// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2007 Oracle. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include "misc.h" #include "ctree.h" #include "extent_map.h" #include "disk-io.h" #include "transaction.h" #include "print-tree.h" #include "volumes.h" #include "raid56.h" #include "async-thread.h" #include "check-integrity.h" #include "rcu-string.h" #include "dev-replace.h" #include "sysfs.h" #include "tree-checker.h" #include "space-info.h" #include "block-group.h" const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { [BTRFS_RAID_RAID10] = { .sub_stripes = 2, .dev_stripes = 1, .devs_max = 0, /* 0 == as many as possible */ .devs_min = 4, .tolerated_failures = 1, .devs_increment = 2, .ncopies = 2, .nparity = 0, .raid_name = "raid10", .bg_flag = BTRFS_BLOCK_GROUP_RAID10, .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, }, [BTRFS_RAID_RAID1] = { .sub_stripes = 1, .dev_stripes = 1, .devs_max = 2, .devs_min = 2, .tolerated_failures = 1, .devs_increment = 2, .ncopies = 2, .nparity = 0, .raid_name = "raid1", .bg_flag = BTRFS_BLOCK_GROUP_RAID1, .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, }, [BTRFS_RAID_DUP] = { .sub_stripes = 1, .dev_stripes = 2, .devs_max = 1, .devs_min = 1, .tolerated_failures = 0, .devs_increment = 1, .ncopies = 2, .nparity = 0, .raid_name = "dup", .bg_flag = BTRFS_BLOCK_GROUP_DUP, .mindev_error = 0, }, [BTRFS_RAID_RAID0] = { .sub_stripes = 1, .dev_stripes = 1, .devs_max = 0, .devs_min = 2, .tolerated_failures = 0, .devs_increment = 1, .ncopies = 1, .nparity = 0, .raid_name = "raid0", .bg_flag = BTRFS_BLOCK_GROUP_RAID0, .mindev_error = 0, }, [BTRFS_RAID_SINGLE] = { .sub_stripes = 1, .dev_stripes = 1, .devs_max = 1, .devs_min = 1, .tolerated_failures = 0, .devs_increment = 1, .ncopies = 1, .nparity = 0, .raid_name = "single", .bg_flag = 0, .mindev_error = 0, }, [BTRFS_RAID_RAID5] = { .sub_stripes = 1, .dev_stripes = 1, .devs_max = 0, .devs_min = 2, .tolerated_failures = 1, .devs_increment = 1, .ncopies = 1, .nparity = 1, .raid_name = "raid5", .bg_flag = BTRFS_BLOCK_GROUP_RAID5, .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, }, [BTRFS_RAID_RAID6] = { .sub_stripes = 1, .dev_stripes = 1, .devs_max = 0, .devs_min = 3, .tolerated_failures = 2, .devs_increment = 1, .ncopies = 1, .nparity = 2, .raid_name = "raid6", .bg_flag = BTRFS_BLOCK_GROUP_RAID6, .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, }, }; const char *btrfs_bg_type_to_raid_name(u64 flags) { const int index = btrfs_bg_flags_to_raid_index(flags); if (index >= BTRFS_NR_RAID_TYPES) return NULL; return btrfs_raid_array[index].raid_name; } /* * Fill @buf with textual description of @bg_flags, no more than @size_buf * bytes including terminating null byte. */ void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf) { int i; int ret; char *bp = buf; u64 flags = bg_flags; u32 size_bp = size_buf; if (!flags) { strcpy(bp, "NONE"); return; } #define DESCRIBE_FLAG(flag, desc) \ do { \ if (flags & (flag)) { \ ret = snprintf(bp, size_bp, "%s|", (desc)); \ if (ret < 0 || ret >= size_bp) \ goto out_overflow; \ size_bp -= ret; \ bp += ret; \ flags &= ~(flag); \ } \ } while (0) DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data"); DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system"); DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata"); DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single"); for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag, btrfs_raid_array[i].raid_name); #undef DESCRIBE_FLAG if (flags) { ret = snprintf(bp, size_bp, "0x%llx|", flags); size_bp -= ret; } if (size_bp < size_buf) buf[size_buf - size_bp - 1] = '\0'; /* remove last | */ /* * The text is trimmed, it's up to the caller to provide sufficiently * large buffer */ out_overflow:; } static int init_first_rw_device(struct btrfs_trans_handle *trans); static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev); static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); static int __btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, u64 logical, u64 *length, struct btrfs_bio **bbio_ret, int mirror_num, int need_raid_map); /* * Device locking * ============== * * There are several mutexes that protect manipulation of devices and low-level * structures like chunks but not block groups, extents or files * * uuid_mutex (global lock) * ------------------------ * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from * the SCAN_DEV ioctl registration or from mount either implicitly (the first * device) or requested by the device= mount option * * the mutex can be very coarse and can cover long-running operations * * protects: updates to fs_devices counters like missing devices, rw devices, * seeding, structure cloning, opening/closing devices at mount/umount time * * global::fs_devs - add, remove, updates to the global list * * does not protect: manipulation of the fs_devices::devices list! * * btrfs_device::name - renames (write side), read is RCU * * fs_devices::device_list_mutex (per-fs, with RCU) * ------------------------------------------------ * protects updates to fs_devices::devices, ie. adding and deleting * * simple list traversal with read-only actions can be done with RCU protection * * may be used to exclude some operations from running concurrently without any * modifications to the list (see write_all_supers) * * balance_mutex * ------------- * protects balance structures (status, state) and context accessed from * several places (internally, ioctl) * * chunk_mutex * ----------- * protects chunks, adding or removing during allocation, trim or when a new * device is added/removed. Additionally it also protects post_commit_list of * individual devices, since they can be added to the transaction's * post_commit_list only with chunk_mutex held. * * cleaner_mutex * ------------- * a big lock that is held by the cleaner thread and prevents running subvolume * cleaning together with relocation or delayed iputs * * * Lock nesting * ============ * * uuid_mutex * volume_mutex * device_list_mutex * chunk_mutex * balance_mutex * * * Exclusive operations, BTRFS_FS_EXCL_OP * ====================================== * * Maintains the exclusivity of the following operations that apply to the * whole filesystem and cannot run in parallel. * * - Balance (*) * - Device add * - Device remove * - Device replace (*) * - Resize * * The device operations (as above) can be in one of the following states: * * - Running state * - Paused state * - Completed state * * Only device operations marked with (*) can go into the Paused state for the * following reasons: * * - ioctl (only Balance can be Paused through ioctl) * - filesystem remounted as read-only * - filesystem unmounted and mounted as read-only * - system power-cycle and filesystem mounted as read-only * - filesystem or device errors leading to forced read-only * * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations. * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set. * A device operation in Paused or Running state can be canceled or resumed * either by ioctl (Balance only) or when remounted as read-write. * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or * completed. */ DEFINE_MUTEX(uuid_mutex); static LIST_HEAD(fs_uuids); struct list_head *btrfs_get_fs_uuids(void) { return &fs_uuids; } /* * alloc_fs_devices - allocate struct btrfs_fs_devices * @fsid: if not NULL, copy the UUID to fs_devices::fsid * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid * * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). * The returned struct is not linked onto any lists and can be destroyed with * kfree() right away. */ static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid, const u8 *metadata_fsid) { struct btrfs_fs_devices *fs_devs; fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); if (!fs_devs) return ERR_PTR(-ENOMEM); mutex_init(&fs_devs->device_list_mutex); INIT_LIST_HEAD(&fs_devs->devices); INIT_LIST_HEAD(&fs_devs->alloc_list); INIT_LIST_HEAD(&fs_devs->fs_list); if (fsid) memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); if (metadata_fsid) memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE); else if (fsid) memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE); return fs_devs; } void btrfs_free_device(struct btrfs_device *device) { WARN_ON(!list_empty(&device->post_commit_list)); rcu_string_free(device->name); extent_io_tree_release(&device->alloc_state); bio_put(device->flush_bio); kfree(device); } static void free_fs_devices(struct btrfs_fs_devices *fs_devices) { struct btrfs_device *device; WARN_ON(fs_devices->opened); while (!list_empty(&fs_devices->devices)) { device = list_entry(fs_devices->devices.next, struct btrfs_device, dev_list); list_del(&device->dev_list); btrfs_free_device(device); } kfree(fs_devices); } void __exit btrfs_cleanup_fs_uuids(void) { struct btrfs_fs_devices *fs_devices; while (!list_empty(&fs_uuids)) { fs_devices = list_entry(fs_uuids.next, struct btrfs_fs_devices, fs_list); list_del(&fs_devices->fs_list); free_fs_devices(fs_devices); } } /* * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error. * Returned struct is not linked onto any lists and must be destroyed using * btrfs_free_device. */ static struct btrfs_device *__alloc_device(void) { struct btrfs_device *dev; dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) return ERR_PTR(-ENOMEM); /* * Preallocate a bio that's always going to be used for flushing device * barriers and matches the device lifespan */ dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL); if (!dev->flush_bio) { kfree(dev); return ERR_PTR(-ENOMEM); } INIT_LIST_HEAD(&dev->dev_list); INIT_LIST_HEAD(&dev->dev_alloc_list); INIT_LIST_HEAD(&dev->post_commit_list); spin_lock_init(&dev->io_lock); atomic_set(&dev->reada_in_flight, 0); atomic_set(&dev->dev_stats_ccnt, 0); btrfs_device_data_ordered_init(dev); INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); extent_io_tree_init(NULL, &dev->alloc_state, 0, NULL); return dev; } static noinline struct btrfs_fs_devices *find_fsid( const u8 *fsid, const u8 *metadata_fsid) { struct btrfs_fs_devices *fs_devices; ASSERT(fsid); if (metadata_fsid) { /* * Handle scanned device having completed its fsid change but * belonging to a fs_devices that was created by first scanning * a device which didn't have its fsid/metadata_uuid changed * at all and the CHANGING_FSID_V2 flag set. */ list_for_each_entry(fs_devices, &fs_uuids, fs_list) { if (fs_devices->fsid_change && memcmp(metadata_fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0 && memcmp(fs_devices->fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0) { return fs_devices; } } /* * Handle scanned device having completed its fsid change but * belonging to a fs_devices that was created by a device that * has an outdated pair of fsid/metadata_uuid and * CHANGING_FSID_V2 flag set. */ list_for_each_entry(fs_devices, &fs_uuids, fs_list) { if (fs_devices->fsid_change && memcmp(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0 && memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0) { return fs_devices; } } } /* Handle non-split brain cases */ list_for_each_entry(fs_devices, &fs_uuids, fs_list) { if (metadata_fsid) { if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0 && memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0) return fs_devices; } else { if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) return fs_devices; } } return NULL; } static int btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder, int flush, struct block_device **bdev, struct buffer_head **bh) { int ret; *bdev = blkdev_get_by_path(device_path, flags, holder); if (IS_ERR(*bdev)) { ret = PTR_ERR(*bdev); goto error; } if (flush) filemap_write_and_wait((*bdev)->bd_inode->i_mapping); ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE); if (ret) { blkdev_put(*bdev, flags); goto error; } invalidate_bdev(*bdev); *bh = btrfs_read_dev_super(*bdev); if (IS_ERR(*bh)) { ret = PTR_ERR(*bh); blkdev_put(*bdev, flags); goto error; } return 0; error: *bdev = NULL; *bh = NULL; return ret; } static void requeue_list(struct btrfs_pending_bios *pending_bios, struct bio *head, struct bio *tail) { struct bio *old_head; old_head = pending_bios->head; pending_bios->head = head; if (pending_bios->tail) tail->bi_next = old_head; else pending_bios->tail = tail; } /* * we try to collect pending bios for a device so we don't get a large * number of procs sending bios down to the same device. This greatly * improves the schedulers ability to collect and merge the bios. * * But, it also turns into a long list of bios to process and that is sure * to eventually make the worker thread block. The solution here is to * make some progress and then put this work struct back at the end of * the list if the block device is congested. This way, multiple devices * can make progress from a single worker thread. */ static noinline void run_scheduled_bios(struct btrfs_device *device) { struct btrfs_fs_info *fs_info = device->fs_info; struct bio *pending; struct backing_dev_info *bdi; struct btrfs_pending_bios *pending_bios; struct bio *tail; struct bio *cur; int again = 0; unsigned long num_run; unsigned long batch_run = 0; unsigned long last_waited = 0; int force_reg = 0; int sync_pending = 0; struct blk_plug plug; /* * this function runs all the bios we've collected for * a particular device. We don't want to wander off to * another device without first sending all of these down. * So, setup a plug here and finish it off before we return */ blk_start_plug(&plug); bdi = device->bdev->bd_bdi; loop: spin_lock(&device->io_lock); loop_lock: num_run = 0; /* take all the bios off the list at once and process them * later on (without the lock held). But, remember the * tail and other pointers so the bios can be properly reinserted * into the list if we hit congestion */ if (!force_reg && device->pending_sync_bios.head) { pending_bios = &device->pending_sync_bios; force_reg = 1; } else { pending_bios = &device->pending_bios; force_reg = 0; } pending = pending_bios->head; tail = pending_bios->tail; WARN_ON(pending && !tail); /* * if pending was null this time around, no bios need processing * at all and we can stop. Otherwise it'll loop back up again * and do an additional check so no bios are missed. * * device->running_pending is used to synchronize with the * schedule_bio code. */ if (device->pending_sync_bios.head == NULL && device->pending_bios.head == NULL) { again = 0; device->running_pending = 0; } else { again = 1; device->running_pending = 1; } pending_bios->head = NULL; pending_bios->tail = NULL; spin_unlock(&device->io_lock); while (pending) { rmb(); /* we want to work on both lists, but do more bios on the * sync list than the regular list */ if ((num_run > 32 && pending_bios != &device->pending_sync_bios && device->pending_sync_bios.head) || (num_run > 64 && pending_bios == &device->pending_sync_bios && device->pending_bios.head)) { spin_lock(&device->io_lock); requeue_list(pending_bios, pending, tail); goto loop_lock; } cur = pending; pending = pending->bi_next; cur->bi_next = NULL; BUG_ON(atomic_read(&cur->__bi_cnt) == 0); /* * if we're doing the sync list, record that our * plug has some sync requests on it * * If we're doing the regular list and there are * sync requests sitting around, unplug before * we add more */ if (pending_bios == &device->pending_sync_bios) { sync_pending = 1; } else if (sync_pending) { blk_finish_plug(&plug); blk_start_plug(&plug); sync_pending = 0; } btrfsic_submit_bio(cur); num_run++; batch_run++; cond_resched(); /* * we made progress, there is more work to do and the bdi * is now congested. Back off and let other work structs * run instead */ if (pending && bdi_write_congested(bdi) && batch_run > 8 && fs_info->fs_devices->open_devices > 1) { struct io_context *ioc; ioc = current->io_context; /* * the main goal here is that we don't want to * block if we're going to be able to submit * more requests without blocking. * * This code does two great things, it pokes into * the elevator code from a filesystem _and_ * it makes assumptions about how batching works. */ if (ioc && ioc->nr_batch_requests > 0 && time_before(jiffies, ioc->last_waited + HZ/50UL) && (last_waited == 0 || ioc->last_waited == last_waited)) { /* * we want to go through our batch of * requests and stop. So, we copy out * the ioc->last_waited time and test * against it before looping */ last_waited = ioc->last_waited; cond_resched(); continue; } spin_lock(&device->io_lock); requeue_list(pending_bios, pending, tail); device->running_pending = 1; spin_unlock(&device->io_lock); btrfs_queue_work(fs_info->submit_workers, &device->work); goto done; } } cond_resched(); if (again) goto loop; spin_lock(&device->io_lock); if (device->pending_bios.head || device->pending_sync_bios.head) goto loop_lock; spin_unlock(&device->io_lock); done: blk_finish_plug(&plug); } static void pending_bios_fn(struct btrfs_work *work) { struct btrfs_device *device; device = container_of(work, struct btrfs_device, work); run_scheduled_bios(device); } static bool device_path_matched(const char *path, struct btrfs_device *device) { int found; rcu_read_lock(); found = strcmp(rcu_str_deref(device->name), path); rcu_read_unlock(); return found == 0; } /* * Search and remove all stale (devices which are not mounted) devices. * When both inputs are NULL, it will search and release all stale devices. * path: Optional. When provided will it release all unmounted devices * matching this path only. * skip_dev: Optional. Will skip this device when searching for the stale * devices. * Return: 0 for success or if @path is NULL. * -EBUSY if @path is a mounted device. * -ENOENT if @path does not match any device in the list. */ static int btrfs_free_stale_devices(const char *path, struct btrfs_device *skip_device) { struct btrfs_fs_devices *fs_devices, *tmp_fs_devices; struct btrfs_device *device, *tmp_device; int ret = 0; if (path) ret = -ENOENT; list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) { mutex_lock(&fs_devices->device_list_mutex); list_for_each_entry_safe(device, tmp_device, &fs_devices->devices, dev_list) { if (skip_device && skip_device == device) continue; if (path && !device->name) continue; if (path && !device_path_matched(path, device)) continue; if (fs_devices->opened) { /* for an already deleted device return 0 */ if (path && ret != 0) ret = -EBUSY; break; } /* delete the stale device */ fs_devices->num_devices--; list_del(&device->dev_list); btrfs_free_device(device); ret = 0; if (fs_devices->num_devices == 0) break; } mutex_unlock(&fs_devices->device_list_mutex); if (fs_devices->num_devices == 0) { btrfs_sysfs_remove_fsid(fs_devices); list_del(&fs_devices->fs_list); free_fs_devices(fs_devices); } } return ret; } static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, struct btrfs_device *device, fmode_t flags, void *holder) { struct request_queue *q; struct block_device *bdev; struct buffer_head *bh; struct btrfs_super_block *disk_super; u64 devid; int ret; if (device->bdev) return -EINVAL; if (!device->name) return -EINVAL; ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, &bdev, &bh); if (ret) return ret; disk_super = (struct btrfs_super_block *)bh->b_data; devid = btrfs_stack_device_id(&disk_super->dev_item); if (devid != device->devid) goto error_brelse; if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) goto error_brelse; device->generation = btrfs_super_generation(disk_super); if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { if (btrfs_super_incompat_flags(disk_super) & BTRFS_FEATURE_INCOMPAT_METADATA_UUID) { pr_err( "BTRFS: Invalid seeding and uuid-changed device detected\n"); goto error_brelse; } clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); fs_devices->seeding = 1; } else { if (bdev_read_only(bdev)) clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); else set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); } q = bdev_get_queue(bdev); if (!blk_queue_nonrot(q)) fs_devices->rotating = 1; device->bdev = bdev; clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); device->mode = flags; fs_devices->open_devices++; if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && device->devid != BTRFS_DEV_REPLACE_DEVID) { fs_devices->rw_devices++; list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list); } brelse(bh); return 0; error_brelse: brelse(bh); blkdev_put(bdev, flags); return -EINVAL; } /* * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices * being created with a disk that has already completed its fsid change. */ static struct btrfs_fs_devices *find_fsid_inprogress( struct btrfs_super_block *disk_super) { struct btrfs_fs_devices *fs_devices; list_for_each_entry(fs_devices, &fs_uuids, fs_list) { if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0 && memcmp(fs_devices->metadata_uuid, disk_super->fsid, BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) { return fs_devices; } } return NULL; } static struct btrfs_fs_devices *find_fsid_changed( struct btrfs_super_block *disk_super) { struct btrfs_fs_devices *fs_devices; /* * Handles the case where scanned device is part of an fs that had * multiple successful changes of FSID but curently device didn't * observe it. Meaning our fsid will be different than theirs. */ list_for_each_entry(fs_devices, &fs_uuids, fs_list) { if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0 && memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid, BTRFS_FSID_SIZE) == 0 && memcmp(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE) != 0) { return fs_devices; } } return NULL; } /* * Add new device to list of registered devices * * Returns: * device pointer which was just added or updated when successful * error pointer when failed */ static noinline struct btrfs_device *device_list_add(const char *path, struct btrfs_super_block *disk_super, bool *new_device_added) { struct btrfs_device *device; struct btrfs_fs_devices *fs_devices = NULL; struct rcu_string *name; u64 found_transid = btrfs_super_generation(disk_super); u64 devid = btrfs_stack_device_id(&disk_super->dev_item); bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & BTRFS_FEATURE_INCOMPAT_METADATA_UUID); bool fsid_change_in_progress = (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2); if (fsid_change_in_progress) { if (!has_metadata_uuid) { /* * When we have an image which has CHANGING_FSID_V2 set * it might belong to either a filesystem which has * disks with completed fsid change or it might belong * to fs with no UUID changes in effect, handle both. */ fs_devices = find_fsid_inprogress(disk_super); if (!fs_devices) fs_devices = find_fsid(disk_super->fsid, NULL); } else { fs_devices = find_fsid_changed(disk_super); } } else if (has_metadata_uuid) { fs_devices = find_fsid(disk_super->fsid, disk_super->metadata_uuid); } else { fs_devices = find_fsid(disk_super->fsid, NULL); } if (!fs_devices) { if (has_metadata_uuid) fs_devices = alloc_fs_devices(disk_super->fsid, disk_super->metadata_uuid); else fs_devices = alloc_fs_devices(disk_super->fsid, NULL); if (IS_ERR(fs_devices)) return ERR_CAST(fs_devices); fs_devices->fsid_change = fsid_change_in_progress; mutex_lock(&fs_devices->device_list_mutex); list_add(&fs_devices->fs_list, &fs_uuids); device = NULL; } else { mutex_lock(&fs_devices->device_list_mutex); device = btrfs_find_device(fs_devices, devid, disk_super->dev_item.uuid, NULL, false); /* * If this disk has been pulled into an fs devices created by * a device which had the CHANGING_FSID_V2 flag then replace the * metadata_uuid/fsid values of the fs_devices. */ if (has_metadata_uuid && fs_devices->fsid_change && found_transid > fs_devices->latest_generation) { memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE); memcpy(fs_devices->metadata_uuid, disk_super->metadata_uuid, BTRFS_FSID_SIZE); fs_devices->fsid_change = false; } } if (!device) { if (fs_devices->opened) { mutex_unlock(&fs_devices->device_list_mutex); return ERR_PTR(-EBUSY); } device = btrfs_alloc_device(NULL, &devid, disk_super->dev_item.uuid); if (IS_ERR(device)) { mutex_unlock(&fs_devices->device_list_mutex); /* we can safely leave the fs_devices entry around */ return device; } name = rcu_string_strdup(path, GFP_NOFS); if (!name) { btrfs_free_device(device); mutex_unlock(&fs_devices->device_list_mutex); return ERR_PTR(-ENOMEM); } rcu_assign_pointer(device->name, name); list_add_rcu(&device->dev_list, &fs_devices->devices); fs_devices->num_devices++; device->fs_devices = fs_devices; *new_device_added = true; if (disk_super->label[0]) pr_info("BTRFS: device label %s devid %llu transid %llu %s\n", disk_super->label, devid, found_transid, path); else pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n", disk_super->fsid, devid, found_transid, path); } else if (!device->name || strcmp(device->name->str, path)) { /* * When FS is already mounted. * 1. If you are here and if the device->name is NULL that * means this device was missing at time of FS mount. * 2. If you are here and if the device->name is different * from 'path' that means either * a. The same device disappeared and reappeared with * different name. or * b. The missing-disk-which-was-replaced, has * reappeared now. * * We must allow 1 and 2a above. But 2b would be a spurious * and unintentional. * * Further in case of 1 and 2a above, the disk at 'path' * would have missed some transaction when it was away and * in case of 2a the stale bdev has to be updated as well. * 2b must not be allowed at all time. */ /* * For now, we do allow update to btrfs_fs_device through the * btrfs dev scan cli after FS has been mounted. We're still * tracking a problem where systems fail mount by subvolume id * when we reject replacement on a mounted FS. */ if (!fs_devices->opened && found_transid < device->generation) { /* * That is if the FS is _not_ mounted and if you * are here, that means there is more than one * disk with same uuid and devid.We keep the one * with larger generation number or the last-in if * generation are equal. */ mutex_unlock(&fs_devices->device_list_mutex); return ERR_PTR(-EEXIST); } /* * We are going to replace the device path for a given devid, * make sure it's the same device if the device is mounted */ if (device->bdev) { struct block_device *path_bdev; path_bdev = lookup_bdev(path); if (IS_ERR(path_bdev)) { mutex_unlock(&fs_devices->device_list_mutex); return ERR_CAST(path_bdev); } if (device->bdev != path_bdev) { bdput(path_bdev); mutex_unlock(&fs_devices->device_list_mutex); btrfs_warn_in_rcu(device->fs_info, "duplicate device fsid:devid for %pU:%llu old:%s new:%s", disk_super->fsid, devid, rcu_str_deref(device->name), path); return ERR_PTR(-EEXIST); } bdput(path_bdev); btrfs_info_in_rcu(device->fs_info, "device fsid %pU devid %llu moved old:%s new:%s", disk_super->fsid, devid, rcu_str_deref(device->name), path); } name = rcu_string_strdup(path, GFP_NOFS); if (!name) { mutex_unlock(&fs_devices->device_list_mutex); return ERR_PTR(-ENOMEM); } rcu_string_free(device->name); rcu_assign_pointer(device->name, name); if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { fs_devices->missing_devices--; clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); } } /* * Unmount does not free the btrfs_device struct but would zero * generation along with most of the other members. So just update * it back. We need it to pick the disk with largest generation * (as above). */ if (!fs_devices->opened) { device->generation = found_transid; fs_devices->latest_generation = max_t(u64, found_transid, fs_devices->latest_generation); } fs_devices->total_devices = btrfs_super_num_devices(disk_super); mutex_unlock(&fs_devices->device_list_mutex); return device; } static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) { struct btrfs_fs_devices *fs_devices; struct btrfs_device *device; struct btrfs_device *orig_dev; int ret = 0; fs_devices = alloc_fs_devices(orig->fsid, NULL); if (IS_ERR(fs_devices)) return fs_devices; mutex_lock(&orig->device_list_mutex); fs_devices->total_devices = orig->total_devices; list_for_each_entry(orig_dev, &orig->devices, dev_list) { struct rcu_string *name; device = btrfs_alloc_device(NULL, &orig_dev->devid, orig_dev->uuid); if (IS_ERR(device)) { ret = PTR_ERR(device); goto error; } /* * This is ok to do without rcu read locked because we hold the * uuid mutex so nothing we touch in here is going to disappear. */ if (orig_dev->name) { name = rcu_string_strdup(orig_dev->name->str, GFP_KERNEL); if (!name) { btrfs_free_device(device); ret = -ENOMEM; goto error; } rcu_assign_pointer(device->name, name); } list_add(&device->dev_list, &fs_devices->devices); device->fs_devices = fs_devices; fs_devices->num_devices++; } mutex_unlock(&orig->device_list_mutex); return fs_devices; error: mutex_unlock(&orig->device_list_mutex); free_fs_devices(fs_devices); return ERR_PTR(ret); } /* * After we have read the system tree and know devids belonging to * this filesystem, remove the device which does not belong there. */ void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step) { struct btrfs_device *device, *next; struct btrfs_device *latest_dev = NULL; mutex_lock(&uuid_mutex); again: /* This is the initialized path, it is safe to release the devices. */ list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) { if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state) && (!latest_dev || device->generation > latest_dev->generation)) { latest_dev = device; } continue; } if (device->devid == BTRFS_DEV_REPLACE_DEVID) { /* * In the first step, keep the device which has * the correct fsid and the devid that is used * for the dev_replace procedure. * In the second step, the dev_replace state is * read from the device tree and it is known * whether the procedure is really active or * not, which means whether this device is * used or whether it should be removed. */ if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { continue; } } if (device->bdev) { blkdev_put(device->bdev, device->mode); device->bdev = NULL; fs_devices->open_devices--; } if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { list_del_init(&device->dev_alloc_list); clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) fs_devices->rw_devices--; } list_del_init(&device->dev_list); fs_devices->num_devices--; btrfs_free_device(device); } if (fs_devices->seed) { fs_devices = fs_devices->seed; goto again; } fs_devices->latest_bdev = latest_dev->bdev; mutex_unlock(&uuid_mutex); } static void btrfs_close_bdev(struct btrfs_device *device) { if (!device->bdev) return; if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { sync_blockdev(device->bdev); invalidate_bdev(device->bdev); } blkdev_put(device->bdev, device->mode); } static void btrfs_close_one_device(struct btrfs_device *device) { struct btrfs_fs_devices *fs_devices = device->fs_devices; struct btrfs_device *new_device; struct rcu_string *name; if (device->bdev) fs_devices->open_devices--; if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && device->devid != BTRFS_DEV_REPLACE_DEVID) { list_del_init(&device->dev_alloc_list); fs_devices->rw_devices--; } if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) fs_devices->missing_devices--; btrfs_close_bdev(device); new_device = btrfs_alloc_device(NULL, &device->devid, device->uuid); BUG_ON(IS_ERR(new_device)); /* -ENOMEM */ /* Safe because we are under uuid_mutex */ if (device->name) { name = rcu_string_strdup(device->name->str, GFP_NOFS); BUG_ON(!name); /* -ENOMEM */ rcu_assign_pointer(new_device->name, name); } list_replace_rcu(&device->dev_list, &new_device->dev_list); new_device->fs_devices = device->fs_devices; synchronize_rcu(); btrfs_free_device(device); } static int close_fs_devices(struct btrfs_fs_devices *fs_devices) { struct btrfs_device *device, *tmp; if (--fs_devices->opened > 0) return 0; mutex_lock(&fs_devices->device_list_mutex); list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) { btrfs_close_one_device(device); } mutex_unlock(&fs_devices->device_list_mutex); WARN_ON(fs_devices->open_devices); WARN_ON(fs_devices->rw_devices); fs_devices->opened = 0; fs_devices->seeding = 0; return 0; } int btrfs_close_devices(struct btrfs_fs_devices *fs_devices) { struct btrfs_fs_devices *seed_devices = NULL; int ret; mutex_lock(&uuid_mutex); ret = close_fs_devices(fs_devices); if (!fs_devices->opened) { seed_devices = fs_devices->seed; fs_devices->seed = NULL; } mutex_unlock(&uuid_mutex); while (seed_devices) { fs_devices = seed_devices; seed_devices = fs_devices->seed; close_fs_devices(fs_devices); free_fs_devices(fs_devices); } return ret; } static int open_fs_devices(struct btrfs_fs_devices *fs_devices, fmode_t flags, void *holder) { struct btrfs_device *device; struct btrfs_device *latest_dev = NULL; int ret = 0; flags |= FMODE_EXCL; list_for_each_entry(device, &fs_devices->devices, dev_list) { /* Just open everything we can; ignore failures here */ if (btrfs_open_one_device(fs_devices, device, flags, holder)) continue; if (!latest_dev || device->generation > latest_dev->generation) latest_dev = device; } if (fs_devices->open_devices == 0) { ret = -EINVAL; goto out; } fs_devices->opened = 1; fs_devices->latest_bdev = latest_dev->bdev; fs_devices->total_rw_bytes = 0; out: return ret; } static int devid_cmp(void *priv, struct list_head *a, struct list_head *b) { struct btrfs_device *dev1, *dev2; dev1 = list_entry(a, struct btrfs_device, dev_list); dev2 = list_entry(b, struct btrfs_device, dev_list); if (dev1->devid < dev2->devid) return -1; else if (dev1->devid > dev2->devid) return 1; return 0; } int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, fmode_t flags, void *holder) { int ret; lockdep_assert_held(&uuid_mutex); mutex_lock(&fs_devices->device_list_mutex); if (fs_devices->opened) { fs_devices->opened++; ret = 0; } else { list_sort(NULL, &fs_devices->devices, devid_cmp); ret = open_fs_devices(fs_devices, flags, holder); } mutex_unlock(&fs_devices->device_list_mutex); return ret; } static void btrfs_release_disk_super(struct page *page) { kunmap(page); put_page(page); } static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr, struct page **page, struct btrfs_super_block **disk_super) { void *p; pgoff_t index; /* make sure our super fits in the device */ if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode)) return 1; /* make sure our super fits in the page */ if (sizeof(**disk_super) > PAGE_SIZE) return 1; /* make sure our super doesn't straddle pages on disk */ index = bytenr >> PAGE_SHIFT; if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index) return 1; /* pull in the page with our super */ *page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL); if (IS_ERR_OR_NULL(*page)) return 1; p = kmap(*page); /* align our pointer to the offset of the super block */ *disk_super = p + offset_in_page(bytenr); if (btrfs_super_bytenr(*disk_super) != bytenr || btrfs_super_magic(*disk_super) != BTRFS_MAGIC) { btrfs_release_disk_super(*page); return 1; } if ((*disk_super)->label[0] && (*disk_super)->label[BTRFS_LABEL_SIZE - 1]) (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0'; return 0; } int btrfs_forget_devices(const char *path) { int ret; mutex_lock(&uuid_mutex); ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL); mutex_unlock(&uuid_mutex); return ret; } /* * Look for a btrfs signature on a device. This may be called out of the mount path * and we are not allowed to call set_blocksize during the scan. The superblock * is read via pagecache */ struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags, void *holder) { struct btrfs_super_block *disk_super; bool new_device_added = false; struct btrfs_device *device = NULL; struct block_device *bdev; struct page *page; u64 bytenr; lockdep_assert_held(&uuid_mutex); /* * we would like to check all the supers, but that would make * a btrfs mount succeed after a mkfs from a different FS. * So, we need to add a special mount option to scan for * later supers, using BTRFS_SUPER_MIRROR_MAX instead */ bytenr = btrfs_sb_offset(0); flags |= FMODE_EXCL; bdev = blkdev_get_by_path(path, flags, holder); if (IS_ERR(bdev)) return ERR_CAST(bdev); if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) { device = ERR_PTR(-EINVAL); goto error_bdev_put; } device = device_list_add(path, disk_super, &new_device_added); if (!IS_ERR(device)) { if (new_device_added) btrfs_free_stale_devices(path, device); } btrfs_release_disk_super(page); error_bdev_put: blkdev_put(bdev, flags); return device; } /* * Try to find a chunk that intersects [start, start + len] range and when one * such is found, record the end of it in *start */ static bool contains_pending_extent(struct btrfs_device *device, u64 *start, u64 len) { u64 physical_start, physical_end; lockdep_assert_held(&device->fs_info->chunk_mutex); if (!find_first_extent_bit(&device->alloc_state, *start, &physical_start, &physical_end, CHUNK_ALLOCATED, NULL)) { if (in_range(physical_start, *start, len) || in_range(*start, physical_start, physical_end - physical_start)) { *start = physical_end + 1; return true; } } return false; } /* * find_free_dev_extent_start - find free space in the specified device * @device: the device which we search the free space in * @num_bytes: the size of the free space that we need * @search_start: the position from which to begin the search * @start: store the start of the free space. * @len: the size of the free space. that we find, or the size * of the max free space if we don't find suitable free space * * this uses a pretty simple search, the expectation is that it is * called very infrequently and that a given device has a small number * of extents * * @start is used to store the start of the free space if we find. But if we * don't find suitable free space, it will be used to store the start position * of the max free space. * * @len is used to store the size of the free space that we find. * But if we don't find suitable free space, it is used to store the size of * the max free space. * * NOTE: This function will search *commit* root of device tree, and does extra * check to ensure dev extents are not double allocated. * This makes the function safe to allocate dev extents but may not report * correct usable device space, as device extent freed in current transaction * is not reported as avaiable. */ static int find_free_dev_extent_start(struct btrfs_device *device, u64 num_bytes, u64 search_start, u64 *start, u64 *len) { struct btrfs_fs_info *fs_info = device->fs_info; struct btrfs_root *root = fs_info->dev_root; struct btrfs_key key; struct btrfs_dev_extent *dev_extent; struct btrfs_path *path; u64 hole_size; u64 max_hole_start; u64 max_hole_size; u64 extent_end; u64 search_end = device->total_bytes; int ret; int slot; struct extent_buffer *l; /* * We don't want to overwrite the superblock on the drive nor any area * used by the boot loader (grub for example), so we make sure to start * at an offset of at least 1MB. */ search_start = max_t(u64, search_start, SZ_1M); path = btrfs_alloc_path(); if (!path) return -ENOMEM; max_hole_start = search_start; max_hole_size = 0; again: if (search_start >= search_end || test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { ret = -ENOSPC; goto out; } path->reada = READA_FORWARD; path->search_commit_root = 1; path->skip_locking = 1; key.objectid = device->devid; key.offset = search_start; key.type = BTRFS_DEV_EXTENT_KEY; ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); if (ret < 0) goto out; if (ret > 0) { ret = btrfs_previous_item(root, path, key.objectid, key.type); if (ret < 0) goto out; } while (1) { l = path->nodes[0]; slot = path->slots[0]; if (slot >= btrfs_header_nritems(l)) { ret = btrfs_next_leaf(root, path); if (ret == 0) continue; if (ret < 0) goto out; break; } btrfs_item_key_to_cpu(l, &key, slot); if (key.objectid < device->devid) goto next; if (key.objectid > device->devid) break; if (key.type != BTRFS_DEV_EXTENT_KEY) goto next; if (key.offset > search_start) { hole_size = key.offset - search_start; /* * Have to check before we set max_hole_start, otherwise * we could end up sending back this offset anyway. */ if (contains_pending_extent(device, &search_start, hole_size)) { if (key.offset >= search_start) hole_size = key.offset - search_start; else hole_size = 0; } if (hole_size > max_hole_size) { max_hole_start = search_start; max_hole_size = hole_size; } /* * If this free space is greater than which we need, * it must be the max free space that we have found * until now, so max_hole_start must point to the start * of this free space and the length of this free space * is stored in max_hole_size. Thus, we return * max_hole_start and max_hole_size and go back to the * caller. */ if (hole_size >= num_bytes) { ret = 0; goto out; } } dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); extent_end = key.offset + btrfs_dev_extent_length(l, dev_extent); if (extent_end > search_start) search_start = extent_end; next: path->slots[0]++; cond_resched(); } /* * At this point, search_start should be the end of * allocated dev extents, and when shrinking the device, * search_end may be smaller than search_start. */ if (search_end > search_start) { hole_size = search_end - search_start; if (contains_pending_extent(device, &search_start, hole_size)) { btrfs_release_path(path); goto again; } if (hole_size > max_hole_size) { max_hole_start = search_start; max_hole_size = hole_size; } } /* See above. */ if (max_hole_size < num_bytes) ret = -ENOSPC; else ret = 0; out: btrfs_free_path(path); *start = max_hole_start; if (len) *len = max_hole_size; return ret; } int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, u64 *start, u64 *len) { /* FIXME use last free of some kind */ return find_free_dev_extent_start(device, num_bytes, 0, start, len); } static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, struct btrfs_device *device, u64 start, u64 *dev_extent_len) { struct btrfs_fs_info *fs_info = device->fs_info; struct btrfs_root *root = fs_info->dev_root; int ret; struct btrfs_path *path; struct btrfs_key key; struct btrfs_key found_key; struct extent_buffer *leaf = NULL; struct btrfs_dev_extent *extent = NULL; path = btrfs_alloc_path(); if (!path) return -ENOMEM; key.objectid = device->devid; key.offset = start; key.type = BTRFS_DEV_EXTENT_KEY; again: ret = btrfs_search_slot(trans, root, &key, path, -1, 1); if (ret > 0) { ret = btrfs_previous_item(root, path, key.objectid, BTRFS_DEV_EXTENT_KEY); if (ret) goto out; leaf = path->nodes[0]; btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); BUG_ON(found_key.offset > start || found_key.offset + btrfs_dev_extent_length(leaf, extent) < start); key = found_key; btrfs_release_path(path); goto again; } else if (ret == 0) { leaf = path->nodes[0]; extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); } else { btrfs_handle_fs_error(fs_info, ret, "Slot search failed"); goto out; } *dev_extent_len = btrfs_dev_extent_length(leaf, extent); ret = btrfs_del_item(trans, root, path); if (ret) { btrfs_handle_fs_error(fs_info, ret, "Failed to remove dev extent item"); } else { set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); } out: btrfs_free_path(path); return ret; } static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, struct btrfs_device *device, u64 chunk_offset, u64 start, u64 num_bytes) { int ret; struct btrfs_path *path; struct btrfs_fs_info *fs_info = device->fs_info; struct btrfs_root *root = fs_info->dev_root; struct btrfs_dev_extent *extent; struct extent_buffer *leaf; struct btrfs_key key; WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)); WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); path = btrfs_alloc_path(); if (!path) return -ENOMEM; key.objectid = device->devid; key.offset = start; key.type = BTRFS_DEV_EXTENT_KEY; ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent)); if (ret) goto out; leaf = path->nodes[0]; extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID); btrfs_set_dev_extent_chunk_objectid(leaf, extent, BTRFS_FIRST_CHUNK_TREE_OBJECTID); btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); btrfs_set_dev_extent_length(leaf, extent, num_bytes); btrfs_mark_buffer_dirty(leaf); out: btrfs_free_path(path); return ret; } static u64 find_next_chunk(struct btrfs_fs_info *fs_info) { struct extent_map_tree *em_tree; struct extent_map *em; struct rb_node *n; u64 ret = 0; em_tree = &fs_info->mapping_tree; read_lock(&em_tree->lock); n = rb_last(&em_tree->map.rb_root); if (n) { em = rb_entry(n, struct extent_map, rb_node); ret = em->start + em->len; } read_unlock(&em_tree->lock); return ret; } static noinline int find_next_devid(struct btrfs_fs_info *fs_info, u64 *devid_ret) { int ret; struct btrfs_key key; struct btrfs_key found_key; struct btrfs_path *path; path = btrfs_alloc_path(); if (!path) return -ENOMEM; key.objectid = BTRFS_DEV_ITEMS_OBJECTID; key.type = BTRFS_DEV_ITEM_KEY; key.offset = (u64)-1; ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); if (ret < 0) goto error; if (ret == 0) { /* Corruption */ btrfs_err(fs_info, "corrupted chunk tree devid -1 matched"); ret = -EUCLEAN; goto error; } ret = btrfs_previous_item(fs_info->chunk_root, path, BTRFS_DEV_ITEMS_OBJECTID, BTRFS_DEV_ITEM_KEY); if (ret) { *devid_ret = 1; } else { btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); *devid_ret = found_key.offset + 1; } ret = 0; error: btrfs_free_path(path); return ret; } /* * the device information is stored in the chunk root * the btrfs_device struct should be fully filled in */ static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, struct btrfs_device *device) { int ret; struct btrfs_path *path; struct btrfs_dev_item *dev_item; struct extent_buffer *leaf; struct btrfs_key key; unsigned long ptr; path = btrfs_alloc_path(); if (!path) return -ENOMEM; key.objectid = BTRFS_DEV_ITEMS_OBJECTID; key.type = BTRFS_DEV_ITEM_KEY; key.offset = device->devid; ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path, &key, sizeof(*dev_item)); if (ret) goto out; leaf = path->nodes[0]; dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); btrfs_set_device_id(leaf, dev_item, device->devid); btrfs_set_device_generation(leaf, dev_item, 0); btrfs_set_device_type(leaf, dev_item, device->type); btrfs_set_device_io_align(leaf, dev_item, device->io_align); btrfs_set_device_io_width(leaf, dev_item, device->io_width); btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); btrfs_set_device_total_bytes(leaf, dev_item, btrfs_device_get_disk_total_bytes(device)); btrfs_set_device_bytes_used(leaf, dev_item, btrfs_device_get_bytes_used(device)); btrfs_set_device_group(leaf, dev_item, 0); btrfs_set_device_seek_speed(leaf, dev_item, 0); btrfs_set_device_bandwidth(leaf, dev_item, 0); btrfs_set_device_start_offset(leaf, dev_item, 0); ptr = btrfs_device_uuid(dev_item); write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); ptr = btrfs_device_fsid(dev_item); write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid, ptr, BTRFS_FSID_SIZE); btrfs_mark_buffer_dirty(leaf); ret = 0; out: btrfs_free_path(path); return ret; } /* * Function to update ctime/mtime for a given device path. * Mainly used for ctime/mtime based probe like libblkid. */ static void update_dev_time(const char *path_name) { struct file *filp; filp = filp_open(path_name, O_RDWR, 0); if (IS_ERR(filp)) return; file_update_time(filp); filp_close(filp, NULL); } static int btrfs_rm_dev_item(struct btrfs_device *device) { struct btrfs_root *root = device->fs_info->chunk_root; int ret; struct btrfs_path *path; struct btrfs_key key; struct btrfs_trans_handle *trans; path = btrfs_alloc_path(); if (!path) return -ENOMEM; trans = btrfs_start_transaction(root, 0); if (IS_ERR(trans)) { btrfs_free_path(path); return PTR_ERR(trans); } key.objectid = BTRFS_DEV_ITEMS_OBJECTID; key.type = BTRFS_DEV_ITEM_KEY; key.offset = device->devid; ret = btrfs_search_slot(trans, root, &key, path, -1, 1); if (ret) { if (ret > 0) ret = -ENOENT; btrfs_abort_transaction(trans, ret); btrfs_end_transaction(trans); goto out; } ret = btrfs_del_item(trans, root, path); if (ret) { btrfs_abort_transaction(trans, ret); btrfs_end_transaction(trans); } out: btrfs_free_path(path); if (!ret) ret = btrfs_commit_transaction(trans); return ret; } /* * Verify that @num_devices satisfies the RAID profile constraints in the whole * filesystem. It's up to the caller to adjust that number regarding eg. device * replace. */ static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, u64 num_devices) { u64 all_avail; unsigned seq; int i; do { seq = read_seqbegin(&fs_info->profiles_lock); all_avail = fs_info->avail_data_alloc_bits | fs_info->avail_system_alloc_bits | fs_info->avail_metadata_alloc_bits; } while (read_seqretry(&fs_info->profiles_lock, seq)); for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { if (!(all_avail & btrfs_raid_array[i].bg_flag)) continue; if (num_devices < btrfs_raid_array[i].devs_min) { int ret = btrfs_raid_array[i].mindev_error; if (ret) return ret; } } return 0; } static struct btrfs_device * btrfs_find_next_active_device( struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) { struct btrfs_device *next_device; list_for_each_entry(next_device, &fs_devs->devices, dev_list) { if (next_device != device && !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) && next_device->bdev) return next_device; } return NULL; } /* * Helper function to check if the given device is part of s_bdev / latest_bdev * and replace it with the provided or the next active device, in the context * where this function called, there should be always be another device (or * this_dev) which is active. */ void btrfs_assign_next_active_device(struct btrfs_device *device, struct btrfs_device *this_dev) { struct btrfs_fs_info *fs_info = device->fs_info; struct btrfs_device *next_device; if (this_dev) next_device = this_dev; else next_device = btrfs_find_next_active_device(fs_info->fs_devices, device); ASSERT(next_device); if (fs_info->sb->s_bdev && (fs_info->sb->s_bdev == device->bdev)) fs_info->sb->s_bdev = next_device->bdev; if (fs_info->fs_devices->latest_bdev == device->bdev) fs_info->fs_devices->latest_bdev = next_device->bdev; } /* * Return btrfs_fs_devices::num_devices excluding the device that's being * currently replaced. */ static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info) { u64 num_devices = fs_info->fs_devices->num_devices; down_read(&fs_info->dev_replace.rwsem); if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { ASSERT(num_devices > 1); num_devices--; } up_read(&fs_info->dev_replace.rwsem); return num_devices; } int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path, u64 devid) { struct btrfs_device *device; struct btrfs_fs_devices *cur_devices; struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; u64 num_devices; int ret = 0; mutex_lock(&uuid_mutex); num_devices = btrfs_num_devices(fs_info); ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); if (ret) goto out; device = btrfs_find_device_by_devspec(fs_info, devid, device_path); if (IS_ERR(device)) { if (PTR_ERR(device) == -ENOENT && strcmp(device_path, "missing") == 0) ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; else ret = PTR_ERR(device); goto out; } if (btrfs_pinned_by_swapfile(fs_info, device)) { btrfs_warn_in_rcu(fs_info, "cannot remove device %s (devid %llu) due to active swapfile", rcu_str_deref(device->name), device->devid); ret = -ETXTBSY; goto out; } if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { ret = BTRFS_ERROR_DEV_TGT_REPLACE; goto out; } if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && fs_info->fs_devices->rw_devices == 1) { ret = BTRFS_ERROR_DEV_ONLY_WRITABLE; goto out; } if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { mutex_lock(&fs_info->chunk_mutex); list_del_init(&device->dev_alloc_list); device->fs_devices->rw_devices--; mutex_unlock(&fs_info->chunk_mutex); } mutex_unlock(&uuid_mutex); ret = btrfs_shrink_device(device, 0); mutex_lock(&uuid_mutex); if (ret) goto error_undo; /* * TODO: the superblock still includes this device in its num_devices * counter although write_all_supers() is not locked out. This * could give a filesystem state which requires a degraded mount. */ ret = btrfs_rm_dev_item(device); if (ret) goto error_undo; clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); btrfs_scrub_cancel_dev(device); /* * the device list mutex makes sure that we don't change * the device list while someone else is writing out all * the device supers. Whoever is writing all supers, should * lock the device list mutex before getting the number of * devices in the super block (super_copy). Conversely, * whoever updates the number of devices in the super block * (super_copy) should hold the device list mutex. */ /* * In normal cases the cur_devices == fs_devices. But in case * of deleting a seed device, the cur_devices should point to * its own fs_devices listed under the fs_devices->seed. */ cur_devices = device->fs_devices; mutex_lock(&fs_devices->device_list_mutex); list_del_rcu(&device->dev_list); cur_devices->num_devices--; cur_devices->total_devices--; /* Update total_devices of the parent fs_devices if it's seed */ if (cur_devices != fs_devices) fs_devices->total_devices--; if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) cur_devices->missing_devices--; btrfs_assign_next_active_device(device, NULL); if (device->bdev) { cur_devices->open_devices--; /* remove sysfs entry */ btrfs_sysfs_rm_device_link(fs_devices, device); } num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; btrfs_set_super_num_devices(fs_info->super_copy, num_devices); mutex_unlock(&fs_devices->device_list_mutex); /* * at this point, the device is zero sized and detached from * the devices list. All that's left is to zero out the old * supers and free the device. */ if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) btrfs_scratch_superblocks(device->bdev, device->name->str); btrfs_close_bdev(device); synchronize_rcu(); btrfs_free_device(device); if (cur_devices->open_devices == 0) { while (fs_devices) { if (fs_devices->seed == cur_devices) { fs_devices->seed = cur_devices->seed; break; } fs_devices = fs_devices->seed; } cur_devices->seed = NULL; close_fs_devices(cur_devices); free_fs_devices(cur_devices); } out: mutex_unlock(&uuid_mutex); return ret; error_undo: if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { mutex_lock(&fs_info->chunk_mutex); list_add(&device->dev_alloc_list, &fs_devices->alloc_list); device->fs_devices->rw_devices++; mutex_unlock(&fs_info->chunk_mutex); } goto out; } void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev) { struct btrfs_fs_devices *fs_devices; lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex); /* * in case of fs with no seed, srcdev->fs_devices will point * to fs_devices of fs_info. However when the dev being replaced is * a seed dev it will point to the seed's local fs_devices. In short * srcdev will have its correct fs_devices in both the cases. */ fs_devices = srcdev->fs_devices; list_del_rcu(&srcdev->dev_list); list_del(&srcdev->dev_alloc_list); fs_devices->num_devices--; if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) fs_devices->missing_devices--; if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) fs_devices->rw_devices--; if (srcdev->bdev) fs_devices->open_devices--; } void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev) { struct btrfs_fs_info *fs_info = srcdev->fs_info; struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) { /* zero out the old super if it is writable */ btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str); } btrfs_close_bdev(srcdev); synchronize_rcu(); btrfs_free_device(srcdev); /* if this is no devs we rather delete the fs_devices */ if (!fs_devices->num_devices) { struct btrfs_fs_devices *tmp_fs_devices; /* * On a mounted FS, num_devices can't be zero unless it's a * seed. In case of a seed device being replaced, the replace * target added to the sprout FS, so there will be no more * device left under the seed FS. */ ASSERT(fs_devices->seeding); tmp_fs_devices = fs_info->fs_devices; while (tmp_fs_devices) { if (tmp_fs_devices->seed == fs_devices) { tmp_fs_devices->seed = fs_devices->seed; break; } tmp_fs_devices = tmp_fs_devices->seed; } fs_devices->seed = NULL; close_fs_devices(fs_devices); free_fs_devices(fs_devices); } } void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev) { struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices; WARN_ON(!tgtdev); mutex_lock(&fs_devices->device_list_mutex); btrfs_sysfs_rm_device_link(fs_devices, tgtdev); if (tgtdev->bdev) fs_devices->open_devices--; fs_devices->num_devices--; btrfs_assign_next_active_device(tgtdev, NULL); list_del_rcu(&tgtdev->dev_list); mutex_unlock(&fs_devices->device_list_mutex); /* * The update_dev_time() with in btrfs_scratch_superblocks() * may lead to a call to btrfs_show_devname() which will try * to hold device_list_mutex. And here this device * is already out of device list, so we don't have to hold * the device_list_mutex lock. */ btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str); btrfs_close_bdev(tgtdev); synchronize_rcu(); btrfs_free_device(tgtdev); } static struct btrfs_device *btrfs_find_device_by_path( struct btrfs_fs_info *fs_info, const char *device_path) { int ret = 0; struct btrfs_super_block *disk_super; u64 devid; u8 *dev_uuid; struct block_device *bdev; struct buffer_head *bh; struct btrfs_device *device; ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ, fs_info->bdev_holder, 0, &bdev, &bh); if (ret) return ERR_PTR(ret); disk_super = (struct btrfs_super_block *)bh->b_data; devid = btrfs_stack_device_id(&disk_super->dev_item); dev_uuid = disk_super->dev_item.uuid; if (btrfs_fs_incompat(fs_info, METADATA_UUID)) device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, disk_super->metadata_uuid, true); else device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, disk_super->fsid, true); brelse(bh); if (!device) device = ERR_PTR(-ENOENT); blkdev_put(bdev, FMODE_READ); return device; } /* * Lookup a device given by device id, or the path if the id is 0. */ struct btrfs_device *btrfs_find_device_by_devspec( struct btrfs_fs_info *fs_info, u64 devid, const char *device_path) { struct btrfs_device *device; if (devid) { device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true); if (!device) return ERR_PTR(-ENOENT); return device; } if (!device_path || !device_path[0]) return ERR_PTR(-EINVAL); if (strcmp(device_path, "missing") == 0) { /* Find first missing device */ list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) { if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) && !device->bdev) return device; } return ERR_PTR(-ENOENT); } return btrfs_find_device_by_path(fs_info, device_path); } /* * does all the dirty work required for changing file system's UUID. */ static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info) { struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; struct btrfs_fs_devices *old_devices; struct btrfs_fs_devices *seed_devices; struct btrfs_super_block *disk_super = fs_info->super_copy; struct btrfs_device *device; u64 super_flags; lockdep_assert_held(&uuid_mutex); if (!fs_devices->seeding) return -EINVAL; seed_devices = alloc_fs_devices(NULL, NULL); if (IS_ERR(seed_devices)) return PTR_ERR(seed_devices); old_devices = clone_fs_devices(fs_devices); if (IS_ERR(old_devices)) { kfree(seed_devices); return PTR_ERR(old_devices); } list_add(&old_devices->fs_list, &fs_uuids); memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); seed_devices->opened = 1; INIT_LIST_HEAD(&seed_devices->devices); INIT_LIST_HEAD(&seed_devices->alloc_list); mutex_init(&seed_devices->device_list_mutex); mutex_lock(&fs_devices->device_list_mutex); list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, synchronize_rcu); list_for_each_entry(device, &seed_devices->devices, dev_list) device->fs_devices = seed_devices; mutex_lock(&fs_info->chunk_mutex); list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list); mutex_unlock(&fs_info->chunk_mutex); fs_devices->seeding = 0; fs_devices->num_devices = 0; fs_devices->open_devices = 0; fs_devices->missing_devices = 0; fs_devices->rotating = 0; fs_devices->seed = seed_devices; generate_random_uuid(fs_devices->fsid); memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE); memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); mutex_unlock(&fs_devices->device_list_mutex); super_flags = btrfs_super_flags(disk_super) & ~BTRFS_SUPER_FLAG_SEEDING; btrfs_set_super_flags(disk_super, super_flags); return 0; } /* * Store the expected generation for seed devices in device items. */ static int btrfs_finish_sprout(struct btrfs_trans_handle *trans) { struct btrfs_fs_info *fs_info = trans->fs_info; struct btrfs_root *root = fs_info->chunk_root; struct btrfs_path *path; struct extent_buffer *leaf; struct btrfs_dev_item *dev_item; struct btrfs_device *device; struct btrfs_key key; u8 fs_uuid[BTRFS_FSID_SIZE]; u8 dev_uuid[BTRFS_UUID_SIZE]; u64 devid; int ret; path = btrfs_alloc_path(); if (!path) return -ENOMEM; key.objectid = BTRFS_DEV_ITEMS_OBJECTID; key.offset = 0; key.type = BTRFS_DEV_ITEM_KEY; while (1) { ret = btrfs_search_slot(trans, root, &key, path, 0, 1); if (ret < 0) goto error; leaf = path->nodes[0]; next_slot: if (path->slots[0] >= btrfs_header_nritems(leaf)) { ret = btrfs_next_leaf(root, path); if (ret > 0) break; if (ret < 0) goto error; leaf = path->nodes[0]; btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); btrfs_release_path(path); continue; } btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || key.type != BTRFS_DEV_ITEM_KEY) break; dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); devid = btrfs_device_id(leaf, dev_item); read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), BTRFS_UUID_SIZE); read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), BTRFS_FSID_SIZE); device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, fs_uuid, true); BUG_ON(!device); /* Logic error */ if (device->fs_devices->seeding) { btrfs_set_device_generation(leaf, dev_item, device->generation); btrfs_mark_buffer_dirty(leaf); } path->slots[0]++; goto next_slot; } ret = 0; error: btrfs_free_path(path); return ret; } int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) { struct btrfs_root *root = fs_info->dev_root; struct request_queue *q; struct btrfs_trans_handle *trans; struct btrfs_device *device; struct block_device *bdev; struct super_block *sb = fs_info->sb; struct rcu_string *name; struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; u64 orig_super_total_bytes; u64 orig_super_num_devices; int seeding_dev = 0; int ret = 0; bool unlocked = false; if (sb_rdonly(sb) && !fs_devices->seeding) return -EROFS; bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, fs_info->bdev_holder); if (IS_ERR(bdev)) return PTR_ERR(bdev); if (fs_devices->seeding) { seeding_dev = 1; down_write(&sb->s_umount); mutex_lock(&uuid_mutex); } filemap_write_and_wait(bdev->bd_inode->i_mapping); mutex_lock(&fs_devices->device_list_mutex); list_for_each_entry(device, &fs_devices->devices, dev_list) { if (device->bdev == bdev) { ret = -EEXIST; mutex_unlock( &fs_devices->device_list_mutex); goto error; } } mutex_unlock(&fs_devices->device_list_mutex); device = btrfs_alloc_device(fs_info, NULL, NULL); if (IS_ERR(device)) { /* we can safely leave the fs_devices entry around */ ret = PTR_ERR(device); goto error; } name = rcu_string_strdup(device_path, GFP_KERNEL); if (!name) { ret = -ENOMEM; goto error_free_device; } rcu_assign_pointer(device->name, name); trans = btrfs_start_transaction(root, 0); if (IS_ERR(trans)) { ret = PTR_ERR(trans); goto error_free_device; } q = bdev_get_queue(bdev); set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); device->generation = trans->transid; device->io_width = fs_info->sectorsize; device->io_align = fs_info->sectorsize; device->sector_size = fs_info->sectorsize; device->total_bytes = round_down(i_size_read(bdev->bd_inode), fs_info->sectorsize); device->disk_total_bytes = device->total_bytes; device->commit_total_bytes = device->total_bytes; device->fs_info = fs_info; device->bdev = bdev; set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); device->mode = FMODE_EXCL; device->dev_stats_valid = 1; set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE); if (seeding_dev) { sb->s_flags &= ~SB_RDONLY; ret = btrfs_prepare_sprout(fs_info); if (ret) { btrfs_abort_transaction(trans, ret); goto error_trans; } } device->fs_devices = fs_devices; mutex_lock(&fs_devices->device_list_mutex); mutex_lock(&fs_info->chunk_mutex); list_add_rcu(&device->dev_list, &fs_devices->devices); list_add(&device->dev_alloc_list, &fs_devices->alloc_list); fs_devices->num_devices++; fs_devices->open_devices++; fs_devices->rw_devices++; fs_devices->total_devices++; fs_devices->total_rw_bytes += device->total_bytes; atomic64_add(device->total_bytes, &fs_info->free_chunk_space); if (!blk_queue_nonrot(q)) fs_devices->rotating = 1; orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy); btrfs_set_super_total_bytes(fs_info->super_copy, round_down(orig_super_total_bytes + device->total_bytes, fs_info->sectorsize)); orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy); btrfs_set_super_num_devices(fs_info->super_copy, orig_super_num_devices + 1); /* add sysfs device entry */ btrfs_sysfs_add_device_link(fs_devices, device); /* * we've got more storage, clear any full flags on the space * infos */ btrfs_clear_space_info_full(fs_info); mutex_unlock(&fs_info->chunk_mutex); mutex_unlock(&fs_devices->device_list_mutex); if (seeding_dev) { mutex_lock(&fs_info->chunk_mutex); ret = init_first_rw_device(trans); mutex_unlock(&fs_info->chunk_mutex); if (ret) { btrfs_abort_transaction(trans, ret); goto error_sysfs; } } ret = btrfs_add_dev_item(trans, device); if (ret) { btrfs_abort_transaction(trans, ret); goto error_sysfs; } if (seeding_dev) { ret = btrfs_finish_sprout(trans); if (ret) { btrfs_abort_transaction(trans, ret); goto error_sysfs; } btrfs_sysfs_update_sprout_fsid(fs_devices, fs_info->fs_devices->fsid); } ret = btrfs_commit_transaction(trans); if (seeding_dev) { mutex_unlock(&uuid_mutex); up_write(&sb->s_umount); unlocked = true; if (ret) /* transaction commit */ return ret; ret = btrfs_relocate_sys_chunks(fs_info); if (ret < 0) btrfs_handle_fs_error(fs_info, ret, "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); trans = btrfs_attach_transaction(root); if (IS_ERR(trans)) { if (PTR_ERR(trans) == -ENOENT) return 0; ret = PTR_ERR(trans); trans = NULL; goto error_sysfs; } ret = btrfs_commit_transaction(trans); } /* Update ctime/mtime for libblkid */ update_dev_time(device_path); return ret; error_sysfs: btrfs_sysfs_rm_device_link(fs_devices, device); mutex_lock(&fs_info->fs_devices->device_list_mutex); mutex_lock(&fs_info->chunk_mutex); list_del_rcu(&device->dev_list); list_del(&device->dev_alloc_list); fs_info->fs_devices->num_devices--; fs_info->fs_devices->open_devices--; fs_info->fs_devices->rw_devices--; fs_info->fs_devices->total_devices--; fs_info->fs_devices->total_rw_bytes -= device->total_bytes; atomic64_sub(device->total_bytes, &fs_info->free_chunk_space); btrfs_set_super_total_bytes(fs_info->super_copy, orig_super_total_bytes); btrfs_set_super_num_devices(fs_info->super_copy, orig_super_num_devices); mutex_unlock(&fs_info->chunk_mutex); mutex_unlock(&fs_info->fs_devices->device_list_mutex); error_trans: if (seeding_dev) sb->s_flags |= SB_RDONLY; if (trans) btrfs_end_transaction(trans); error_free_device: btrfs_free_device(device); error: blkdev_put(bdev, FMODE_EXCL); if (seeding_dev && !unlocked) { mutex_unlock(&uuid_mutex); up_write(&sb->s_umount); } return ret; } static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, struct btrfs_device *device) { int ret; struct btrfs_path *path; struct btrfs_root *root = device->fs_info->chunk_root; struct btrfs_dev_item *dev_item; struct extent_buffer *leaf; struct btrfs_key key; path = btrfs_alloc_path(); if (!path) return -ENOMEM; key.objectid = BTRFS_DEV_ITEMS_OBJECTID; key.type = BTRFS_DEV_ITEM_KEY; key.offset = device->devid; ret = btrfs_search_slot(trans, root, &key, path, 0, 1); if (ret < 0) goto out; if (ret > 0) { ret = -ENOENT; goto out; } leaf = path->nodes[0]; dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); btrfs_set_device_id(leaf, dev_item, device->devid); btrfs_set_device_type(leaf, dev_item, device->type); btrfs_set_device_io_align(leaf, dev_item, device->io_align); btrfs_set_device_io_width(leaf, dev_item, device->io_width); btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); btrfs_set_device_total_bytes(leaf, dev_item, btrfs_device_get_disk_total_bytes(device)); btrfs_set_device_bytes_used(leaf, dev_item, btrfs_device_get_bytes_used(device)); btrfs_mark_buffer_dirty(leaf); out: btrfs_free_path(path); return ret; } int btrfs_grow_device(struct btrfs_trans_handle *trans, struct btrfs_device *device, u64 new_size) { struct btrfs_fs_info *fs_info = device->fs_info; struct btrfs_super_block *super_copy = fs_info->super_copy; u64 old_total; u64 diff; if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) return -EACCES; new_size = round_down(new_size, fs_info->sectorsize); mutex_lock(&fs_info->chunk_mutex); old_total = btrfs_super_total_bytes(super_copy); diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); if (new_size <= device->total_bytes || test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { mutex_unlock(&fs_info->chunk_mutex); return -EINVAL; } btrfs_set_super_total_bytes(super_copy, round_down(old_total + diff, fs_info->sectorsize)); device->fs_devices->total_rw_bytes += diff; btrfs_device_set_total_bytes(device, new_size); btrfs_device_set_disk_total_bytes(device, new_size); btrfs_clear_space_info_full(device->fs_info); if (list_empty(&device->post_commit_list)) list_add_tail(&device->post_commit_list, &trans->transaction->dev_update_list); mutex_unlock(&fs_info->chunk_mutex); return btrfs_update_device(trans, device); } static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) { struct btrfs_fs_info *fs_info = trans->fs_info; struct btrfs_root *root = fs_info->chunk_root; int ret; struct btrfs_path *path; struct btrfs_key key; path = btrfs_alloc_path(); if (!path) return -ENOMEM; key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; key.offset = chunk_offset; key.type = BTRFS_CHUNK_ITEM_KEY; ret = btrfs_search_slot(trans, root, &key, path, -1, 1); if (ret < 0) goto out; else if (ret > 0) { /* Logic error or corruption */ btrfs_handle_fs_error(fs_info, -ENOENT, "Failed lookup while freeing chunk."); ret = -ENOENT; goto out; } ret = btrfs_del_item(trans, root, path); if (ret < 0) btrfs_handle_fs_error(fs_info, ret, "Failed to delete chunk item."); out: btrfs_free_path(path); return ret; } static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) { struct btrfs_super_block *super_copy = fs_info->super_copy; struct btrfs_disk_key *disk_key; struct btrfs_chunk *chunk; u8 *ptr; int ret = 0; u32 num_stripes; u32 array_size; u32 len = 0; u32 cur; struct btrfs_key key; mutex_lock(&fs_info->chunk_mutex); array_size = btrfs_super_sys_array_size(super_copy); ptr = super_copy->sys_chunk_array; cur = 0; while (cur < array_size) { disk_key = (struct btrfs_disk_key *)ptr; btrfs_disk_key_to_cpu(&key, disk_key); len = sizeof(*disk_key); if (key.type == BTRFS_CHUNK_ITEM_KEY) { chunk = (struct btrfs_chunk *)(ptr + len); num_stripes = btrfs_stack_chunk_num_stripes(chunk); len += btrfs_chunk_item_size(num_stripes); } else { ret = -EIO; break; } if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && key.offset == chunk_offset) { memmove(ptr, ptr + len, array_size - (cur + len)); array_size -= len; btrfs_set_super_sys_array_size(super_copy, array_size); } else { ptr += len; cur += len; } } mutex_unlock(&fs_info->chunk_mutex); return ret; } /* * btrfs_get_chunk_map() - Find the mapping containing the given logical extent. * @logical: Logical block offset in bytes. * @length: Length of extent in bytes. * * Return: Chunk mapping or ERR_PTR. */ struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, u64 logical, u64 length) { struct extent_map_tree *em_tree; struct extent_map *em; em_tree = &fs_info->mapping_tree; read_lock(&em_tree->lock); em = lookup_extent_mapping(em_tree, logical, length); read_unlock(&em_tree->lock); if (!em) { btrfs_crit(fs_info, "unable to find logical %llu length %llu", logical, length); return ERR_PTR(-EINVAL); } if (em->start > logical || em->start + em->len < logical) { btrfs_crit(fs_info, "found a bad mapping, wanted %llu-%llu, found %llu-%llu", logical, length, em->start, em->start + em->len); free_extent_map(em); return ERR_PTR(-EINVAL); } /* callers are responsible for dropping em's ref. */ return em; } int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) { struct btrfs_fs_info *fs_info = trans->fs_info; struct extent_map *em; struct map_lookup *map; u64 dev_extent_len = 0; int i, ret = 0; struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); if (IS_ERR(em)) { /* * This is a logic error, but we don't want to just rely on the * user having built with ASSERT enabled, so if ASSERT doesn't * do anything we still error out. */ ASSERT(0); return PTR_ERR(em); } map = em->map_lookup; mutex_lock(&fs_info->chunk_mutex); check_system_chunk(trans, map->type); mutex_unlock(&fs_info->chunk_mutex); /* * Take the device list mutex to prevent races with the final phase of * a device replace operation that replaces the device object associated * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()). */ mutex_lock(&fs_devices->device_list_mutex); for (i = 0; i < map->num_stripes; i++) { struct btrfs_device *device = map->stripes[i].dev; ret = btrfs_free_dev_extent(trans, device, map->stripes[i].physical, &dev_extent_len); if (ret) { mutex_unlock(&fs_devices->device_list_mutex); btrfs_abort_transaction(trans, ret); goto out; } if (device->bytes_used > 0) { mutex_lock(&fs_info->chunk_mutex); btrfs_device_set_bytes_used(device, device->bytes_used - dev_extent_len); atomic64_add(dev_extent_len, &fs_info->free_chunk_space); btrfs_clear_space_info_full(fs_info); mutex_unlock(&fs_info->chunk_mutex); } ret = btrfs_update_device(trans, device); if (ret) { mutex_unlock(&fs_devices->device_list_mutex); btrfs_abort_transaction(trans, ret); goto out; } } mutex_unlock(&fs_devices->device_list_mutex); ret = btrfs_free_chunk(trans, chunk_offset); if (ret) { btrfs_abort_transaction(trans, ret); goto out; } trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len); if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { ret = btrfs_del_sys_chunk(fs_info, chunk_offset); if (ret) { btrfs_abort_transaction(trans, ret); goto out; } } ret = btrfs_remove_block_group(trans, chunk_offset, em); if (ret) { btrfs_abort_transaction(trans, ret); goto out; } out: /* once for us */ free_extent_map(em); return ret; } static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) { struct btrfs_root *root = fs_info->chunk_root; struct btrfs_trans_handle *trans; int ret; /* * Prevent races with automatic removal of unused block groups. * After we relocate and before we remove the chunk with offset * chunk_offset, automatic removal of the block group can kick in, * resulting in a failure when calling btrfs_remove_chunk() below. * * Make sure to acquire this mutex before doing a tree search (dev * or chunk trees) to find chunks. Otherwise the cleaner kthread might * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after * we release the path used to search the chunk/dev tree and before * the current task acquires this mutex and calls us. */ lockdep_assert_held(&fs_info->delete_unused_bgs_mutex); /* step one, relocate all the extents inside this chunk */ btrfs_scrub_pause(fs_info); ret = btrfs_relocate_block_group(fs_info, chunk_offset); btrfs_scrub_continue(fs_info); if (ret) return ret; trans = btrfs_start_trans_remove_block_group(root->fs_info, chunk_offset); if (IS_ERR(trans)) { ret = PTR_ERR(trans); btrfs_handle_fs_error(root->fs_info, ret, NULL); return ret; } /* * step two, delete the device extents and the * chunk tree entries */ ret = btrfs_remove_chunk(trans, chunk_offset); btrfs_end_transaction(trans); return ret; } static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) { struct btrfs_root *chunk_root = fs_info->chunk_root; struct btrfs_path *path; struct extent_buffer *leaf; struct btrfs_chunk *chunk; struct btrfs_key key; struct btrfs_key found_key; u64 chunk_type; bool retried = false; int failed = 0; int ret; path = btrfs_alloc_path(); if (!path) return -ENOMEM; again: key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; key.offset = (u64)-1; key.type = BTRFS_CHUNK_ITEM_KEY; while (1) { mutex_lock(&fs_info->delete_unused_bgs_mutex); ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); if (ret < 0) { mutex_unlock(&fs_info->delete_unused_bgs_mutex); goto error; } BUG_ON(ret == 0); /* Corruption */ ret = btrfs_previous_item(chunk_root, path, key.objectid, key.type); if (ret) mutex_unlock(&fs_info->delete_unused_bgs_mutex); if (ret < 0) goto error; if (ret > 0) break; leaf = path->nodes[0]; btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); chunk = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_chunk); chunk_type = btrfs_chunk_type(leaf, chunk); btrfs_release_path(path); if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { ret = btrfs_relocate_chunk(fs_info, found_key.offset); if (ret == -ENOSPC) failed++; else BUG_ON(ret); } mutex_unlock(&fs_info->delete_unused_bgs_mutex); if (found_key.offset == 0) break; key.offset = found_key.offset - 1; } ret = 0; if (failed && !retried) { failed = 0; retried = true; goto again; } else if (WARN_ON(failed && retried)) { ret = -ENOSPC; } error: btrfs_free_path(path); return ret; } /* * return 1 : allocate a data chunk successfully, * return <0: errors during allocating a data chunk, * return 0 : no need to allocate a data chunk. */ static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) { struct btrfs_block_group_cache *cache; u64 bytes_used; u64 chunk_type; cache = btrfs_lookup_block_group(fs_info, chunk_offset); ASSERT(cache); chunk_type = cache->flags; btrfs_put_block_group(cache); if (chunk_type & BTRFS_BLOCK_GROUP_DATA) { spin_lock(&fs_info->data_sinfo->lock); bytes_used = fs_info->data_sinfo->bytes_used; spin_unlock(&fs_info->data_sinfo->lock); if (!bytes_used) { struct btrfs_trans_handle *trans; int ret; trans = btrfs_join_transaction(fs_info->tree_root); if (IS_ERR(trans)) return PTR_ERR(trans); ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA); btrfs_end_transaction(trans); if (ret < 0) return ret; return 1; } } return 0; } static int insert_balance_item(struct btrfs_fs_info *fs_info, struct btrfs_balance_control *bctl) { struct btrfs_root *root = fs_info->tree_root; struct btrfs_trans_handle *trans; struct btrfs_balance_item *item; struct btrfs_disk_balance_args disk_bargs; struct btrfs_path *path; struct extent_buffer *leaf; struct btrfs_key key; int ret, err; path = btrfs_alloc_path(); if (!path) return -ENOMEM; trans = btrfs_start_transaction(root, 0); if (IS_ERR(trans)) { btrfs_free_path(path); return PTR_ERR(trans); } key.objectid = BTRFS_BALANCE_OBJECTID; key.type = BTRFS_TEMPORARY_ITEM_KEY; key.offset = 0; ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*item)); if (ret) goto out; leaf = path->nodes[0]; item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); btrfs_set_balance_data(leaf, item, &disk_bargs); btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); btrfs_set_balance_meta(leaf, item, &disk_bargs); btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); btrfs_set_balance_sys(leaf, item, &disk_bargs); btrfs_set_balance_flags(leaf, item, bctl->flags); btrfs_mark_buffer_dirty(leaf); out: btrfs_free_path(path); err = btrfs_commit_transaction(trans); if (err && !ret) ret = err; return ret; } static int del_balance_item(struct btrfs_fs_info *fs_info) { struct btrfs_root *root = fs_info->tree_root; struct btrfs_trans_handle *trans; struct btrfs_path *path; struct btrfs_key key; int ret, err; path = btrfs_alloc_path(); if (!path) return -ENOMEM; trans = btrfs_start_transaction(root, 0); if (IS_ERR(trans)) { btrfs_free_path(path); return PTR_ERR(trans); } key.objectid = BTRFS_BALANCE_OBJECTID; key.type = BTRFS_TEMPORARY_ITEM_KEY; key.offset = 0; ret = btrfs_search_slot(trans, root, &key, path, -1, 1); if (ret < 0) goto out; if (ret > 0) { ret = -ENOENT; goto out; } ret = btrfs_del_item(trans, root, path); out: btrfs_free_path(path); err = btrfs_commit_transaction(trans); if (err && !ret) ret = err; return ret; } /* * This is a heuristic used to reduce the number of chunks balanced on * resume after balance was interrupted. */ static void update_balance_args(struct btrfs_balance_control *bctl) { /* * Turn on soft mode for chunk types that were being converted. */ if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; /* * Turn on usage filter if is not already used. The idea is * that chunks that we have already balanced should be * reasonably full. Don't do it for chunks that are being * converted - that will keep us from relocating unconverted * (albeit full) chunks. */ if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; bctl->data.usage = 90; } if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; bctl->sys.usage = 90; } if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; bctl->meta.usage = 90; } } /* * Clear the balance status in fs_info and delete the balance item from disk. */ static void reset_balance_state(struct btrfs_fs_info *fs_info) { struct btrfs_balance_control *bctl = fs_info->balance_ctl; int ret; BUG_ON(!fs_info->balance_ctl); spin_lock(&fs_info->balance_lock); fs_info->balance_ctl = NULL; spin_unlock(&fs_info->balance_lock); kfree(bctl); ret = del_balance_item(fs_info); if (ret) btrfs_handle_fs_error(fs_info, ret, NULL); } /* * Balance filters. Return 1 if chunk should be filtered out * (should not be balanced). */ static int chunk_profiles_filter(u64 chunk_type, struct btrfs_balance_args *bargs) { chunk_type = chunk_to_extended(chunk_type) & BTRFS_EXTENDED_PROFILE_MASK; if (bargs->profiles & chunk_type) return 0; return 1; } static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, struct btrfs_balance_args *bargs) { struct btrfs_block_group_cache *cache; u64 chunk_used; u64 user_thresh_min; u64 user_thresh_max; int ret = 1; cache = btrfs_lookup_block_group(fs_info, chunk_offset); chunk_used = btrfs_block_group_used(&cache->item); if (bargs->usage_min == 0) user_thresh_min = 0; else user_thresh_min = div_factor_fine(cache->key.offset, bargs->usage_min); if (bargs->usage_max == 0) user_thresh_max = 1; else if (bargs->usage_max > 100) user_thresh_max = cache->key.offset; else user_thresh_max = div_factor_fine(cache->key.offset, bargs->usage_max); if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) ret = 0; btrfs_put_block_group(cache); return ret; } static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, struct btrfs_balance_args *bargs) { struct btrfs_block_group_cache *cache; u64 chunk_used, user_thresh; int ret = 1; cache = btrfs_lookup_block_group(fs_info, chunk_offset); chunk_used = btrfs_block_group_used(&cache->item); if (bargs->usage_min == 0) user_thresh = 1; else if (bargs->usage > 100) user_thresh = cache->key.offset; else user_thresh = div_factor_fine(cache->key.offset, bargs->usage); if (chunk_used < user_thresh) ret = 0; btrfs_put_block_group(cache); return ret; } static int chunk_devid_filter(struct extent_buffer *leaf, struct btrfs_chunk *chunk, struct btrfs_balance_args *bargs) { struct btrfs_stripe *stripe; int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); int i; for (i = 0; i < num_stripes; i++) { stripe = btrfs_stripe_nr(chunk, i); if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) return 0; } return 1; } static u64 calc_data_stripes(u64 type, int num_stripes) { const int index = btrfs_bg_flags_to_raid_index(type); const int ncopies = btrfs_raid_array[index].ncopies; const int nparity = btrfs_raid_array[index].nparity; if (nparity) return num_stripes - nparity; else return num_stripes / ncopies; } /* [pstart, pend) */ static int chunk_drange_filter(struct extent_buffer *leaf, struct btrfs_chunk *chunk, struct btrfs_balance_args *bargs) { struct btrfs_stripe *stripe; int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); u64 stripe_offset; u64 stripe_length; u64 type; int factor; int i; if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) return 0; type = btrfs_chunk_type(leaf, chunk); factor = calc_data_stripes(type, num_stripes); for (i = 0; i < num_stripes; i++) { stripe = btrfs_stripe_nr(chunk, i); if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) continue; stripe_offset = btrfs_stripe_offset(leaf, stripe); stripe_length = btrfs_chunk_length(leaf, chunk); stripe_length = div_u64(stripe_length, factor); if (stripe_offset < bargs->pend && stripe_offset + stripe_length > bargs->pstart) return 0; } return 1; } /* [vstart, vend) */ static int chunk_vrange_filter(struct extent_buffer *leaf, struct btrfs_chunk *chunk, u64 chunk_offset, struct btrfs_balance_args *bargs) { if (chunk_offset < bargs->vend && chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) /* at least part of the chunk is inside this vrange */ return 0; return 1; } static int chunk_stripes_range_filter(struct extent_buffer *leaf, struct btrfs_chunk *chunk, struct btrfs_balance_args *bargs) { int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); if (bargs->stripes_min <= num_stripes && num_stripes <= bargs->stripes_max) return 0; return 1; } static int chunk_soft_convert_filter(u64 chunk_type, struct btrfs_balance_args *bargs) { if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) return 0; chunk_type = chunk_to_extended(chunk_type) & BTRFS_EXTENDED_PROFILE_MASK; if (bargs->target == chunk_type) return 1; return 0; } static int should_balance_chunk(struct extent_buffer *leaf, struct btrfs_chunk *chunk, u64 chunk_offset) { struct btrfs_fs_info *fs_info = leaf->fs_info; struct btrfs_balance_control *bctl = fs_info->balance_ctl; struct btrfs_balance_args *bargs = NULL; u64 chunk_type = btrfs_chunk_type(leaf, chunk); /* type filter */ if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { return 0; } if (chunk_type & BTRFS_BLOCK_GROUP_DATA) bargs = &bctl->data; else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) bargs = &bctl->sys; else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) bargs = &bctl->meta; /* profiles filter */ if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && chunk_profiles_filter(chunk_type, bargs)) { return 0; } /* usage filter */ if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && chunk_usage_filter(fs_info, chunk_offset, bargs)) { return 0; } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { return 0; } /* devid filter */ if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && chunk_devid_filter(leaf, chunk, bargs)) { return 0; } /* drange filter, makes sense only with devid filter */ if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && chunk_drange_filter(leaf, chunk, bargs)) { return 0; } /* vrange filter */ if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { return 0; } /* stripes filter */ if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && chunk_stripes_range_filter(leaf, chunk, bargs)) { return 0; } /* soft profile changing mode */ if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && chunk_soft_convert_filter(chunk_type, bargs)) { return 0; } /* * limited by count, must be the last filter */ if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { if (bargs->limit == 0) return 0; else bargs->limit--; } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { /* * Same logic as the 'limit' filter; the minimum cannot be * determined here because we do not have the global information * about the count of all chunks that satisfy the filters. */ if (bargs->limit_max == 0) return 0; else bargs->limit_max--; } return 1; } static int __btrfs_balance(struct btrfs_fs_info *fs_info) { struct btrfs_balance_control *bctl = fs_info->balance_ctl; struct btrfs_root *chunk_root = fs_info->chunk_root; u64 chunk_type; struct btrfs_chunk *chunk; struct btrfs_path *path = NULL; struct btrfs_key key; struct btrfs_key found_key; struct extent_buffer *leaf; int slot; int ret; int enospc_errors = 0; bool counting = true; /* The single value limit and min/max limits use the same bytes in the */ u64 limit_data = bctl->data.limit; u64 limit_meta = bctl->meta.limit; u64 limit_sys = bctl->sys.limit; u32 count_data = 0; u32 count_meta = 0; u32 count_sys = 0; int chunk_reserved = 0; path = btrfs_alloc_path(); if (!path) { ret = -ENOMEM; goto error; } /* zero out stat counters */ spin_lock(&fs_info->balance_lock); memset(&bctl->stat, 0, sizeof(bctl->stat)); spin_unlock(&fs_info->balance_lock); again: if (!counting) { /* * The single value limit and min/max limits use the same bytes * in the */ bctl->data.limit = limit_data; bctl->meta.limit = limit_meta; bctl->sys.limit = limit_sys; } key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; key.offset = (u64)-1; key.type = BTRFS_CHUNK_ITEM_KEY; while (1) { if ((!counting && atomic_read(&fs_info->balance_pause_req)) || atomic_read(&fs_info->balance_cancel_req)) { ret = -ECANCELED; goto error; } mutex_lock(&fs_info->delete_unused_bgs_mutex); ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); if (ret < 0) { mutex_unlock(&fs_info->delete_unused_bgs_mutex); goto error; } /* * this shouldn't happen, it means the last relocate * failed */ if (ret == 0) BUG(); /* FIXME break ? */ ret = btrfs_previous_item(chunk_root, path, 0, BTRFS_CHUNK_ITEM_KEY); if (ret) { mutex_unlock(&fs_info->delete_unused_bgs_mutex); ret = 0; break; } leaf = path->nodes[0]; slot = path->slots[0]; btrfs_item_key_to_cpu(leaf, &found_key, slot); if (found_key.objectid != key.objectid) { mutex_unlock(&fs_info->delete_unused_bgs_mutex); break; } chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); chunk_type = btrfs_chunk_type(leaf, chunk); if (!counting) { spin_lock(&fs_info->balance_lock); bctl->stat.considered++; spin_unlock(&fs_info->balance_lock); } ret = should_balance_chunk(leaf, chunk, found_key.offset); btrfs_release_path(path); if (!ret) { mutex_unlock(&fs_info->delete_unused_bgs_mutex); goto loop; } if (counting) { mutex_unlock(&fs_info->delete_unused_bgs_mutex); spin_lock(&fs_info->balance_lock); bctl->stat.expected++; spin_unlock(&fs_info->balance_lock); if (chunk_type & BTRFS_BLOCK_GROUP_DATA) count_data++; else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) count_sys++; else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) count_meta++; goto loop; } /* * Apply limit_min filter, no need to check if the LIMITS * filter is used, limit_min is 0 by default */ if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && count_data < bctl->data.limit_min) || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && count_meta < bctl->meta.limit_min) || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && count_sys < bctl->sys.limit_min)) { mutex_unlock(&fs_info->delete_unused_bgs_mutex); goto loop; } if (!chunk_reserved) { /* * We may be relocating the only data chunk we have, * which could potentially end up with losing data's * raid profile, so lets allocate an empty one in * advance. */ ret = btrfs_may_alloc_data_chunk(fs_info, found_key.offset); if (ret < 0) { mutex_unlock(&fs_info->delete_unused_bgs_mutex); goto error; } else if (ret == 1) { chunk_reserved = 1; } } ret = btrfs_relocate_chunk(fs_info, found_key.offset); mutex_unlock(&fs_info->delete_unused_bgs_mutex); if (ret == -ENOSPC) { enospc_errors++; } else if (ret == -ETXTBSY) { btrfs_info(fs_info, "skipping relocation of block group %llu due to active swapfile", found_key.offset); ret = 0; } else if (ret) { goto error; } else { spin_lock(&fs_info->balance_lock); bctl->stat.completed++; spin_unlock(&fs_info->balance_lock); } loop: if (found_key.offset == 0) break; key.offset = found_key.offset - 1; } if (counting) { btrfs_release_path(path); counting = false; goto again; } error: btrfs_free_path(path); if (enospc_errors) { btrfs_info(fs_info, "%d enospc errors during balance", enospc_errors); if (!ret) ret = -ENOSPC; } return ret; } /** * alloc_profile_is_valid - see if a given profile is valid and reduced * @flags: profile to validate * @extended: if true @flags is treated as an extended profile */ static int alloc_profile_is_valid(u64 flags, int extended) { u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : BTRFS_BLOCK_GROUP_PROFILE_MASK); flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; /* 1) check that all other bits are zeroed */ if (flags & ~mask) return 0; /* 2) see if profile is reduced */ if (flags == 0) return !extended; /* "0" is valid for usual profiles */ /* true if exactly one bit set */ /* * Don't use is_power_of_2(unsigned long) because it won't work * for the single profile (1ULL << 48) on 32-bit CPUs. */ return flags != 0 && (flags & (flags - 1)) == 0; } static inline int balance_need_close(struct btrfs_fs_info *fs_info) { /* cancel requested || normal exit path */ return atomic_read(&fs_info->balance_cancel_req) || (atomic_read(&fs_info->balance_pause_req) == 0 && atomic_read(&fs_info->balance_cancel_req) == 0); } /* Non-zero return value signifies invalidity */ static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg, u64 allowed) { return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) && (!alloc_profile_is_valid(bctl_arg->target, 1) || (bctl_arg->target & ~allowed))); } /* * Fill @buf with textual description of balance filter flags @bargs, up to * @size_buf including the terminating null. The output may be trimmed if it * does not fit into the provided buffer. */ static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf, u32 size_buf) { int ret; u32 size_bp = size_buf; char *bp = buf; u64 flags = bargs->flags; char tmp_buf[128] = {'\0'}; if (!flags) return; #define CHECK_APPEND_NOARG(a) \ do { \ ret = snprintf(bp, size_bp, (a)); \ if (ret < 0 || ret >= size_bp) \ goto out_overflow; \ size_bp -= ret; \ bp += ret; \ } while (0) #define CHECK_APPEND_1ARG(a, v1) \ do { \ ret = snprintf(bp, size_bp, (a), (v1)); \ if (ret < 0 || ret >= size_bp) \ goto out_overflow; \ size_bp -= ret; \ bp += ret; \ } while (0) #define CHECK_APPEND_2ARG(a, v1, v2) \ do { \ ret = snprintf(bp, size_bp, (a), (v1), (v2)); \ if (ret < 0 || ret >= size_bp) \ goto out_overflow; \ size_bp -= ret; \ bp += ret; \ } while (0) if (flags & BTRFS_BALANCE_ARGS_CONVERT) CHECK_APPEND_1ARG("convert=%s,", btrfs_bg_type_to_raid_name(bargs->target)); if (flags & BTRFS_BALANCE_ARGS_SOFT) CHECK_APPEND_NOARG("soft,"); if (flags & BTRFS_BALANCE_ARGS_PROFILES) { btrfs_describe_block_groups(bargs->profiles, tmp_buf, sizeof(tmp_buf)); CHECK_APPEND_1ARG("profiles=%s,", tmp_buf); } if (flags & BTRFS_BALANCE_ARGS_USAGE) CHECK_APPEND_1ARG("usage=%llu,", bargs->usage); if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) CHECK_APPEND_2ARG("usage=%u..%u,", bargs->usage_min, bargs->usage_max); if (flags & BTRFS_BALANCE_ARGS_DEVID) CHECK_APPEND_1ARG("devid=%llu,", bargs->devid); if (flags & BTRFS_BALANCE_ARGS_DRANGE) CHECK_APPEND_2ARG("drange=%llu..%llu,", bargs->pstart, bargs->pend); if (flags & BTRFS_BALANCE_ARGS_VRANGE) CHECK_APPEND_2ARG("vrange=%llu..%llu,", bargs->vstart, bargs->vend); if (flags & BTRFS_BALANCE_ARGS_LIMIT) CHECK_APPEND_1ARG("limit=%llu,", bargs->limit); if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE) CHECK_APPEND_2ARG("limit=%u..%u,", bargs->limit_min, bargs->limit_max); if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) CHECK_APPEND_2ARG("stripes=%u..%u,", bargs->stripes_min, bargs->stripes_max); #undef CHECK_APPEND_2ARG #undef CHECK_APPEND_1ARG #undef CHECK_APPEND_NOARG out_overflow: if (size_bp < size_buf) buf[size_buf - size_bp - 1] = '\0'; /* remove last , */ else buf[0] = '\0'; } static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info) { u32 size_buf = 1024; char tmp_buf[192] = {'\0'}; char *buf; char *bp; u32 size_bp = size_buf; int ret; struct btrfs_balance_control *bctl = fs_info->balance_ctl; buf = kzalloc(size_buf, GFP_KERNEL); if (!buf) return; bp = buf; #define CHECK_APPEND_1ARG(a, v1) \ do { \ ret = snprintf(bp, size_bp, (a), (v1)); \ if (ret < 0 || ret >= size_bp) \ goto out_overflow; \ size_bp -= ret; \ bp += ret; \ } while (0) if (bctl->flags & BTRFS_BALANCE_FORCE) CHECK_APPEND_1ARG("%s", "-f "); if (bctl->flags & BTRFS_BALANCE_DATA) { describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf)); CHECK_APPEND_1ARG("-d%s ", tmp_buf); } if (bctl->flags & BTRFS_BALANCE_METADATA) { describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf)); CHECK_APPEND_1ARG("-m%s ", tmp_buf); } if (bctl->flags & BTRFS_BALANCE_SYSTEM) { describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf)); CHECK_APPEND_1ARG("-s%s ", tmp_buf); } #undef CHECK_APPEND_1ARG out_overflow: if (size_bp < size_buf) buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */ btrfs_info(fs_info, "balance: %s %s", (bctl->flags & BTRFS_BALANCE_RESUME) ? "resume" : "start", buf); kfree(buf); } /* * Should be called with balance mutexe held */ int btrfs_balance(struct btrfs_fs_info *fs_info, struct btrfs_balance_control *bctl, struct btrfs_ioctl_balance_args *bargs) { u64 meta_target, data_target; u64 allowed; int mixed = 0; int ret; u64 num_devices; unsigned seq; bool reducing_integrity; int i; if (btrfs_fs_closing(fs_info) || atomic_read(&fs_info->balance_pause_req) || atomic_read(&fs_info->balance_cancel_req)) { ret = -EINVAL; goto out; } allowed = btrfs_super_incompat_flags(fs_info->super_copy); if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) mixed = 1; /* * In case of mixed groups both data and meta should be picked, * and identical options should be given for both of them. */ allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; if (mixed && (bctl->flags & allowed)) { if (!(bctl->flags & BTRFS_BALANCE_DATA) || !(bctl->flags & BTRFS_BALANCE_METADATA) || memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { btrfs_err(fs_info, "balance: mixed groups data and metadata options must be the same"); ret = -EINVAL; goto out; } } num_devices = btrfs_num_devices(fs_info); /* * SINGLE profile on-disk has no profile bit, but in-memory we have a * special bit for it, to make it easier to distinguish. Thus we need * to set it manually, or balance would refuse the profile. */ allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) if (num_devices >= btrfs_raid_array[i].devs_min) allowed |= btrfs_raid_array[i].bg_flag; if (validate_convert_profile(&bctl->data, allowed)) { btrfs_err(fs_info, "balance: invalid convert data profile %s", btrfs_bg_type_to_raid_name(bctl->data.target)); ret = -EINVAL; goto out; } if (validate_convert_profile(&bctl->meta, allowed)) { btrfs_err(fs_info, "balance: invalid convert metadata profile %s", btrfs_bg_type_to_raid_name(bctl->meta.target)); ret = -EINVAL; goto out; } if (validate_convert_profile(&bctl->sys, allowed)) { btrfs_err(fs_info, "balance: invalid convert system profile %s", btrfs_bg_type_to_raid_name(bctl->sys.target)); ret = -EINVAL; goto out; } /* * Allow to reduce metadata or system integrity only if force set for * profiles with redundancy (copies, parity) */ allowed = 0; for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) { if (btrfs_raid_array[i].ncopies >= 2 || btrfs_raid_array[i].tolerated_failures >= 1) allowed |= btrfs_raid_array[i].bg_flag; } do { seq = read_seqbegin(&fs_info->profiles_lock); if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && (fs_info->avail_system_alloc_bits & allowed) && !(bctl->sys.target & allowed)) || ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && (fs_info->avail_metadata_alloc_bits & allowed) && !(bctl->meta.target & allowed))) reducing_integrity = true; else reducing_integrity = false; /* if we're not converting, the target field is uninitialized */ meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? bctl->meta.target : fs_info->avail_metadata_alloc_bits; data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? bctl->data.target : fs_info->avail_data_alloc_bits; } while (read_seqretry(&fs_info->profiles_lock, seq)); if (reducing_integrity) { if (bctl->flags & BTRFS_BALANCE_FORCE) { btrfs_info(fs_info, "balance: force reducing metadata integrity"); } else { btrfs_err(fs_info, "balance: reduces metadata integrity, use --force if you want this"); ret = -EINVAL; goto out; } } if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { btrfs_warn(fs_info, "balance: metadata profile %s has lower redundancy than data profile %s", btrfs_bg_type_to_raid_name(meta_target), btrfs_bg_type_to_raid_name(data_target)); } if (fs_info->send_in_progress) { btrfs_warn_rl(fs_info, "cannot run balance while send operations are in progress (%d in progress)", fs_info->send_in_progress); ret = -EAGAIN; goto out; } ret = insert_balance_item(fs_info, bctl); if (ret && ret != -EEXIST) goto out; if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { BUG_ON(ret == -EEXIST); BUG_ON(fs_info->balance_ctl); spin_lock(&fs_info->balance_lock); fs_info->balance_ctl = bctl; spin_unlock(&fs_info->balance_lock); } else { BUG_ON(ret != -EEXIST); spin_lock(&fs_info->balance_lock); update_balance_args(bctl); spin_unlock(&fs_info->balance_lock); } ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); describe_balance_start_or_resume(fs_info); mutex_unlock(&fs_info->balance_mutex); ret = __btrfs_balance(fs_info); mutex_lock(&fs_info->balance_mutex); if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) btrfs_info(fs_info, "balance: paused"); else if (ret == -ECANCELED && atomic_read(&fs_info->balance_cancel_req)) btrfs_info(fs_info, "balance: canceled"); else btrfs_info(fs_info, "balance: ended with status: %d", ret); clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); if (bargs) { memset(bargs, 0, sizeof(*bargs)); btrfs_update_ioctl_balance_args(fs_info, bargs); } if ((ret && ret != -ECANCELED && ret != -ENOSPC) || balance_need_close(fs_info)) { reset_balance_state(fs_info); clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); } wake_up(&fs_info->balance_wait_q); return ret; out: if (bctl->flags & BTRFS_BALANCE_RESUME) reset_balance_state(fs_info); else kfree(bctl); clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); return ret; } static int balance_kthread(void *data) { struct btrfs_fs_info *fs_info = data; int ret = 0; mutex_lock(&fs_info->balance_mutex); if (fs_info->balance_ctl) ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL); mutex_unlock(&fs_info->balance_mutex); return ret; } int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) { struct task_struct *tsk; mutex_lock(&fs_info->balance_mutex); if (!fs_info->balance_ctl) { mutex_unlock(&fs_info->balance_mutex); return 0; } mutex_unlock(&fs_info->balance_mutex); if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { btrfs_info(fs_info, "balance: resume skipped"); return 0; } /* * A ro->rw remount sequence should continue with the paused balance * regardless of who pauses it, system or the user as of now, so set * the resume flag. */ spin_lock(&fs_info->balance_lock); fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME; spin_unlock(&fs_info->balance_lock); tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); return PTR_ERR_OR_ZERO(tsk); } int btrfs_recover_balance(struct btrfs_fs_info *fs_info) { struct btrfs_balance_control *bctl; struct btrfs_balance_item *item; struct btrfs_disk_balance_args disk_bargs; struct btrfs_path *path; struct extent_buffer *leaf; struct btrfs_key key; int ret; path = btrfs_alloc_path(); if (!path) return -ENOMEM; key.objectid = BTRFS_BALANCE_OBJECTID; key.type = BTRFS_TEMPORARY_ITEM_KEY; key.offset = 0; ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); if (ret < 0) goto out; if (ret > 0) { /* ret = -ENOENT; */ ret = 0; goto out; } bctl = kzalloc(sizeof(*bctl), GFP_NOFS); if (!bctl) { ret = -ENOMEM; goto out; } leaf = path->nodes[0]; item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); bctl->flags = btrfs_balance_flags(leaf, item); bctl->flags |= BTRFS_BALANCE_RESUME; btrfs_balance_data(leaf, item, &disk_bargs); btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); btrfs_balance_meta(leaf, item, &disk_bargs); btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); btrfs_balance_sys(leaf, item, &disk_bargs); btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); /* * This should never happen, as the paused balance state is recovered * during mount without any chance of other exclusive ops to collide. * * This gives the exclusive op status to balance and keeps in paused * state until user intervention (cancel or umount). If the ownership * cannot be assigned, show a message but do not fail. The balance * is in a paused state and must have fs_info::balance_ctl properly * set up. */ if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) btrfs_warn(fs_info, "balance: cannot set exclusive op status, resume manually"); mutex_lock(&fs_info->balance_mutex); BUG_ON(fs_info->balance_ctl); spin_lock(&fs_info->balance_lock); fs_info->balance_ctl = bctl; spin_unlock(&fs_info->balance_lock); mutex_unlock(&fs_info->balance_mutex); out: btrfs_free_path(path); return ret; } int btrfs_pause_balance(struct btrfs_fs_info *fs_info) { int ret = 0; mutex_lock(&fs_info->balance_mutex); if (!fs_info->balance_ctl) { mutex_unlock(&fs_info->balance_mutex); return -ENOTCONN; } if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { atomic_inc(&fs_info->balance_pause_req); mutex_unlock(&fs_info->balance_mutex); wait_event(fs_info->balance_wait_q, !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); mutex_lock(&fs_info->balance_mutex); /* we are good with balance_ctl ripped off from under us */ BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); atomic_dec(&fs_info->balance_pause_req); } else { ret = -ENOTCONN; } mutex_unlock(&fs_info->balance_mutex); return ret; } int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) { mutex_lock(&fs_info->balance_mutex); if (!fs_info->balance_ctl) { mutex_unlock(&fs_info->balance_mutex); return -ENOTCONN; } /* * A paused balance with the item stored on disk can be resumed at * mount time if the mount is read-write. Otherwise it's still paused * and we must not allow cancelling as it deletes the item. */ if (sb_rdonly(fs_info->sb)) { mutex_unlock(&fs_info->balance_mutex); return -EROFS; } atomic_inc(&fs_info->balance_cancel_req); /* * if we are running just wait and return, balance item is * deleted in btrfs_balance in this case */ if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { mutex_unlock(&fs_info->balance_mutex); wait_event(fs_info->balance_wait_q, !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); mutex_lock(&fs_info->balance_mutex); } else { mutex_unlock(&fs_info->balance_mutex); /* * Lock released to allow other waiters to continue, we'll * reexamine the status again. */ mutex_lock(&fs_info->balance_mutex); if (fs_info->balance_ctl) { reset_balance_state(fs_info); clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); btrfs_info(fs_info, "balance: canceled"); } } BUG_ON(fs_info->balance_ctl || test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); atomic_dec(&fs_info->balance_cancel_req); mutex_unlock(&fs_info->balance_mutex); return 0; } static int btrfs_uuid_scan_kthread(void *data) { struct btrfs_fs_info *fs_info = data; struct btrfs_root *root = fs_info->tree_root; struct btrfs_key key; struct btrfs_path *path = NULL; int ret = 0; struct extent_buffer *eb; int slot; struct btrfs_root_item root_item; u32 item_size; struct btrfs_trans_handle *trans = NULL; path = btrfs_alloc_path(); if (!path) { ret = -ENOMEM; goto out; } key.objectid = 0; key.type = BTRFS_ROOT_ITEM_KEY; key.offset = 0; while (1) { ret = btrfs_search_forward(root, &key, path, BTRFS_OLDEST_GENERATION); if (ret) { if (ret > 0) ret = 0; break; } if (key.type != BTRFS_ROOT_ITEM_KEY || (key.objectid < BTRFS_FIRST_FREE_OBJECTID && key.objectid != BTRFS_FS_TREE_OBJECTID) || key.objectid > BTRFS_LAST_FREE_OBJECTID) goto skip; eb = path->nodes[0]; slot = path->slots[0]; item_size = btrfs_item_size_nr(eb, slot); if (item_size < sizeof(root_item)) goto skip; read_extent_buffer(eb, &root_item, btrfs_item_ptr_offset(eb, slot), (int)sizeof(root_item)); if (btrfs_root_refs(&root_item) == 0) goto skip; if (!btrfs_is_empty_uuid(root_item.uuid) || !btrfs_is_empty_uuid(root_item.received_uuid)) { if (trans) goto update_tree; btrfs_release_path(path); /* * 1 - subvol uuid item * 1 - received_subvol uuid item */ trans = btrfs_start_transaction(fs_info->uuid_root, 2); if (IS_ERR(trans)) { ret = PTR_ERR(trans); break; } continue; } else { goto skip; } update_tree: if (!btrfs_is_empty_uuid(root_item.uuid)) { ret = btrfs_uuid_tree_add(trans, root_item.uuid, BTRFS_UUID_KEY_SUBVOL, key.objectid); if (ret < 0) { btrfs_warn(fs_info, "uuid_tree_add failed %d", ret); break; } } if (!btrfs_is_empty_uuid(root_item.received_uuid)) { ret = btrfs_uuid_tree_add(trans, root_item.received_uuid, BTRFS_UUID_KEY_RECEIVED_SUBVOL, key.objectid); if (ret < 0) { btrfs_warn(fs_info, "uuid_tree_add failed %d", ret); break; } } skip: if (trans) { ret = btrfs_end_transaction(trans); trans = NULL; if (ret) break; } btrfs_release_path(path); if (key.offset < (u64)-1) { key.offset++; } else if (key.type < BTRFS_ROOT_ITEM_KEY) { key.offset = 0; key.type = BTRFS_ROOT_ITEM_KEY; } else if (key.objectid < (u64)-1) { key.offset = 0; key.type = BTRFS_ROOT_ITEM_KEY; key.objectid++; } else { break; } cond_resched(); } out: btrfs_free_path(path); if (trans && !IS_ERR(trans)) btrfs_end_transaction(trans); if (ret) btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); else set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); up(&fs_info->uuid_tree_rescan_sem); return 0; } /* * Callback for btrfs_uuid_tree_iterate(). * returns: * 0 check succeeded, the entry is not outdated. * < 0 if an error occurred. * > 0 if the check failed, which means the caller shall remove the entry. */ static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info, u8 *uuid, u8 type, u64 subid) { struct btrfs_key key; int ret = 0; struct btrfs_root *subvol_root; if (type != BTRFS_UUID_KEY_SUBVOL && type != BTRFS_UUID_KEY_RECEIVED_SUBVOL) goto out; key.objectid = subid; key.type = BTRFS_ROOT_ITEM_KEY; key.offset = (u64)-1; subvol_root = btrfs_read_fs_root_no_name(fs_info, &key); if (IS_ERR(subvol_root)) { ret = PTR_ERR(subvol_root); if (ret == -ENOENT) ret = 1; goto out; } switch (type) { case BTRFS_UUID_KEY_SUBVOL: if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE)) ret = 1; break; case BTRFS_UUID_KEY_RECEIVED_SUBVOL: if (memcmp(uuid, subvol_root->root_item.received_uuid, BTRFS_UUID_SIZE)) ret = 1; break; } out: return ret; } static int btrfs_uuid_rescan_kthread(void *data) { struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data; int ret; /* * 1st step is to iterate through the existing UUID tree and * to delete all entries that contain outdated data. * 2nd step is to add all missing entries to the UUID tree. */ ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry); if (ret < 0) { btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret); up(&fs_info->uuid_tree_rescan_sem); return ret; } return btrfs_uuid_scan_kthread(data); } int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) { struct btrfs_trans_handle *trans; struct btrfs_root *tree_root = fs_info->tree_root; struct btrfs_root *uuid_root; struct task_struct *task; int ret; /* * 1 - root node * 1 - root item */ trans = btrfs_start_transaction(tree_root, 2); if (IS_ERR(trans)) return PTR_ERR(trans); uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID); if (IS_ERR(uuid_root)) { ret = PTR_ERR(uuid_root); btrfs_abort_transaction(trans, ret); btrfs_end_transaction(trans); return ret; } fs_info->uuid_root = uuid_root; ret = btrfs_commit_transaction(trans); if (ret) return ret; down(&fs_info->uuid_tree_rescan_sem); task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); if (IS_ERR(task)) { /* fs_info->update_uuid_tree_gen remains 0 in all error case */ btrfs_warn(fs_info, "failed to start uuid_scan task"); up(&fs_info->uuid_tree_rescan_sem); return PTR_ERR(task); } return 0; } int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) { struct task_struct *task; down(&fs_info->uuid_tree_rescan_sem); task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); if (IS_ERR(task)) { /* fs_info->update_uuid_tree_gen remains 0 in all error case */ btrfs_warn(fs_info, "failed to start uuid_rescan task"); up(&fs_info->uuid_tree_rescan_sem); return PTR_ERR(task); } return 0; } /* * shrinking a device means finding all of the device extents past * the new size, and then following the back refs to the chunks. * The chunk relocation code actually frees the device extent */ int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) { struct btrfs_fs_info *fs_info = device->fs_info; struct btrfs_root *root = fs_info->dev_root; struct btrfs_trans_handle *trans; struct btrfs_dev_extent *dev_extent = NULL; struct btrfs_path *path; u64 length; u64 chunk_offset; int ret; int slot; int failed = 0; bool retried = false; struct extent_buffer *l; struct btrfs_key key; struct btrfs_super_block *super_copy = fs_info->super_copy; u64 old_total = btrfs_super_total_bytes(super_copy); u64 old_size = btrfs_device_get_total_bytes(device); u64 diff; u64 start; new_size = round_down(new_size, fs_info->sectorsize); start = new_size; diff = round_down(old_size - new_size, fs_info->sectorsize); if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) return -EINVAL; path = btrfs_alloc_path(); if (!path) return -ENOMEM; path->reada = READA_BACK; trans = btrfs_start_transaction(root, 0); if (IS_ERR(trans)) { btrfs_free_path(path); return PTR_ERR(trans); } mutex_lock(&fs_info->chunk_mutex); btrfs_device_set_total_bytes(device, new_size); if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { device->fs_devices->total_rw_bytes -= diff; atomic64_sub(diff, &fs_info->free_chunk_space); } /* * Once the device's size has been set to the new size, ensure all * in-memory chunks are synced to disk so that the loop below sees them * and relocates them accordingly. */ if (contains_pending_extent(device, &start, diff)) { mutex_unlock(&fs_info->chunk_mutex); ret = btrfs_commit_transaction(trans); if (ret) goto done; } else { mutex_unlock(&fs_info->chunk_mutex); btrfs_end_transaction(trans); } again: key.objectid = device->devid; key.offset = (u64)-1; key.type = BTRFS_DEV_EXTENT_KEY; do { mutex_lock(&fs_info->delete_unused_bgs_mutex); ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); if (ret < 0) { mutex_unlock(&fs_info->delete_unused_bgs_mutex); goto done; } ret = btrfs_previous_item(root, path, 0, key.type); if (ret) mutex_unlock(&fs_info->delete_unused_bgs_mutex); if (ret < 0) goto done; if (ret) { ret = 0; btrfs_release_path(path); break; } l = path->nodes[0]; slot = path->slots[0]; btrfs_item_key_to_cpu(l, &key, path->slots[0]); if (key.objectid != device->devid) { mutex_unlock(&fs_info->delete_unused_bgs_mutex); btrfs_release_path(path); break; } dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); length = btrfs_dev_extent_length(l, dev_extent); if (key.offset + length <= new_size) { mutex_unlock(&fs_info->delete_unused_bgs_mutex); btrfs_release_path(path); break; } chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); btrfs_release_path(path); /* * We may be relocating the only data chunk we have, * which could potentially end up with losing data's * raid profile, so lets allocate an empty one in * advance. */ ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset); if (ret < 0) { mutex_unlock(&fs_info->delete_unused_bgs_mutex); goto done; } ret = btrfs_relocate_chunk(fs_info, chunk_offset); mutex_unlock(&fs_info->delete_unused_bgs_mutex); if (ret == -ENOSPC) { failed++; } else if (ret) { if (ret == -ETXTBSY) { btrfs_warn(fs_info, "could not shrink block group %llu due to active swapfile", chunk_offset); } goto done; } } while (key.offset-- > 0); if (failed && !retried) { failed = 0; retried = true; goto again; } else if (failed && retried) { ret = -ENOSPC; goto done; } /* Shrinking succeeded, else we would be at "done". */ trans = btrfs_start_transaction(root, 0); if (IS_ERR(trans)) { ret = PTR_ERR(trans); goto done; } mutex_lock(&fs_info->chunk_mutex); btrfs_device_set_disk_total_bytes(device, new_size); if (list_empty(&device->post_commit_list)) list_add_tail(&device->post_commit_list, &trans->transaction->dev_update_list); WARN_ON(diff > old_total); btrfs_set_super_total_bytes(super_copy, round_down(old_total - diff, fs_info->sectorsize)); mutex_unlock(&fs_info->chunk_mutex); /* Now btrfs_update_device() will change the on-disk size. */ ret = btrfs_update_device(trans, device); if (ret < 0) { btrfs_abort_transaction(trans, ret); btrfs_end_transaction(trans); } else { ret = btrfs_commit_transaction(trans); } done: btrfs_free_path(path); if (ret) { mutex_lock(&fs_info->chunk_mutex); btrfs_device_set_total_bytes(device, old_size); if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) device->fs_devices->total_rw_bytes += diff; atomic64_add(diff, &fs_info->free_chunk_space); mutex_unlock(&fs_info->chunk_mutex); } return ret; } static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key, struct btrfs_chunk *chunk, int item_size) { struct btrfs_super_block *super_copy = fs_info->super_copy; struct btrfs_disk_key disk_key; u32 array_size; u8 *ptr; mutex_lock(&fs_info->chunk_mutex); array_size = btrfs_super_sys_array_size(super_copy); if (array_size + item_size + sizeof(disk_key) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { mutex_unlock(&fs_info->chunk_mutex); return -EFBIG; } ptr = super_copy->sys_chunk_array + array_size; btrfs_cpu_key_to_disk(&disk_key, key); memcpy(ptr, &disk_key, sizeof(disk_key)); ptr += sizeof(disk_key); memcpy(ptr, chunk, item_size); item_size += sizeof(disk_key); btrfs_set_super_sys_array_size(super_copy, array_size + item_size); mutex_unlock(&fs_info->chunk_mutex); return 0; } /* * sort the devices in descending order by max_avail, total_avail */ static int btrfs_cmp_device_info(const void *a, const void *b) { const struct btrfs_device_info *di_a = a; const struct btrfs_device_info *di_b = b; if (di_a->max_avail > di_b->max_avail) return -1; if (di_a->max_avail < di_b->max_avail) return 1; if (di_a->total_avail > di_b->total_avail) return -1; if (di_a->total_avail < di_b->total_avail) return 1; return 0; } static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) { if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) return; btrfs_set_fs_incompat(info, RAID56); } static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 start, u64 type) { struct btrfs_fs_info *info = trans->fs_info; struct btrfs_fs_devices *fs_devices = info->fs_devices; struct btrfs_device *device; struct map_lookup *map = NULL; struct extent_map_tree *em_tree; struct extent_map *em; struct btrfs_device_info *devices_info = NULL; u64 total_avail; int num_stripes; /* total number of stripes to allocate */ int data_stripes; /* number of stripes that count for block group size */ int sub_stripes; /* sub_stripes info for map */ int dev_stripes; /* stripes per dev */ int devs_max; /* max devs to use */ int devs_min; /* min devs needed */ int devs_increment; /* ndevs has to be a multiple of this */ int ncopies; /* how many copies to data has */ int nparity; /* number of stripes worth of bytes to store parity information */ int ret; u64 max_stripe_size; u64 max_chunk_size; u64 stripe_size; u64 chunk_size; int ndevs; int i; int j; int index; BUG_ON(!alloc_profile_is_valid(type, 0)); if (list_empty(&fs_devices->alloc_list)) { if (btrfs_test_opt(info, ENOSPC_DEBUG)) btrfs_debug(info, "%s: no writable device", __func__); return -ENOSPC; } index = btrfs_bg_flags_to_raid_index(type); sub_stripes = btrfs_raid_array[index].sub_stripes; dev_stripes = btrfs_raid_array[index].dev_stripes; devs_max = btrfs_raid_array[index].devs_max; if (!devs_max) devs_max = BTRFS_MAX_DEVS(info); devs_min = btrfs_raid_array[index].devs_min; devs_increment = btrfs_raid_array[index].devs_increment; ncopies = btrfs_raid_array[index].ncopies; nparity = btrfs_raid_array[index].nparity; if (type & BTRFS_BLOCK_GROUP_DATA) { max_stripe_size = SZ_1G; max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE; } else if (type & BTRFS_BLOCK_GROUP_METADATA) { /* for larger filesystems, use larger metadata chunks */ if (fs_devices->total_rw_bytes > 50ULL * SZ_1G) max_stripe_size = SZ_1G; else max_stripe_size = SZ_256M; max_chunk_size = max_stripe_size; } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { max_stripe_size = SZ_32M; max_chunk_size = 2 * max_stripe_size; devs_max = min_t(int, devs_max, BTRFS_MAX_DEVS_SYS_CHUNK); } else { btrfs_err(info, "invalid chunk type 0x%llx requested", type); BUG(); } /* We don't want a chunk larger than 10% of writable space */ max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), max_chunk_size); devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), GFP_NOFS); if (!devices_info) return -ENOMEM; /* * in the first pass through the devices list, we gather information * about the available holes on each device. */ ndevs = 0; list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { u64 max_avail; u64 dev_offset; if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { WARN(1, KERN_ERR "BTRFS: read-only device in alloc_list\n"); continue; } if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) || test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) continue; if (device->total_bytes > device->bytes_used) total_avail = device->total_bytes - device->bytes_used; else total_avail = 0; /* If there is no space on this device, skip it. */ if (total_avail == 0) continue; ret = find_free_dev_extent(device, max_stripe_size * dev_stripes, &dev_offset, &max_avail); if (ret && ret != -ENOSPC) goto error; if (ret == 0) max_avail = max_stripe_size * dev_stripes; if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) { if (btrfs_test_opt(info, ENOSPC_DEBUG)) btrfs_debug(info, "%s: devid %llu has no free space, have=%llu want=%u", __func__, device->devid, max_avail, BTRFS_STRIPE_LEN * dev_stripes); continue; } if (ndevs == fs_devices->rw_devices) { WARN(1, "%s: found more than %llu devices\n", __func__, fs_devices->rw_devices); break; } devices_info[ndevs].dev_offset = dev_offset; devices_info[ndevs].max_avail = max_avail; devices_info[ndevs].total_avail = total_avail; devices_info[ndevs].dev = device; ++ndevs; } /* * now sort the devices by hole size / available space */ sort(devices_info, ndevs, sizeof(struct btrfs_device_info), btrfs_cmp_device_info, NULL); /* round down to number of usable stripes */ ndevs = round_down(ndevs, devs_increment); if (ndevs < devs_min) { ret = -ENOSPC; if (btrfs_test_opt(info, ENOSPC_DEBUG)) { btrfs_debug(info, "%s: not enough devices with free space: have=%d minimum required=%d", __func__, ndevs, devs_min); } goto error; } ndevs = min(ndevs, devs_max); /* * The primary goal is to maximize the number of stripes, so use as * many devices as possible, even if the stripes are not maximum sized. * * The DUP profile stores more than one stripe per device, the * max_avail is the total size so we have to adjust. */ stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes); num_stripes = ndevs * dev_stripes; /* * this will have to be fixed for RAID1 and RAID10 over * more drives */ data_stripes = (num_stripes - nparity) / ncopies; /* * Use the number of data stripes to figure out how big this chunk * is really going to be in terms of logical address space, * and compare that answer with the max chunk size. If it's higher, * we try to reduce stripe_size. */ if (stripe_size * data_stripes > max_chunk_size) { /* * Reduce stripe_size, round it up to a 16MB boundary again and * then use it, unless it ends up being even bigger than the * previous value we had already. */ stripe_size = min(round_up(div_u64(max_chunk_size, data_stripes), SZ_16M), stripe_size); } /* align to BTRFS_STRIPE_LEN */ stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN); map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); if (!map) { ret = -ENOMEM; goto error; } map->num_stripes = num_stripes; for (i = 0; i < ndevs; ++i) { for (j = 0; j < dev_stripes; ++j) { int s = i * dev_stripes + j; map->stripes[s].dev = devices_info[i].dev; map->stripes[s].physical = devices_info[i].dev_offset + j * stripe_size; } } map->stripe_len = BTRFS_STRIPE_LEN; map->io_align = BTRFS_STRIPE_LEN; map->io_width = BTRFS_STRIPE_LEN; map->type = type; map->sub_stripes = sub_stripes; chunk_size = stripe_size * data_stripes; trace_btrfs_chunk_alloc(info, map, start, chunk_size); em = alloc_extent_map(); if (!em) { kfree(map); ret = -ENOMEM; goto error; } set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); em->map_lookup = map; em->start = start; em->len = chunk_size; em->block_start = 0; em->block_len = em->len; em->orig_block_len = stripe_size; em_tree = &info->mapping_tree; write_lock(&em_tree->lock); ret = add_extent_mapping(em_tree, em, 0); if (ret) { write_unlock(&em_tree->lock); free_extent_map(em); goto error; } write_unlock(&em_tree->lock); ret = btrfs_make_block_group(trans, 0, type, start, chunk_size); if (ret) goto error_del_extent; for (i = 0; i < map->num_stripes; i++) { struct btrfs_device *dev = map->stripes[i].dev; btrfs_device_set_bytes_used(dev, dev->bytes_used + stripe_size); if (list_empty(&dev->post_commit_list)) list_add_tail(&dev->post_commit_list, &trans->transaction->dev_update_list); } atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space); free_extent_map(em); check_raid56_incompat_flag(info, type); kfree(devices_info); return 0; error_del_extent: write_lock(&em_tree->lock); remove_extent_mapping(em_tree, em); write_unlock(&em_tree->lock); /* One for our allocation */ free_extent_map(em); /* One for the tree reference */ free_extent_map(em); error: kfree(devices_info); return ret; } int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans, u64 chunk_offset, u64 chunk_size) { struct btrfs_fs_info *fs_info = trans->fs_info; struct btrfs_root *extent_root = fs_info->extent_root; struct btrfs_root *chunk_root = fs_info->chunk_root; struct btrfs_key key; struct btrfs_device *device; struct btrfs_chunk *chunk; struct btrfs_stripe *stripe; struct extent_map *em; struct map_lookup *map; size_t item_size; u64 dev_offset; u64 stripe_size; int i = 0; int ret = 0; em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size); if (IS_ERR(em)) return PTR_ERR(em); map = em->map_lookup; item_size = btrfs_chunk_item_size(map->num_stripes); stripe_size = em->orig_block_len; chunk = kzalloc(item_size, GFP_NOFS); if (!chunk) { ret = -ENOMEM; goto out; } /* * Take the device list mutex to prevent races with the final phase of * a device replace operation that replaces the device object associated * with the map's stripes, because the device object's id can change * at any time during that final phase of the device replace operation * (dev-replace.c:btrfs_dev_replace_finishing()). */ mutex_lock(&fs_info->fs_devices->device_list_mutex); for (i = 0; i < map->num_stripes; i++) { device = map->stripes[i].dev; dev_offset = map->stripes[i].physical; ret = btrfs_update_device(trans, device); if (ret) break; ret = btrfs_alloc_dev_extent(trans, device, chunk_offset, dev_offset, stripe_size); if (ret) break; } if (ret) { mutex_unlock(&fs_info->fs_devices->device_list_mutex); goto out; } stripe = &chunk->stripe; for (i = 0; i < map->num_stripes; i++) { device = map->stripes[i].dev; dev_offset = map->stripes[i].physical; btrfs_set_stack_stripe_devid(stripe, device->devid); btrfs_set_stack_stripe_offset(stripe, dev_offset); memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); stripe++; } mutex_unlock(&fs_info->fs_devices->device_list_mutex); btrfs_set_stack_chunk_length(chunk, chunk_size); btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); btrfs_set_stack_chunk_type(chunk, map->type); btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; key.type = BTRFS_CHUNK_ITEM_KEY; key.offset = chunk_offset; ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) { /* * TODO: Cleanup of inserted chunk root in case of * failure. */ ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); } out: kfree(chunk); free_extent_map(em); return ret; } /* * Chunk allocation falls into two parts. The first part does work * that makes the new allocated chunk usable, but does not do any operation * that modifies the chunk tree. The second part does the work that * requires modifying the chunk tree. This division is important for the * bootstrap process of adding storage to a seed btrfs. */ int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type) { u64 chunk_offset; lockdep_assert_held(&trans->fs_info->chunk_mutex); chunk_offset = find_next_chunk(trans->fs_info); return __btrfs_alloc_chunk(trans, chunk_offset, type); } static noinline int init_first_rw_device(struct btrfs_trans_handle *trans) { struct btrfs_fs_info *fs_info = trans->fs_info; u64 chunk_offset; u64 sys_chunk_offset; u64 alloc_profile; int ret; chunk_offset = find_next_chunk(fs_info); alloc_profile = btrfs_metadata_alloc_profile(fs_info); ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile); if (ret) return ret; sys_chunk_offset = find_next_chunk(fs_info); alloc_profile = btrfs_system_alloc_profile(fs_info); ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile); return ret; } static inline int btrfs_chunk_max_errors(struct map_lookup *map) { const int index = btrfs_bg_flags_to_raid_index(map->type); return btrfs_raid_array[index].tolerated_failures; } int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset) { struct extent_map *em; struct map_lookup *map; int readonly = 0; int miss_ndevs = 0; int i; em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); if (IS_ERR(em)) return 1; map = em->map_lookup; for (i = 0; i < map->num_stripes; i++) { if (test_bit(BTRFS_DEV_STATE_MISSING, &map->stripes[i].dev->dev_state)) { miss_ndevs++; continue; } if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &map->stripes[i].dev->dev_state)) { readonly = 1; goto end; } } /* * If the number of missing devices is larger than max errors, * we can not write the data into that chunk successfully, so * set it readonly. */ if (miss_ndevs > btrfs_chunk_max_errors(map)) readonly = 1; end: free_extent_map(em); return readonly; } void btrfs_mapping_tree_free(struct extent_map_tree *tree) { struct extent_map *em; while (1) { write_lock(&tree->lock); em = lookup_extent_mapping(tree, 0, (u64)-1); if (em) remove_extent_mapping(tree, em); write_unlock(&tree->lock); if (!em) break; /* once for us */ free_extent_map(em); /* once for the tree */ free_extent_map(em); } } int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) { struct extent_map *em; struct map_lookup *map; int ret; em = btrfs_get_chunk_map(fs_info, logical, len); if (IS_ERR(em)) /* * We could return errors for these cases, but that could get * ugly and we'd probably do the same thing which is just not do * anything else and exit, so return 1 so the callers don't try * to use other copies. */ return 1; map = em->map_lookup; if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK)) ret = map->num_stripes; else if (map->type & BTRFS_BLOCK_GROUP_RAID10) ret = map->sub_stripes; else if (map->type & BTRFS_BLOCK_GROUP_RAID5) ret = 2; else if (map->type & BTRFS_BLOCK_GROUP_RAID6) /* * There could be two corrupted data stripes, we need * to loop retry in order to rebuild the correct data. * * Fail a stripe at a time on every retry except the * stripe under reconstruction. */ ret = map->num_stripes; else ret = 1; free_extent_map(em); down_read(&fs_info->dev_replace.rwsem); if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) && fs_info->dev_replace.tgtdev) ret++; up_read(&fs_info->dev_replace.rwsem); return ret; } unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, u64 logical) { struct extent_map *em; struct map_lookup *map; unsigned long len = fs_info->sectorsize; em = btrfs_get_chunk_map(fs_info, logical, len); if (!WARN_ON(IS_ERR(em))) { map = em->map_lookup; if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) len = map->stripe_len * nr_data_stripes(map); free_extent_map(em); } return len; } int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len) { struct extent_map *em; struct map_lookup *map; int ret = 0; em = btrfs_get_chunk_map(fs_info, logical, len); if(!WARN_ON(IS_ERR(em))) { map = em->map_lookup; if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) ret = 1; free_extent_map(em); } return ret; } static int find_live_mirror(struct btrfs_fs_info *fs_info, struct map_lookup *map, int first, int dev_replace_is_ongoing) { int i; int num_stripes; int preferred_mirror; int tolerance; struct btrfs_device *srcdev; ASSERT((map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10))); if (map->type & BTRFS_BLOCK_GROUP_RAID10) num_stripes = map->sub_stripes; else num_stripes = map->num_stripes; preferred_mirror = first + current->pid % num_stripes; if (dev_replace_is_ongoing && fs_info->dev_replace.cont_reading_from_srcdev_mode == BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) srcdev = fs_info->dev_replace.srcdev; else srcdev = NULL; /* * try to avoid the drive that is the source drive for a * dev-replace procedure, only choose it if no other non-missing * mirror is available */ for (tolerance = 0; tolerance < 2; tolerance++) { if (map->stripes[preferred_mirror].dev->bdev && (tolerance || map->stripes[preferred_mirror].dev != srcdev)) return preferred_mirror; for (i = first; i < first + num_stripes; i++) { if (map->stripes[i].dev->bdev && (tolerance || map->stripes[i].dev != srcdev)) return i; } } /* we couldn't find one that doesn't fail. Just return something * and the io error handling code will clean up eventually */ return preferred_mirror; } static inline int parity_smaller(u64 a, u64 b) { return a > b; } /* Bubble-sort the stripe set to put the parity/syndrome stripes last */ static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes) { struct btrfs_bio_stripe s; int i; u64 l; int again = 1; while (again) { again = 0; for (i = 0; i < num_stripes - 1; i++) { if (parity_smaller(bbio->raid_map[i], bbio->raid_map[i+1])) { s = bbio->stripes[i]; l = bbio->raid_map[i]; bbio->stripes[i] = bbio->stripes[i+1]; bbio->raid_map[i] = bbio->raid_map[i+1]; bbio->stripes[i+1] = s; bbio->raid_map[i+1] = l; again = 1; } } } } static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes) { struct btrfs_bio *bbio = kzalloc( /* the size of the btrfs_bio */ sizeof(struct btrfs_bio) + /* plus the variable array for the stripes */ sizeof(struct btrfs_bio_stripe) * (total_stripes) + /* plus the variable array for the tgt dev */ sizeof(int) * (real_stripes) + /* * plus the raid_map, which includes both the tgt dev * and the stripes */ sizeof(u64) * (total_stripes), GFP_NOFS|__GFP_NOFAIL); atomic_set(&bbio->error, 0); refcount_set(&bbio->refs, 1); return bbio; } void btrfs_get_bbio(struct btrfs_bio *bbio) { WARN_ON(!refcount_read(&bbio->refs)); refcount_inc(&bbio->refs); } void btrfs_put_bbio(struct btrfs_bio *bbio) { if (!bbio) return; if (refcount_dec_and_test(&bbio->refs)) kfree(bbio); } /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */ /* * Please note that, discard won't be sent to target device of device * replace. */ static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info, u64 logical, u64 length, struct btrfs_bio **bbio_ret) { struct extent_map *em; struct map_lookup *map; struct btrfs_bio *bbio; u64 offset; u64 stripe_nr; u64 stripe_nr_end; u64 stripe_end_offset; u64 stripe_cnt; u64 stripe_len; u64 stripe_offset; u64 num_stripes; u32 stripe_index; u32 factor = 0; u32 sub_stripes = 0; u64 stripes_per_dev = 0; u32 remaining_stripes = 0; u32 last_stripe = 0; int ret = 0; int i; /* discard always return a bbio */ ASSERT(bbio_ret); em = btrfs_get_chunk_map(fs_info, logical, length); if (IS_ERR(em)) return PTR_ERR(em); map = em->map_lookup; /* we don't discard raid56 yet */ if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { ret = -EOPNOTSUPP; goto out; } offset = logical - em->start; length = min_t(u64, em->len - offset, length); stripe_len = map->stripe_len; /* * stripe_nr counts the total number of stripes we have to stride * to get to this block */ stripe_nr = div64_u64(offset, stripe_len); /* stripe_offset is the offset of this block in its stripe */ stripe_offset = offset - stripe_nr * stripe_len; stripe_nr_end = round_up(offset + length, map->stripe_len); stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len); stripe_cnt = stripe_nr_end - stripe_nr; stripe_end_offset = stripe_nr_end * map->stripe_len - (offset + length); /* * after this, stripe_nr is the number of stripes on this * device we have to walk to find the data, and stripe_index is * the number of our device in the stripe array */ num_stripes = 1; stripe_index = 0; if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) { if (map->type & BTRFS_BLOCK_GROUP_RAID0) sub_stripes = 1; else sub_stripes = map->sub_stripes; factor = map->num_stripes / sub_stripes; num_stripes = min_t(u64, map->num_stripes, sub_stripes * stripe_cnt); stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); stripe_index *= sub_stripes; stripes_per_dev = div_u64_rem(stripe_cnt, factor, &remaining_stripes); div_u64_rem(stripe_nr_end - 1, factor, &last_stripe); last_stripe *= sub_stripes; } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_DUP)) { num_stripes = map->num_stripes; } else { stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &stripe_index); } bbio = alloc_btrfs_bio(num_stripes, 0); if (!bbio) { ret = -ENOMEM; goto out; } for (i = 0; i < num_stripes; i++) { bbio->stripes[i].physical = map->stripes[stripe_index].physical + stripe_offset + stripe_nr * map->stripe_len; bbio->stripes[i].dev = map->stripes[stripe_index].dev; if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) { bbio->stripes[i].length = stripes_per_dev * map->stripe_len; if (i / sub_stripes < remaining_stripes) bbio->stripes[i].length += map->stripe_len; /* * Special for the first stripe and * the last stripe: * * |-------|...|-------| * |----------| * off end_off */ if (i < sub_stripes) bbio->stripes[i].length -= stripe_offset; if (stripe_index >= last_stripe && stripe_index <= (last_stripe + sub_stripes - 1)) bbio->stripes[i].length -= stripe_end_offset; if (i == sub_stripes - 1) stripe_offset = 0; } else { bbio->stripes[i].length = length; } stripe_index++; if (stripe_index == map->num_stripes) { stripe_index = 0; stripe_nr++; } } *bbio_ret = bbio; bbio->map_type = map->type; bbio->num_stripes = num_stripes; out: free_extent_map(em); return ret; } /* * In dev-replace case, for repair case (that's the only case where the mirror * is selected explicitly when calling btrfs_map_block), blocks left of the * left cursor can also be read from the target drive. * * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the * array of stripes. * For READ, it also needs to be supported using the same mirror number. * * If the requested block is not left of the left cursor, EIO is returned. This * can happen because btrfs_num_copies() returns one more in the dev-replace * case. */ static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info, u64 logical, u64 length, u64 srcdev_devid, int *mirror_num, u64 *physical) { struct btrfs_bio *bbio = NULL; int num_stripes; int index_srcdev = 0; int found = 0; u64 physical_of_found = 0; int i; int ret = 0; ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical, &length, &bbio, 0, 0); if (ret) { ASSERT(bbio == NULL); return ret; } num_stripes = bbio->num_stripes; if (*mirror_num > num_stripes) { /* * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror, * that means that the requested area is not left of the left * cursor */ btrfs_put_bbio(bbio); return -EIO; } /* * process the rest of the function using the mirror_num of the source * drive. Therefore look it up first. At the end, patch the device * pointer to the one of the target drive. */ for (i = 0; i < num_stripes; i++) { if (bbio->stripes[i].dev->devid != srcdev_devid) continue; /* * In case of DUP, in order to keep it simple, only add the * mirror with the lowest physical address */ if (found && physical_of_found <= bbio->stripes[i].physical) continue; index_srcdev = i; found = 1; physical_of_found = bbio->stripes[i].physical; } btrfs_put_bbio(bbio); ASSERT(found); if (!found) return -EIO; *mirror_num = index_srcdev + 1; *physical = physical_of_found; return ret; } static void handle_ops_on_dev_replace(enum btrfs_map_op op, struct btrfs_bio **bbio_ret, struct btrfs_dev_replace *dev_replace, int *num_stripes_ret, int *max_errors_ret) { struct btrfs_bio *bbio = *bbio_ret; u64 srcdev_devid = dev_replace->srcdev->devid; int tgtdev_indexes = 0; int num_stripes = *num_stripes_ret; int max_errors = *max_errors_ret; int i; if (op == BTRFS_MAP_WRITE) { int index_where_to_add; /* * duplicate the write operations while the dev replace * procedure is running. Since the copying of the old disk to * the new disk takes place at run time while the filesystem is * mounted writable, the regular write operations to the old * disk have to be duplicated to go to the new disk as well. * * Note that device->missing is handled by the caller, and that * the write to the old disk is already set up in the stripes * array. */ index_where_to_add = num_stripes; for (i = 0; i < num_stripes; i++) { if (bbio->stripes[i].dev->devid == srcdev_devid) { /* write to new disk, too */ struct btrfs_bio_stripe *new = bbio->stripes + index_where_to_add; struct btrfs_bio_stripe *old = bbio->stripes + i; new->physical = old->physical; new->length = old->length; new->dev = dev_replace->tgtdev; bbio->tgtdev_map[i] = index_where_to_add; index_where_to_add++; max_errors++; tgtdev_indexes++; } } num_stripes = index_where_to_add; } else if (op == BTRFS_MAP_GET_READ_MIRRORS) { int index_srcdev = 0; int found = 0; u64 physical_of_found = 0; /* * During the dev-replace procedure, the target drive can also * be used to read data in case it is needed to repair a corrupt * block elsewhere. This is possible if the requested area is * left of the left cursor. In this area, the target drive is a * full copy of the source drive. */ for (i = 0; i < num_stripes; i++) { if (bbio->stripes[i].dev->devid == srcdev_devid) { /* * In case of DUP, in order to keep it simple, * only add the mirror with the lowest physical * address */ if (found && physical_of_found <= bbio->stripes[i].physical) continue; index_srcdev = i; found = 1; physical_of_found = bbio->stripes[i].physical; } } if (found) { struct btrfs_bio_stripe *tgtdev_stripe = bbio->stripes + num_stripes; tgtdev_stripe->physical = physical_of_found; tgtdev_stripe->length = bbio->stripes[index_srcdev].length; tgtdev_stripe->dev = dev_replace->tgtdev; bbio->tgtdev_map[index_srcdev] = num_stripes; tgtdev_indexes++; num_stripes++; } } *num_stripes_ret = num_stripes; *max_errors_ret = max_errors; bbio->num_tgtdevs = tgtdev_indexes; *bbio_ret = bbio; } static bool need_full_stripe(enum btrfs_map_op op) { return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS); } /* * btrfs_get_io_geometry - calculates the geomery of a particular (address, len) * tuple. This information is used to calculate how big a * particular bio can get before it straddles a stripe. * * @fs_info - the filesystem * @logical - address that we want to figure out the geometry of * @len - the length of IO we are going to perform, starting at @logical * @op - type of operation - write or read * @io_geom - pointer used to return values * * Returns < 0 in case a chunk for the given logical address cannot be found, * usually shouldn't happen unless @logical is corrupted, 0 otherwise. */ int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, u64 logical, u64 len, struct btrfs_io_geometry *io_geom) { struct extent_map *em; struct map_lookup *map; u64 offset; u64 stripe_offset; u64 stripe_nr; u64 stripe_len; u64 raid56_full_stripe_start = (u64)-1; int data_stripes; int ret = 0; ASSERT(op != BTRFS_MAP_DISCARD); em = btrfs_get_chunk_map(fs_info, logical, len); if (IS_ERR(em)) return PTR_ERR(em); map = em->map_lookup; /* Offset of this logical address in the chunk */ offset = logical - em->start; /* Len of a stripe in a chunk */ stripe_len = map->stripe_len; /* Stripe wher this block falls in */ stripe_nr = div64_u64(offset, stripe_len); /* Offset of stripe in the chunk */ stripe_offset = stripe_nr * stripe_len; if (offset < stripe_offset) { btrfs_crit(fs_info, "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu", stripe_offset, offset, em->start, logical, stripe_len); ret = -EINVAL; goto out; } /* stripe_offset is the offset of this block in its stripe */ stripe_offset = offset - stripe_offset; data_stripes = nr_data_stripes(map); if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { u64 max_len = stripe_len - stripe_offset; /* * In case of raid56, we need to know the stripe aligned start */ if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { unsigned long full_stripe_len = stripe_len * data_stripes; raid56_full_stripe_start = offset; /* * Allow a write of a full stripe, but make sure we * don't allow straddling of stripes */ raid56_full_stripe_start = div64_u64(raid56_full_stripe_start, full_stripe_len); raid56_full_stripe_start *= full_stripe_len; /* * For writes to RAID[56], allow a full stripeset across * all disks. For other RAID types and for RAID[56] * reads, just allow a single stripe (on a single disk). */ if (op == BTRFS_MAP_WRITE) { max_len = stripe_len * data_stripes - (offset - raid56_full_stripe_start); } } len = min_t(u64, em->len - offset, max_len); } else { len = em->len - offset; } io_geom->len = len; io_geom->offset = offset; io_geom->stripe_len = stripe_len; io_geom->stripe_nr = stripe_nr; io_geom->stripe_offset = stripe_offset; io_geom->raid56_stripe_offset = raid56_full_stripe_start; out: /* once for us */ free_extent_map(em); return ret; } static int __btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, u64 logical, u64 *length, struct btrfs_bio **bbio_ret, int mirror_num, int need_raid_map) { struct extent_map *em; struct map_lookup *map; u64 stripe_offset; u64 stripe_nr; u64 stripe_len; u32 stripe_index; int data_stripes; int i; int ret = 0; int num_stripes; int max_errors = 0; int tgtdev_indexes = 0; struct btrfs_bio *bbio = NULL; struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; int dev_replace_is_ongoing = 0; int num_alloc_stripes; int patch_the_first_stripe_for_dev_replace = 0; u64 physical_to_patch_in_first_stripe = 0; u64 raid56_full_stripe_start = (u64)-1; struct btrfs_io_geometry geom; ASSERT(bbio_ret); if (op == BTRFS_MAP_DISCARD) return __btrfs_map_block_for_discard(fs_info, logical, *length, bbio_ret); ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom); if (ret < 0) return ret; em = btrfs_get_chunk_map(fs_info, logical, *length); ASSERT(!IS_ERR(em)); map = em->map_lookup; *length = geom.len; stripe_len = geom.stripe_len; stripe_nr = geom.stripe_nr; stripe_offset = geom.stripe_offset; raid56_full_stripe_start = geom.raid56_stripe_offset; data_stripes = nr_data_stripes(map); down_read(&dev_replace->rwsem); dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); /* * Hold the semaphore for read during the whole operation, write is * requested at commit time but must wait. */ if (!dev_replace_is_ongoing) up_read(&dev_replace->rwsem); if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 && !need_full_stripe(op) && dev_replace->tgtdev != NULL) { ret = get_extra_mirror_from_replace(fs_info, logical, *length, dev_replace->srcdev->devid, &mirror_num, &physical_to_patch_in_first_stripe); if (ret) goto out; else patch_the_first_stripe_for_dev_replace = 1; } else if (mirror_num > map->num_stripes) { mirror_num = 0; } num_stripes = 1; stripe_index = 0; if (map->type & BTRFS_BLOCK_GROUP_RAID0) { stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &stripe_index); if (!need_full_stripe(op)) mirror_num = 1; } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) { if (need_full_stripe(op)) num_stripes = map->num_stripes; else if (mirror_num) stripe_index = mirror_num - 1; else { stripe_index = find_live_mirror(fs_info, map, 0, dev_replace_is_ongoing); mirror_num = stripe_index + 1; } } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { if (need_full_stripe(op)) { num_stripes = map->num_stripes; } else if (mirror_num) { stripe_index = mirror_num - 1; } else { mirror_num = 1; } } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { u32 factor = map->num_stripes / map->sub_stripes; stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); stripe_index *= map->sub_stripes; if (need_full_stripe(op)) num_stripes = map->sub_stripes; else if (mirror_num) stripe_index += mirror_num - 1; else { int old_stripe_index = stripe_index; stripe_index = find_live_mirror(fs_info, map, stripe_index, dev_replace_is_ongoing); mirror_num = stripe_index - old_stripe_index + 1; } } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) { /* push stripe_nr back to the start of the full stripe */ stripe_nr = div64_u64(raid56_full_stripe_start, stripe_len * data_stripes); /* RAID[56] write or recovery. Return all stripes */ num_stripes = map->num_stripes; max_errors = nr_parity_stripes(map); *length = map->stripe_len; stripe_index = 0; stripe_offset = 0; } else { /* * Mirror #0 or #1 means the original data block. * Mirror #2 is RAID5 parity block. * Mirror #3 is RAID6 Q block. */ stripe_nr = div_u64_rem(stripe_nr, data_stripes, &stripe_index); if (mirror_num > 1) stripe_index = data_stripes + mirror_num - 2; /* We distribute the parity blocks across stripes */ div_u64_rem(stripe_nr + stripe_index, map->num_stripes, &stripe_index); if (!need_full_stripe(op) && mirror_num <= 1) mirror_num = 1; } } else { /* * after this, stripe_nr is the number of stripes on this * device we have to walk to find the data, and stripe_index is * the number of our device in the stripe array */ stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &stripe_index); mirror_num = stripe_index + 1; } if (stripe_index >= map->num_stripes) { btrfs_crit(fs_info, "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", stripe_index, map->num_stripes); ret = -EINVAL; goto out; } num_alloc_stripes = num_stripes; if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) { if (op == BTRFS_MAP_WRITE) num_alloc_stripes <<= 1; if (op == BTRFS_MAP_GET_READ_MIRRORS) num_alloc_stripes++; tgtdev_indexes = num_stripes; } bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes); if (!bbio) { ret = -ENOMEM; goto out; } if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes); /* build raid_map */ if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map && (need_full_stripe(op) || mirror_num > 1)) { u64 tmp; unsigned rot; bbio->raid_map = (u64 *)((void *)bbio->stripes + sizeof(struct btrfs_bio_stripe) * num_alloc_stripes + sizeof(int) * tgtdev_indexes); /* Work out the disk rotation on this stripe-set */ div_u64_rem(stripe_nr, num_stripes, &rot); /* Fill in the logical address of each stripe */ tmp = stripe_nr * data_stripes; for (i = 0; i < data_stripes; i++) bbio->raid_map[(i+rot) % num_stripes] = em->start + (tmp + i) * map->stripe_len; bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE; if (map->type & BTRFS_BLOCK_GROUP_RAID6) bbio->raid_map[(i+rot+1) % num_stripes] = RAID6_Q_STRIPE; } for (i = 0; i < num_stripes; i++) { bbio->stripes[i].physical = map->stripes[stripe_index].physical + stripe_offset + stripe_nr * map->stripe_len; bbio->stripes[i].dev = map->stripes[stripe_index].dev; stripe_index++; } if (need_full_stripe(op)) max_errors = btrfs_chunk_max_errors(map); if (bbio->raid_map) sort_parity_stripes(bbio, num_stripes); if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && need_full_stripe(op)) { handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes, &max_errors); } *bbio_ret = bbio; bbio->map_type = map->type; bbio->num_stripes = num_stripes; bbio->max_errors = max_errors; bbio->mirror_num = mirror_num; /* * this is the case that REQ_READ && dev_replace_is_ongoing && * mirror_num == num_stripes + 1 && dev_replace target drive is * available as a mirror */ if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) { WARN_ON(num_stripes > 1); bbio->stripes[0].dev = dev_replace->tgtdev; bbio->stripes[0].physical = physical_to_patch_in_first_stripe; bbio->mirror_num = map->num_stripes + 1; } out: if (dev_replace_is_ongoing) { lockdep_assert_held(&dev_replace->rwsem); /* Unlock and let waiting writers proceed */ up_read(&dev_replace->rwsem); } free_extent_map(em); return ret; } int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, u64 logical, u64 *length, struct btrfs_bio **bbio_ret, int mirror_num) { return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, mirror_num, 0); } /* For Scrub/replace */ int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, u64 logical, u64 *length, struct btrfs_bio **bbio_ret) { return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1); } int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, u64 physical, u64 **logical, int *naddrs, int *stripe_len) { struct extent_map *em; struct map_lookup *map; u64 *buf; u64 bytenr; u64 length; u64 stripe_nr; u64 rmap_len; int i, j, nr = 0; em = btrfs_get_chunk_map(fs_info, chunk_start, 1); if (IS_ERR(em)) return -EIO; map = em->map_lookup; length = em->len; rmap_len = map->stripe_len; if (map->type & BTRFS_BLOCK_GROUP_RAID10) length = div_u64(length, map->num_stripes / map->sub_stripes); else if (map->type & BTRFS_BLOCK_GROUP_RAID0) length = div_u64(length, map->num_stripes); else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { length = div_u64(length, nr_data_stripes(map)); rmap_len = map->stripe_len * nr_data_stripes(map); } buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); BUG_ON(!buf); /* -ENOMEM */ for (i = 0; i < map->num_stripes; i++) { if (map->stripes[i].physical > physical || map->stripes[i].physical + length <= physical) continue; stripe_nr = physical - map->stripes[i].physical; stripe_nr = div64_u64(stripe_nr, map->stripe_len); if (map->type & BTRFS_BLOCK_GROUP_RAID10) { stripe_nr = stripe_nr * map->num_stripes + i; stripe_nr = div_u64(stripe_nr, map->sub_stripes); } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { stripe_nr = stripe_nr * map->num_stripes + i; } /* else if RAID[56], multiply by nr_data_stripes(). * Alternatively, just use rmap_len below instead of * map->stripe_len */ bytenr = chunk_start + stripe_nr * rmap_len; WARN_ON(nr >= map->num_stripes); for (j = 0; j < nr; j++) { if (buf[j] == bytenr) break; } if (j == nr) { WARN_ON(nr >= map->num_stripes); buf[nr++] = bytenr; } } *logical = buf; *naddrs = nr; *stripe_len = rmap_len; free_extent_map(em); return 0; } static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio) { bio->bi_private = bbio->private; bio->bi_end_io = bbio->end_io; bio_endio(bio); btrfs_put_bbio(bbio); } static void btrfs_end_bio(struct bio *bio) { struct btrfs_bio *bbio = bio->bi_private; int is_orig_bio = 0; if (bio->bi_status) { atomic_inc(&bbio->error); if (bio->bi_status == BLK_STS_IOERR || bio->bi_status == BLK_STS_TARGET) { unsigned int stripe_index = btrfs_io_bio(bio)->stripe_index; struct btrfs_device *dev; BUG_ON(stripe_index >= bbio->num_stripes); dev = bbio->stripes[stripe_index].dev; if (dev->bdev) { if (bio_op(bio) == REQ_OP_WRITE) btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); else if (!(bio->bi_opf & REQ_RAHEAD)) btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); if (bio->bi_opf & REQ_PREFLUSH) btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS); } } } if (bio == bbio->orig_bio) is_orig_bio = 1; btrfs_bio_counter_dec(bbio->fs_info); if (atomic_dec_and_test(&bbio->stripes_pending)) { if (!is_orig_bio) { bio_put(bio); bio = bbio->orig_bio; } btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; /* only send an error to the higher layers if it is * beyond the tolerance of the btrfs bio */ if (atomic_read(&bbio->error) > bbio->max_errors) { bio->bi_status = BLK_STS_IOERR; } else { /* * this bio is actually up to date, we didn't * go over the max number of errors */ bio->bi_status = BLK_STS_OK; } btrfs_end_bbio(bbio, bio); } else if (!is_orig_bio) { bio_put(bio); } } /* * see run_scheduled_bios for a description of why bios are collected for * async submit. * * This will add one bio to the pending list for a device and make sure * the work struct is scheduled. */ static noinline void btrfs_schedule_bio(struct btrfs_device *device, struct bio *bio) { struct btrfs_fs_info *fs_info = device->fs_info; int should_queue = 1; struct btrfs_pending_bios *pending_bios; /* don't bother with additional async steps for reads, right now */ if (bio_op(bio) == REQ_OP_READ) { btrfsic_submit_bio(bio); return; } WARN_ON(bio->bi_next); bio->bi_next = NULL; spin_lock(&device->io_lock); if (op_is_sync(bio->bi_opf)) pending_bios = &device->pending_sync_bios; else pending_bios = &device->pending_bios; if (pending_bios->tail) pending_bios->tail->bi_next = bio; pending_bios->tail = bio; if (!pending_bios->head) pending_bios->head = bio; if (device->running_pending) should_queue = 0; spin_unlock(&device->io_lock); if (should_queue) btrfs_queue_work(fs_info->submit_workers, &device->work); } static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio, u64 physical, int dev_nr, int async) { struct btrfs_device *dev = bbio->stripes[dev_nr].dev; struct btrfs_fs_info *fs_info = bbio->fs_info; bio->bi_private = bbio; btrfs_io_bio(bio)->stripe_index = dev_nr; bio->bi_end_io = btrfs_end_bio; bio->bi_iter.bi_sector = physical >> 9; btrfs_debug_in_rcu(fs_info, "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u", bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev, rcu_str_deref(dev->name), dev->devid, bio->bi_iter.bi_size); bio_set_dev(bio, dev->bdev); btrfs_bio_counter_inc_noblocked(fs_info); if (async) btrfs_schedule_bio(dev, bio); else btrfsic_submit_bio(bio); } static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical) { atomic_inc(&bbio->error); if (atomic_dec_and_test(&bbio->stripes_pending)) { /* Should be the original bio. */ WARN_ON(bio != bbio->orig_bio); btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; bio->bi_iter.bi_sector = logical >> 9; if (atomic_read(&bbio->error) > bbio->max_errors) bio->bi_status = BLK_STS_IOERR; else bio->bi_status = BLK_STS_OK; btrfs_end_bbio(bbio, bio); } } blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio, int mirror_num, int async_submit) { struct btrfs_device *dev; struct bio *first_bio = bio; u64 logical = (u64)bio->bi_iter.bi_sector << 9; u64 length = 0; u64 map_length; int ret; int dev_nr; int total_devs; struct btrfs_bio *bbio = NULL; length = bio->bi_iter.bi_size; map_length = length; btrfs_bio_counter_inc_blocked(fs_info); ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length, &bbio, mirror_num, 1); if (ret) { btrfs_bio_counter_dec(fs_info); return errno_to_blk_status(ret); } total_devs = bbio->num_stripes; bbio->orig_bio = first_bio; bbio->private = first_bio->bi_private; bbio->end_io = first_bio->bi_end_io; bbio->fs_info = fs_info; atomic_set(&bbio->stripes_pending, bbio->num_stripes); if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) && ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) { /* In this case, map_length has been set to the length of a single stripe; not the whole write */ if (bio_op(bio) == REQ_OP_WRITE) { ret = raid56_parity_write(fs_info, bio, bbio, map_length); } else { ret = raid56_parity_recover(fs_info, bio, bbio, map_length, mirror_num, 1); } btrfs_bio_counter_dec(fs_info); return errno_to_blk_status(ret); } if (map_length < length) { btrfs_crit(fs_info, "mapping failed logical %llu bio len %llu len %llu", logical, length, map_length); BUG(); } for (dev_nr = 0; dev_nr < total_devs; dev_nr++) { dev = bbio->stripes[dev_nr].dev; if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || (bio_op(first_bio) == REQ_OP_WRITE && !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) { bbio_error(bbio, first_bio, logical); continue; } if (dev_nr < total_devs - 1) bio = btrfs_bio_clone(first_bio); else bio = first_bio; submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev_nr, async_submit); } btrfs_bio_counter_dec(fs_info); return BLK_STS_OK; } /* * Find a device specified by @devid or @uuid in the list of @fs_devices, or * return NULL. * * If devid and uuid are both specified, the match must be exact, otherwise * only devid is used. * * If @seed is true, traverse through the seed devices. */ struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices, u64 devid, u8 *uuid, u8 *fsid, bool seed) { struct btrfs_device *device; while (fs_devices) { if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) { list_for_each_entry(device, &fs_devices->devices, dev_list) { if (device->devid == devid && (!uuid || memcmp(device->uuid, uuid, BTRFS_UUID_SIZE) == 0)) return device; } } if (seed) fs_devices = fs_devices->seed; else return NULL; } return NULL; } static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, u64 devid, u8 *dev_uuid) { struct btrfs_device *device; device = btrfs_alloc_device(NULL, &devid, dev_uuid); if (IS_ERR(device)) return device; list_add(&device->dev_list, &fs_devices->devices); device->fs_devices = fs_devices; fs_devices->num_devices++; set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); fs_devices->missing_devices++; return device; } /** * btrfs_alloc_device - allocate struct btrfs_device * @fs_info: used only for generating a new devid, can be NULL if * devid is provided (i.e. @devid != NULL). * @devid: a pointer to devid for this device. If NULL a new devid * is generated. * @uuid: a pointer to UUID for this device. If NULL a new UUID * is generated. * * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() * on error. Returned struct is not linked onto any lists and must be * destroyed with btrfs_free_device. */ struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, const u64 *devid, const u8 *uuid) { struct btrfs_device *dev; u64 tmp; if (WARN_ON(!devid && !fs_info)) return ERR_PTR(-EINVAL); dev = __alloc_device(); if (IS_ERR(dev)) return dev; if (devid) tmp = *devid; else { int ret; ret = find_next_devid(fs_info, &tmp); if (ret) { btrfs_free_device(dev); return ERR_PTR(ret); } } dev->devid = tmp; if (uuid) memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); else generate_random_uuid(dev->uuid); btrfs_init_work(&dev->work, pending_bios_fn, NULL, NULL); return dev; } static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, u64 devid, u8 *uuid, bool error) { if (error) btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", devid, uuid); else btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", devid, uuid); } static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes) { int index = btrfs_bg_flags_to_raid_index(type); int ncopies = btrfs_raid_array[index].ncopies; int data_stripes; switch (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { case BTRFS_BLOCK_GROUP_RAID5: data_stripes = num_stripes - 1; break; case BTRFS_BLOCK_GROUP_RAID6: data_stripes = num_stripes - 2; break; default: data_stripes = num_stripes / ncopies; break; } return div_u64(chunk_len, data_stripes); } static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf, struct btrfs_chunk *chunk) { struct btrfs_fs_info *fs_info = leaf->fs_info; struct extent_map_tree *map_tree = &fs_info->mapping_tree; struct map_lookup *map; struct extent_map *em; u64 logical; u64 length; u64 devid; u8 uuid[BTRFS_UUID_SIZE]; int num_stripes; int ret; int i; logical = key->offset; length = btrfs_chunk_length(leaf, chunk); num_stripes = btrfs_chunk_num_stripes(leaf, chunk); /* * Only need to verify chunk item if we're reading from sys chunk array, * as chunk item in tree block is already verified by tree-checker. */ if (leaf->start == BTRFS_SUPER_INFO_OFFSET) { ret = btrfs_check_chunk_valid(leaf, chunk, logical); if (ret) return ret; } read_lock(&map_tree->lock); em = lookup_extent_mapping(map_tree, logical, 1); read_unlock(&map_tree->lock); /* already mapped? */ if (em && em->start <= logical && em->start + em->len > logical) { free_extent_map(em); return 0; } else if (em) { free_extent_map(em); } em = alloc_extent_map(); if (!em) return -ENOMEM; map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); if (!map) { free_extent_map(em); return -ENOMEM; } set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); em->map_lookup = map; em->start = logical; em->len = length; em->orig_start = 0; em->block_start = 0; em->block_len = em->len; map->num_stripes = num_stripes; map->io_width = btrfs_chunk_io_width(leaf, chunk); map->io_align = btrfs_chunk_io_align(leaf, chunk); map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); map->type = btrfs_chunk_type(leaf, chunk); map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); map->verified_stripes = 0; em->orig_block_len = calc_stripe_length(map->type, em->len, map->num_stripes); for (i = 0; i < num_stripes; i++) { map->stripes[i].physical = btrfs_stripe_offset_nr(leaf, chunk, i); devid = btrfs_stripe_devid_nr(leaf, chunk, i); read_extent_buffer(leaf, uuid, (unsigned long) btrfs_stripe_dev_uuid_nr(chunk, i), BTRFS_UUID_SIZE); map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, devid, uuid, NULL, true); if (!map->stripes[i].dev && !btrfs_test_opt(fs_info, DEGRADED)) { free_extent_map(em); btrfs_report_missing_device(fs_info, devid, uuid, true); return -ENOENT; } if (!map->stripes[i].dev) { map->stripes[i].dev = add_missing_dev(fs_info->fs_devices, devid, uuid); if (IS_ERR(map->stripes[i].dev)) { free_extent_map(em); btrfs_err(fs_info, "failed to init missing dev %llu: %ld", devid, PTR_ERR(map->stripes[i].dev)); return PTR_ERR(map->stripes[i].dev); } btrfs_report_missing_device(fs_info, devid, uuid, false); } set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &(map->stripes[i].dev->dev_state)); } write_lock(&map_tree->lock); ret = add_extent_mapping(map_tree, em, 0); write_unlock(&map_tree->lock); if (ret < 0) { btrfs_err(fs_info, "failed to add chunk map, start=%llu len=%llu: %d", em->start, em->len, ret); } free_extent_map(em); return ret; } static void fill_device_from_item(struct extent_buffer *leaf, struct btrfs_dev_item *dev_item, struct btrfs_device *device) { unsigned long ptr; device->devid = btrfs_device_id(leaf, dev_item); device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); device->total_bytes = device->disk_total_bytes; device->commit_total_bytes = device->disk_total_bytes; device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); device->commit_bytes_used = device->bytes_used; device->type = btrfs_device_type(leaf, dev_item); device->io_align = btrfs_device_io_align(leaf, dev_item); device->io_width = btrfs_device_io_width(leaf, dev_item); device->sector_size = btrfs_device_sector_size(leaf, dev_item); WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); ptr = btrfs_device_uuid(dev_item); read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); } static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, u8 *fsid) { struct btrfs_fs_devices *fs_devices; int ret; lockdep_assert_held(&uuid_mutex); ASSERT(fsid); fs_devices = fs_info->fs_devices->seed; while (fs_devices) { if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) return fs_devices; fs_devices = fs_devices->seed; } fs_devices = find_fsid(fsid, NULL); if (!fs_devices) { if (!btrfs_test_opt(fs_info, DEGRADED)) return ERR_PTR(-ENOENT); fs_devices = alloc_fs_devices(fsid, NULL); if (IS_ERR(fs_devices)) return fs_devices; fs_devices->seeding = 1; fs_devices->opened = 1; return fs_devices; } fs_devices = clone_fs_devices(fs_devices); if (IS_ERR(fs_devices)) return fs_devices; ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder); if (ret) { free_fs_devices(fs_devices); fs_devices = ERR_PTR(ret); goto out; } if (!fs_devices->seeding) { close_fs_devices(fs_devices); free_fs_devices(fs_devices); fs_devices = ERR_PTR(-EINVAL); goto out; } fs_devices->seed = fs_info->fs_devices->seed; fs_info->fs_devices->seed = fs_devices; out: return fs_devices; } static int read_one_dev(struct extent_buffer *leaf, struct btrfs_dev_item *dev_item) { struct btrfs_fs_info *fs_info = leaf->fs_info; struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; struct btrfs_device *device; u64 devid; int ret; u8 fs_uuid[BTRFS_FSID_SIZE]; u8 dev_uuid[BTRFS_UUID_SIZE]; devid = btrfs_device_id(leaf, dev_item); read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), BTRFS_UUID_SIZE); read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), BTRFS_FSID_SIZE); if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) { fs_devices = open_seed_devices(fs_info, fs_uuid); if (IS_ERR(fs_devices)) return PTR_ERR(fs_devices); } device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, fs_uuid, true); if (!device) { if (!btrfs_test_opt(fs_info, DEGRADED)) { btrfs_report_missing_device(fs_info, devid, dev_uuid, true); return -ENOENT; } device = add_missing_dev(fs_devices, devid, dev_uuid); if (IS_ERR(device)) { btrfs_err(fs_info, "failed to add missing dev %llu: %ld", devid, PTR_ERR(device)); return PTR_ERR(device); } btrfs_report_missing_device(fs_info, devid, dev_uuid, false); } else { if (!device->bdev) { if (!btrfs_test_opt(fs_info, DEGRADED)) { btrfs_report_missing_device(fs_info, devid, dev_uuid, true); return -ENOENT; } btrfs_report_missing_device(fs_info, devid, dev_uuid, false); } if (!device->bdev && !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { /* * this happens when a device that was properly setup * in the device info lists suddenly goes bad. * device->bdev is NULL, and so we have to set * device->missing to one here */ device->fs_devices->missing_devices++; set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); } /* Move the device to its own fs_devices */ if (device->fs_devices != fs_devices) { ASSERT(test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)); list_move(&device->dev_list, &fs_devices->devices); device->fs_devices->num_devices--; fs_devices->num_devices++; device->fs_devices->missing_devices--; fs_devices->missing_devices++; device->fs_devices = fs_devices; } } if (device->fs_devices != fs_info->fs_devices) { BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)); if (device->generation != btrfs_device_generation(leaf, dev_item)) return -EINVAL; } fill_device_from_item(leaf, dev_item, device); set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { device->fs_devices->total_rw_bytes += device->total_bytes; atomic64_add(device->total_bytes - device->bytes_used, &fs_info->free_chunk_space); } ret = 0; return ret; } int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) { struct btrfs_root *root = fs_info->tree_root; struct btrfs_super_block *super_copy = fs_info->super_copy; struct extent_buffer *sb; struct btrfs_disk_key *disk_key; struct btrfs_chunk *chunk; u8 *array_ptr; unsigned long sb_array_offset; int ret = 0; u32 num_stripes; u32 array_size; u32 len = 0; u32 cur_offset; u64 type; struct btrfs_key key; ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); /* * This will create extent buffer of nodesize, superblock size is * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will * overallocate but we can keep it as-is, only the first page is used. */ sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET); if (IS_ERR(sb)) return PTR_ERR(sb); set_extent_buffer_uptodate(sb); btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0); /* * The sb extent buffer is artificial and just used to read the system array. * set_extent_buffer_uptodate() call does not properly mark all it's * pages up-to-date when the page is larger: extent does not cover the * whole page and consequently check_page_uptodate does not find all * the page's extents up-to-date (the hole beyond sb), * write_extent_buffer then triggers a WARN_ON. * * Regular short extents go through mark_extent_buffer_dirty/writeback cycle, * but sb spans only this function. Add an explicit SetPageUptodate call * to silence the warning eg. on PowerPC 64. */ if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE) SetPageUptodate(sb->pages[0]); write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); array_size = btrfs_super_sys_array_size(super_copy); array_ptr = super_copy->sys_chunk_array; sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); cur_offset = 0; while (cur_offset < array_size) { disk_key = (struct btrfs_disk_key *)array_ptr; len = sizeof(*disk_key); if (cur_offset + len > array_size) goto out_short_read; btrfs_disk_key_to_cpu(&key, disk_key); array_ptr += len; sb_array_offset += len; cur_offset += len; if (key.type == BTRFS_CHUNK_ITEM_KEY) { chunk = (struct btrfs_chunk *)sb_array_offset; /* * At least one btrfs_chunk with one stripe must be * present, exact stripe count check comes afterwards */ len = btrfs_chunk_item_size(1); if (cur_offset + len > array_size) goto out_short_read; num_stripes = btrfs_chunk_num_stripes(sb, chunk); if (!num_stripes) { btrfs_err(fs_info, "invalid number of stripes %u in sys_array at offset %u", num_stripes, cur_offset); ret = -EIO; break; } type = btrfs_chunk_type(sb, chunk); if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) { btrfs_err(fs_info, "invalid chunk type %llu in sys_array at offset %u", type, cur_offset); ret = -EIO; break; } len = btrfs_chunk_item_size(num_stripes); if (cur_offset + len > array_size) goto out_short_read; ret = read_one_chunk(&key, sb, chunk); if (ret) break; } else { btrfs_err(fs_info, "unexpected item type %u in sys_array at offset %u", (u32)key.type, cur_offset); ret = -EIO; break; } array_ptr += len; sb_array_offset += len; cur_offset += len; } clear_extent_buffer_uptodate(sb); free_extent_buffer_stale(sb); return ret; out_short_read: btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u", len, cur_offset); clear_extent_buffer_uptodate(sb); free_extent_buffer_stale(sb); return -EIO; } /* * Check if all chunks in the fs are OK for read-write degraded mount * * If the @failing_dev is specified, it's accounted as missing. * * Return true if all chunks meet the minimal RW mount requirements. * Return false if any chunk doesn't meet the minimal RW mount requirements. */ bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, struct btrfs_device *failing_dev) { struct extent_map_tree *map_tree = &fs_info->mapping_tree; struct extent_map *em; u64 next_start = 0; bool ret = true; read_lock(&map_tree->lock); em = lookup_extent_mapping(map_tree, 0, (u64)-1); read_unlock(&map_tree->lock); /* No chunk at all? Return false anyway */ if (!em) { ret = false; goto out; } while (em) { struct map_lookup *map; int missing = 0; int max_tolerated; int i; map = em->map_lookup; max_tolerated = btrfs_get_num_tolerated_disk_barrier_failures( map->type); for (i = 0; i < map->num_stripes; i++) { struct btrfs_device *dev = map->stripes[i].dev; if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || dev->last_flush_error) missing++; else if (failing_dev && failing_dev == dev) missing++; } if (missing > max_tolerated) { if (!failing_dev) btrfs_warn(fs_info, "chunk %llu missing %d devices, max tolerance is %d for writable mount", em->start, missing, max_tolerated); free_extent_map(em); ret = false; goto out; } next_start = extent_map_end(em); free_extent_map(em); read_lock(&map_tree->lock); em = lookup_extent_mapping(map_tree, next_start, (u64)(-1) - next_start); read_unlock(&map_tree->lock); } out: return ret; } int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) { struct btrfs_root *root = fs_info->chunk_root; struct btrfs_path *path; struct extent_buffer *leaf; struct btrfs_key key; struct btrfs_key found_key; int ret; int slot; u64 total_dev = 0; path = btrfs_alloc_path(); if (!path) return -ENOMEM; /* * uuid_mutex is needed only if we are mounting a sprout FS * otherwise we don't need it. */ mutex_lock(&uuid_mutex); mutex_lock(&fs_info->chunk_mutex); /* * Read all device items, and then all the chunk items. All * device items are found before any chunk item (their object id * is smaller than the lowest possible object id for a chunk * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). */ key.objectid = BTRFS_DEV_ITEMS_OBJECTID; key.offset = 0; key.type = 0; ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); if (ret < 0) goto error; while (1) { leaf = path->nodes[0]; slot = path->slots[0]; if (slot >= btrfs_header_nritems(leaf)) { ret = btrfs_next_leaf(root, path); if (ret == 0) continue; if (ret < 0) goto error; break; } btrfs_item_key_to_cpu(leaf, &found_key, slot); if (found_key.type == BTRFS_DEV_ITEM_KEY) { struct btrfs_dev_item *dev_item; dev_item = btrfs_item_ptr(leaf, slot, struct btrfs_dev_item); ret = read_one_dev(leaf, dev_item); if (ret) goto error; total_dev++; } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { struct btrfs_chunk *chunk; chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); ret = read_one_chunk(&found_key, leaf, chunk); if (ret) goto error; } path->slots[0]++; } /* * After loading chunk tree, we've got all device information, * do another round of validation checks. */ if (total_dev != fs_info->fs_devices->total_devices) { btrfs_err(fs_info, "super_num_devices %llu mismatch with num_devices %llu found here", btrfs_super_num_devices(fs_info->super_copy), total_dev); ret = -EINVAL; goto error; } if (btrfs_super_total_bytes(fs_info->super_copy) < fs_info->fs_devices->total_rw_bytes) { btrfs_err(fs_info, "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", btrfs_super_total_bytes(fs_info->super_copy), fs_info->fs_devices->total_rw_bytes); ret = -EINVAL; goto error; } ret = 0; error: mutex_unlock(&fs_info->chunk_mutex); mutex_unlock(&uuid_mutex); btrfs_free_path(path); return ret; } void btrfs_init_devices_late(struct btrfs_fs_info *fs_info) { struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; struct btrfs_device *device; while (fs_devices) { mutex_lock(&fs_devices->device_list_mutex); list_for_each_entry(device, &fs_devices->devices, dev_list) device->fs_info = fs_info; mutex_unlock(&fs_devices->device_list_mutex); fs_devices = fs_devices->seed; } } static u64 btrfs_dev_stats_value(const struct extent_buffer *eb, const struct btrfs_dev_stats_item *ptr, int index) { u64 val; read_extent_buffer(eb, &val, offsetof(struct btrfs_dev_stats_item, values) + ((unsigned long)ptr) + (index * sizeof(u64)), sizeof(val)); return val; } static void btrfs_set_dev_stats_value(struct extent_buffer *eb, struct btrfs_dev_stats_item *ptr, int index, u64 val) { write_extent_buffer(eb, &val, offsetof(struct btrfs_dev_stats_item, values) + ((unsigned long)ptr) + (index * sizeof(u64)), sizeof(val)); } int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) { struct btrfs_key key; struct btrfs_root *dev_root = fs_info->dev_root; struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; struct extent_buffer *eb; int slot; int ret = 0; struct btrfs_device *device; struct btrfs_path *path = NULL; int i; path = btrfs_alloc_path(); if (!path) return -ENOMEM; mutex_lock(&fs_devices->device_list_mutex); list_for_each_entry(device, &fs_devices->devices, dev_list) { int item_size; struct btrfs_dev_stats_item *ptr; key.objectid = BTRFS_DEV_STATS_OBJECTID; key.type = BTRFS_PERSISTENT_ITEM_KEY; key.offset = device->devid; ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0); if (ret) { for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) btrfs_dev_stat_set(device, i, 0); device->dev_stats_valid = 1; btrfs_release_path(path); continue; } slot = path->slots[0]; eb = path->nodes[0]; item_size = btrfs_item_size_nr(eb, slot); ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item); for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { if (item_size >= (1 + i) * sizeof(__le64)) btrfs_dev_stat_set(device, i, btrfs_dev_stats_value(eb, ptr, i)); else btrfs_dev_stat_set(device, i, 0); } device->dev_stats_valid = 1; btrfs_dev_stat_print_on_load(device); btrfs_release_path(path); } mutex_unlock(&fs_devices->device_list_mutex); btrfs_free_path(path); return ret < 0 ? ret : 0; } static int update_dev_stat_item(struct btrfs_trans_handle *trans, struct btrfs_device *device) { struct btrfs_fs_info *fs_info = trans->fs_info; struct btrfs_root *dev_root = fs_info->dev_root; struct btrfs_path *path; struct btrfs_key key; struct extent_buffer *eb; struct btrfs_dev_stats_item *ptr; int ret; int i; key.objectid = BTRFS_DEV_STATS_OBJECTID; key.type = BTRFS_PERSISTENT_ITEM_KEY; key.offset = device->devid; path = btrfs_alloc_path(); if (!path) return -ENOMEM; ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); if (ret < 0) { btrfs_warn_in_rcu(fs_info, "error %d while searching for dev_stats item for device %s", ret, rcu_str_deref(device->name)); goto out; } if (ret == 0 && btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { /* need to delete old one and insert a new one */ ret = btrfs_del_item(trans, dev_root, path); if (ret != 0) { btrfs_warn_in_rcu(fs_info, "delete too small dev_stats item for device %s failed %d", rcu_str_deref(device->name), ret); goto out; } ret = 1; } if (ret == 1) { /* need to insert a new item */ btrfs_release_path(path); ret = btrfs_insert_empty_item(trans, dev_root, path, &key, sizeof(*ptr)); if (ret < 0) { btrfs_warn_in_rcu(fs_info, "insert dev_stats item for device %s failed %d", rcu_str_deref(device->name), ret); goto out; } } eb = path->nodes[0]; ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) btrfs_set_dev_stats_value(eb, ptr, i, btrfs_dev_stat_read(device, i)); btrfs_mark_buffer_dirty(eb); out: btrfs_free_path(path); return ret; } /* * called from commit_transaction. Writes all changed device stats to disk. */ int btrfs_run_dev_stats(struct btrfs_trans_handle *trans) { struct btrfs_fs_info *fs_info = trans->fs_info; struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; struct btrfs_device *device; int stats_cnt; int ret = 0; mutex_lock(&fs_devices->device_list_mutex); list_for_each_entry(device, &fs_devices->devices, dev_list) { stats_cnt = atomic_read(&device->dev_stats_ccnt); if (!device->dev_stats_valid || stats_cnt == 0) continue; /* * There is a LOAD-LOAD control dependency between the value of * dev_stats_ccnt and updating the on-disk values which requires * reading the in-memory counters. Such control dependencies * require explicit read memory barriers. * * This memory barriers pairs with smp_mb__before_atomic in * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full * barrier implied by atomic_xchg in * btrfs_dev_stats_read_and_reset */ smp_rmb(); ret = update_dev_stat_item(trans, device); if (!ret) atomic_sub(stats_cnt, &device->dev_stats_ccnt); } mutex_unlock(&fs_devices->device_list_mutex); return ret; } void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) { btrfs_dev_stat_inc(dev, index); btrfs_dev_stat_print_on_error(dev); } static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev) { if (!dev->dev_stats_valid) return; btrfs_err_rl_in_rcu(dev->fs_info, "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", rcu_str_deref(dev->name), btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); } static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) { int i; for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) if (btrfs_dev_stat_read(dev, i) != 0) break; if (i == BTRFS_DEV_STAT_VALUES_MAX) return; /* all values == 0, suppress message */ btrfs_info_in_rcu(dev->fs_info, "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", rcu_str_deref(dev->name), btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); } int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, struct btrfs_ioctl_get_dev_stats *stats) { struct btrfs_device *dev; struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; int i; mutex_lock(&fs_devices->device_list_mutex); dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL, true); mutex_unlock(&fs_devices->device_list_mutex); if (!dev) { btrfs_warn(fs_info, "get dev_stats failed, device not found"); return -ENODEV; } else if (!dev->dev_stats_valid) { btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); return -ENODEV; } else if (stats->flags & BTRFS_DEV_STATS_RESET) { for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { if (stats->nr_items > i) stats->values[i] = btrfs_dev_stat_read_and_reset(dev, i); else btrfs_dev_stat_set(dev, i, 0); } } else { for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) if (stats->nr_items > i) stats->values[i] = btrfs_dev_stat_read(dev, i); } if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; return 0; } void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path) { struct buffer_head *bh; struct btrfs_super_block *disk_super; int copy_num; if (!bdev) return; for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) { if (btrfs_read_dev_one_super(bdev, copy_num, &bh)) continue; disk_super = (struct btrfs_super_block *)bh->b_data; memset(&disk_super->magic, 0, sizeof(disk_super->magic)); set_buffer_dirty(bh); sync_dirty_buffer(bh); brelse(bh); } /* Notify udev that device has changed */ btrfs_kobject_uevent(bdev, KOBJ_CHANGE); /* Update ctime/mtime for device path for libblkid */ update_dev_time(device_path); } /* * Update the size and bytes used for each device where it changed. This is * delayed since we would otherwise get errors while writing out the * superblocks. * * Must be invoked during transaction commit. */ void btrfs_commit_device_sizes(struct btrfs_transaction *trans) { struct btrfs_device *curr, *next; ASSERT(trans->state == TRANS_STATE_COMMIT_DOING); if (list_empty(&trans->dev_update_list)) return; /* * We don't need the device_list_mutex here. This list is owned by the * transaction and the transaction must complete before the device is * released. */ mutex_lock(&trans->fs_info->chunk_mutex); list_for_each_entry_safe(curr, next, &trans->dev_update_list, post_commit_list) { list_del_init(&curr->post_commit_list); curr->commit_total_bytes = curr->disk_total_bytes; curr->commit_bytes_used = curr->bytes_used; } mutex_unlock(&trans->fs_info->chunk_mutex); } void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info) { struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; while (fs_devices) { fs_devices->fs_info = fs_info; fs_devices = fs_devices->seed; } } void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info) { struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; while (fs_devices) { fs_devices->fs_info = NULL; fs_devices = fs_devices->seed; } } /* * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10. */ int btrfs_bg_type_to_factor(u64 flags) { const int index = btrfs_bg_flags_to_raid_index(flags); return btrfs_raid_array[index].ncopies; } static int verify_one_dev_extent(struct btrfs_fs_info *fs_info, u64 chunk_offset, u64 devid, u64 physical_offset, u64 physical_len) { struct extent_map_tree *em_tree = &fs_info->mapping_tree; struct extent_map *em; struct map_lookup *map; struct btrfs_device *dev; u64 stripe_len; bool found = false; int ret = 0; int i; read_lock(&em_tree->lock); em = lookup_extent_mapping(em_tree, chunk_offset, 1); read_unlock(&em_tree->lock); if (!em) { btrfs_err(fs_info, "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk", physical_offset, devid); ret = -EUCLEAN; goto out; } map = em->map_lookup; stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes); if (physical_len != stripe_len) { btrfs_err(fs_info, "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu", physical_offset, devid, em->start, physical_len, stripe_len); ret = -EUCLEAN; goto out; } for (i = 0; i < map->num_stripes; i++) { if (map->stripes[i].dev->devid == devid && map->stripes[i].physical == physical_offset) { found = true; if (map->verified_stripes >= map->num_stripes) { btrfs_err(fs_info, "too many dev extents for chunk %llu found", em->start); ret = -EUCLEAN; goto out; } map->verified_stripes++; break; } } if (!found) { btrfs_err(fs_info, "dev extent physical offset %llu devid %llu has no corresponding chunk", physical_offset, devid); ret = -EUCLEAN; } /* Make sure no dev extent is beyond device bondary */ dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true); if (!dev) { btrfs_err(fs_info, "failed to find devid %llu", devid); ret = -EUCLEAN; goto out; } /* It's possible this device is a dummy for seed device */ if (dev->disk_total_bytes == 0) { dev = btrfs_find_device(fs_info->fs_devices->seed, devid, NULL, NULL, false); if (!dev) { btrfs_err(fs_info, "failed to find seed devid %llu", devid); ret = -EUCLEAN; goto out; } } if (physical_offset + physical_len > dev->disk_total_bytes) { btrfs_err(fs_info, "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu", devid, physical_offset, physical_len, dev->disk_total_bytes); ret = -EUCLEAN; goto out; } out: free_extent_map(em); return ret; } static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info) { struct extent_map_tree *em_tree = &fs_info->mapping_tree; struct extent_map *em; struct rb_node *node; int ret = 0; read_lock(&em_tree->lock); for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) { em = rb_entry(node, struct extent_map, rb_node); if (em->map_lookup->num_stripes != em->map_lookup->verified_stripes) { btrfs_err(fs_info, "chunk %llu has missing dev extent, have %d expect %d", em->start, em->map_lookup->verified_stripes, em->map_lookup->num_stripes); ret = -EUCLEAN; goto out; } } out: read_unlock(&em_tree->lock); return ret; } /* * Ensure that all dev extents are mapped to correct chunk, otherwise * later chunk allocation/free would cause unexpected behavior. * * NOTE: This will iterate through the whole device tree, which should be of * the same size level as the chunk tree. This slightly increases mount time. */ int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info) { struct btrfs_path *path; struct btrfs_root *root = fs_info->dev_root; struct btrfs_key key; u64 prev_devid = 0; u64 prev_dev_ext_end = 0; int ret = 0; key.objectid = 1; key.type = BTRFS_DEV_EXTENT_KEY; key.offset = 0; path = btrfs_alloc_path(); if (!path) return -ENOMEM; path->reada = READA_FORWARD; ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); if (ret < 0) goto out; if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { ret = btrfs_next_item(root, path); if (ret < 0) goto out; /* No dev extents at all? Not good */ if (ret > 0) { ret = -EUCLEAN; goto out; } } while (1) { struct extent_buffer *leaf = path->nodes[0]; struct btrfs_dev_extent *dext; int slot = path->slots[0]; u64 chunk_offset; u64 physical_offset; u64 physical_len; u64 devid; btrfs_item_key_to_cpu(leaf, &key, slot); if (key.type != BTRFS_DEV_EXTENT_KEY) break; devid = key.objectid; physical_offset = key.offset; dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext); physical_len = btrfs_dev_extent_length(leaf, dext); /* Check if this dev extent overlaps with the previous one */ if (devid == prev_devid && physical_offset < prev_dev_ext_end) { btrfs_err(fs_info, "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu", devid, physical_offset, prev_dev_ext_end); ret = -EUCLEAN; goto out; } ret = verify_one_dev_extent(fs_info, chunk_offset, devid, physical_offset, physical_len); if (ret < 0) goto out; prev_devid = devid; prev_dev_ext_end = physical_offset + physical_len; ret = btrfs_next_item(root, path); if (ret < 0) goto out; if (ret > 0) { ret = 0; break; } } /* Ensure all chunks have corresponding dev extents */ ret = verify_chunk_dev_extent_mapping(fs_info); out: btrfs_free_path(path); return ret; } /* * Check whether the given block group or device is pinned by any inode being * used as a swapfile. */ bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr) { struct btrfs_swapfile_pin *sp; struct rb_node *node; spin_lock(&fs_info->swapfile_pins_lock); node = fs_info->swapfile_pins.rb_node; while (node) { sp = rb_entry(node, struct btrfs_swapfile_pin, node); if (ptr < sp->ptr) node = node->rb_left; else if (ptr > sp->ptr) node = node->rb_right; else break; } spin_unlock(&fs_info->swapfile_pins_lock); return node != NULL; }