left_buf = path->nodes[0]; struct leaf *left = &left_buf->leaf; struct leaf *right; struct tree_buffer *right_buf; struct tree_buffer *upper; int slot; int i; int free_space; int push_space = 0; int push_items = 0; struct item *item; slot = path->slots[1]; if (!path->nodes[1]) { return 1; } upper = path->nodes[1]; if (slot >= upper->node.header.nritems - 1) { return 1; } right_buf = read_tree_block(root, upper->node.blockptrs[slot + 1]); right = &right_buf->leaf; free_space = leaf_free_space(right); if (free_space < data_size + sizeof(struct item)) { tree_block_release(root, right_buf); return 1; } for (i = left->header.nritems - 1; i >= 0; i--) { item = left->items + i; if (path->slots[0] == i) push_space += data_size + sizeof(*item); if (item->size + sizeof(*item) + push_space > free_space) break; push_items++; push_space += item->size + sizeof(*item); } if (push_items == 0) { tree_block_release(root, right_buf); return 1; } /* push left to right */ push_space = left->items[left->header.nritems - push_items].offset + left->items[left->header.nritems - push_items].size; push_space -= leaf_data_end(left); /* make room in the right data area */ memmove(right->data + leaf_data_end(right) - push_space, right->data + leaf_data_end(right), LEAF_DATA_SIZE - leaf_data_end(right)); /* copy from the left data area */ memcpy(right->data + LEAF_DATA_SIZE - push_space, left->data + leaf_data_end(left), push_space); memmove(right->items + push_items, right->items, right->header.nritems * sizeof(struct item)); /* copy the items from left to right */ memcpy(right->items, left->items + left->header.nritems - push_items, push_items * sizeof(struct item)); /* update the item pointers */ right->header.nritems += push_items; push_space = LEAF_DATA_SIZE; for (i = 0; i < right->header.nritems; i++) { right->items[i].offset = push_space - right->items[i].size; push_space = right->items[i].offset; } left->header.nritems -= push_items; write_tree_block(root, left_buf); write_tree_block(root, right_buf); memcpy(upper->node.keys + slot + 1, &right->items[0].key, sizeof(struct key)); write_tree_block(root, upper); /* then fixup the leaf pointer in the path */ if (path->slots[0] >= left->header.nritems) { path->slots[0] -= left->header.nritems; tree_block_release(root, path->nodes[0]); path->nodes[0] = right_buf; path->slots[1] += 1; } else { tree_block_release(root, right_buf); } return 0; } /* * push some data in the path leaf to the left, trying to free up at * least data_size bytes. returns zero if the push worked, nonzero otherwise */ static int push_leaf_left(struct ctree_root *root, struct ctree_path *path, int data_size) { struct tree_buffer *right_buf = path->nodes[0]; struct leaf *right = &right_buf->leaf; struct tree_buffer *t; struct leaf *left; int slot; int i; int free_space; int push_space = 0; int push_items = 0; struct item *item; int old_left_nritems; int ret = 0; int wret; slot = path->slots[1]; if (slot == 0) { return 1; } if (!path->nodes[1]) { return 1; } t = read_tree_block(root, path->nodes[1]->node.blockptrs[slot - 1]); left = &t->leaf; free_space = leaf_free_space(left); if (free_space < data_size + sizeof(struct item)) { tree_block_release(root, t); return 1; } for (i = 0; i < right->header.nritems; i++) { item = right->items + i; if (path->slots[0] == i) push_space += data_size + sizeof(*item); if (item->size + sizeof(*item) + push_space > free_space) break; push_items++; push_space += item->size + sizeof(*item); } if (push_items == 0) { tree_block_release(root, t); return 1; } /* push data from right to left */ memcpy(left->items + left->header.nritems, right->items, push_items * sizeof(struct item)); push_space = LEAF_DATA_SIZE - right->items[push_items -1].offset; memcpy(left->data + leaf_data_end(left) - push_space, right->data + right->items[push_items - 1].offset, push_space); old_left_nritems = left->header.nritems; BUG_ON(old_left_nritems < 0); for(i = old_left_nritems; i < old_left_nritems + push_items; i++) { left->items[i].offset -= LEAF_DATA_SIZE - left->items[old_left_nritems -1].offset; } left->header.nritems += push_items; /* fixup right node */ push_space = right->items[push_items-1].offset - leaf_data_end(right); memmove(right->data + LEAF_DATA_SIZE - push_space, right->data + leaf_data_end(right), push_space); memmove(right->items, right->items + push_items, (right->header.nritems - push_items) * sizeof(struct item)); right->header.nritems -= push_items; push_space = LEAF_DATA_SIZE; for (i = 0; i < right->header.nritems; i++) { right->items[i].offset = push_space - right->items[i].size; push_space = right->items[i].offset; } wret = write_tree_block(root, t); if (wret) ret = wret; wret = write_tree_block(root, right_buf); if (wret) ret = wret; wret = fixup_low_keys(root, path, &right->items[0].key, 1); if (wret) ret = wret; /* then fixup the leaf pointer in the path */ if (path->slots[0] < push_items) { path->slots[0] += old_left_nritems; tree_block_release(root, path->nodes[0]); path->nodes[0] = t; path->slots[1] -= 1; } else { tree_block_release(root, t); path->slots[0] -= push_items; } BUG_ON(path->slots[0] < 0); return ret; } /* * split the path's leaf in two, making sure there is at least data_size * available for the resulting leaf level of the path. * * returns 0 if all went well and < 0 on failure. */ static int split_leaf(struct ctree_root *root, struct ctree_path *path, int data_size) { struct tree_buffer *l_buf; struct leaf *l; int nritems; int mid; int slot; struct leaf *right; struct tree_buffer *right_buffer; int space_needed = data_size + sizeof(struct item); int data_copy_size; int rt_data_off; int i; int ret; int wret; wret = push_leaf_left(root, path, data_size); if (wret < 0) return wret; if (wret) { wret = push_leaf_right(root, path, data_size); if (wret < 0) return wret; } l_buf = path->nodes[0]; l = &l_buf->leaf; /* did the pushes work? */ if (leaf_free_space(l) >= sizeof(struct item) + data_size) return 0; if (!path->nodes[1]) { ret = insert_new_root(root, path, 1); if (ret) return ret; } slot = path->slots[0]; nritems = l->header.nritems; mid = (nritems + 1)/ 2; right_buffer = alloc_free_block(root); BUG_ON(!right_buffer); BUG_ON(mid == nritems); right = &right_buffer->leaf; memset(right, 0, sizeof(*right)); if (mid <= slot) { /* FIXME, just alloc a new leaf here */ if (leaf_space_used(l, mid, nritems - mid) + space_needed > LEAF_DATA_SIZE) BUG(); } else { /* FIXME, just alloc a new leaf here */ if (leaf_space_used(l, 0, mid + 1) + space_needed > LEAF_DATA_SIZE) BUG(); } right->header.nritems = nritems - mid; right->header.blocknr = right_buffer->blocknr; right->header.flags = node_level(0); right->header.parentid = root->node->node.header.parentid; data_copy_size = l->items[mid].offset + l->items[mid].size - leaf_data_end(l); memcpy(right->items, l->items + mid, (nritems - mid) * sizeof(struct item)); memcpy(right->data + LEAF_DATA_SIZE - data_copy_size, l->data + leaf_data_end(l), data_copy_size); rt_data_off = LEAF_DATA_SIZE - (l->items[mid].offset + l->items[mid].size); for (i = 0; i < right->header.nritems; i++) right->items[i].offset += rt_data_off; l->header.nritems = mid; ret = 0; wret = insert_ptr(root, path, &right->items[0].key, right_buffer->blocknr, path->slots[1] + 1, 1); if (wret) ret = wret; wret = write_tree_block(root, right_buffer); if (wret) ret = wret; wret = write_tree_block(root, l_buf); if (wret) ret = wret; BUG_ON(path->slots[0] != slot); if (mid <= slot) { tree_block_release(root, path->nodes[0]); path->nodes[0] = right_buffer; path->slots[0] -= mid; path->slots[1] += 1; } else tree_block_release(root, right_buffer); BUG_ON(path->slots[0] < 0); return ret; } /* * Given a key and some data, insert an item into the tree. * This does all the path init required, making room in the tree if needed. */ int insert_item(struct ctree_root *root, struct key *key, void *data, int data_size) { int ret = 0; int wret; int slot; int slot_orig; struct leaf *leaf; struct tree_buffer *leaf_buf; unsigned int nritems; unsigned int data_end; struct ctree_path path; /* create a root if there isn't one */ if (!root->node) BUG(); init_path(&path); ret = search_slot(root, key, &path, data_size); if (ret == 0) { release_path(root, &path); return -EEXIST; } if (ret < 0) { release_path(root, &path); return ret; } slot_orig = path.slots[0]; leaf_buf = path.nodes[0]; leaf = &leaf_buf->leaf; nritems = leaf->header.nritems; data_end = leaf_data_end(leaf); if (leaf_free_space(leaf) < sizeof(struct item) + data_size) BUG(); slot = path.slots[0]; BUG_ON(slot < 0); if (slot != nritems) { int i; unsigned int old_data = leaf->items[slot].offset + leaf->items[slot].size; /* * item0..itemN ... dataN.offset..dataN.size .. data0.size */ /* first correct the data pointers */ for (i = slot; i < nritems; i++) leaf->items[i].offset -= data_size; /* shift the items */ memmove(leaf->items + slot + 1, leaf->items + slot, (nritems - slot) * sizeof(struct item)); /* shift the data */ memmove(leaf->data + data_end - data_size, leaf->data + data_end, old_data - data_end); data_end = old_data; } /* copy the new data in */ memcpy(&leaf->items[slot].key, key, sizeof(struct key)); leaf->items[slot].offset = data_end - data_size; leaf->items[slot].size = data_size; memcpy(leaf->data + data_end - data_size, data, data_size); leaf->header.nritems += 1; ret = 0; if (slot == 0) ret = fixup_low_keys(root, &path, key, 1); wret = write_tree_block(root, leaf_buf); if (wret) ret = wret; if (leaf_free_space(leaf) < 0) BUG(); release_path(root, &path); return ret; } /* * delete the pointer from a given node. * * If the delete empties a node, the node is removed from the tree, * continuing all the way the root if required. The root is converted into * a leaf if all the nodes are emptied. */ static int del_ptr(struct ctree_root *root, struct ctree_path *path, int level) { int slot; struct tree_buffer *t; struct node *node; int nritems; u64 blocknr; int wret; int ret = 0; while(1) { t = path->nodes[level]; if (!t) break; node = &t->node; slot = path->slots[level]; nritems = node->header.nritems; if (slot != nritems -1) { memmove(node->keys + slot, node->keys + slot + 1, sizeof(struct key) * (nritems - slot - 1)); memmove(node->blockptrs + slot, node->blockptrs + slot + 1, sizeof(u64) * (nritems - slot - 1)); } node->header.nritems--; blocknr = t->blocknr; write_tree_block(root, t); if (node->header.nritems != 0) { int tslot; if (slot == 0) { wret = fixup_low_keys(root, path, node->keys, level + 1); if (wret) ret = wret; } tslot = path->slots[level + 1]; t->count++; wret = push_node_left(root, path, level); if (wret < 0) { ret = wret; break; } if (node->header.nritems != 0) { wret = push_node_right(root, path, level); if (wret < 0) { ret = wret; break; } } path->slots[level + 1] = tslot; if (node->header.nritems != 0) { tree_block_release(root, t); break; } tree_block_release(root, t); } if (t == root->node) { /* just turn the root into a leaf and break */ root->node->node.header.flags = node_level(0); write_tree_block(root, t); break; } level++; free_extent(root, blocknr, 1); if (!path->nodes[level]) BUG(); } return ret; } /* * delete the item at the leaf level in path. If that empties * the leaf, remove it from the tree */ int del_item(struct ctree_root *root, struct ctree_path *path) { int slot; struct leaf *leaf; struct tree_buffer *leaf_buf; int doff; int dsize; int ret = 0; int wret; leaf_buf = path->nodes[0]; leaf = &leaf_buf->leaf; slot = path->slots[0]; doff = leaf->items[slot].offset; dsize = leaf->items[slot].size; if (slot != leaf->header.nritems - 1) { int i; int data_end = leaf_data_end(leaf); memmove(leaf->data + data_end + dsize, leaf->data + data_end, doff - data_end); for (i = slot + 1; i < leaf->header.nritems; i++) leaf->items[i].offset += dsize; memmove(leaf->items + slot, leaf->items + slot + 1, sizeof(struct item) * (leaf->header.nritems - slot - 1)); } leaf->header.nritems -= 1; /* delete the leaf if we've emptied it */ if (leaf->header.nritems == 0) { if (leaf_buf == root->node) { leaf->header.flags = node_level(0); write_tree_block(root, leaf_buf); } else { wret = del_ptr(root, path, 1); if (wret) ret = wret; free_extent(root, leaf_buf->blocknr, 1); } } else { int used = leaf_space_used(leaf, 0, leaf->header.nritems); if (slot == 0) { wret = fixup_low_keys(root, path, &leaf->items[0].key, 1); if (wret) ret = wret; } wret = write_tree_block(root, leaf_buf); if (wret) ret = wret; /* delete the leaf if it is mostly empty */ if (used < LEAF_DATA_SIZE / 3) { /* push_leaf_left fixes the path. * make sure the path still points to our leaf * for possible call to del_ptr below */ slot = path->slots[1]; leaf_buf->count++; wret = push_leaf_left(root, path, 1); if (wret < 0) ret = wret; if (leaf->header.nritems) { wret = push_leaf_right(root, path, 1); if (wret < 0) ret = wret; } if (leaf->header.nritems == 0) { u64 blocknr = leaf_buf->blocknr; path->slots[1] = slot; wret = del_ptr(root, path, 1); if (wret) ret = wret; tree_block_release(root, leaf_buf); free_extent(root, blocknr, 1); } else { tree_block_release(root, leaf_buf); } } } return ret; } /* * walk up the tree as far as required to find the next leaf. * returns 0 if it found something or -1 if there are no greater leaves. */ int next_leaf(struct ctree_root *root, struct ctree_path *path) { int slot; int level = 1; u64 blocknr; struct tree_buffer *c; struct tree_buffer *next = NULL; while(level < MAX_LEVEL) { if (!path->nodes[level]) return -1; slot = path->slots[level] + 1; c = path->nodes[level]; if (slot >= c->node.header.nritems) { level++; continue; } blocknr = c->node.blockptrs[slot]; if (next) tree_block_release(root, next); next = read_tree_block(root, blocknr); break; } path->slots[level] = slot; while(1) { level--; c = path->nodes[level]; tree_block_release(root, c); path->nodes[level] = next; path->slots[level] = 0; if (!level) break; next = read_tree_block(root, next->node.blockptrs[0]); } return 0; }