317 lines
8.8 KiB
C
317 lines
8.8 KiB
C
/*
|
|
* Kernel-based Virtual Machine -- Performance Monitoring Unit support
|
|
*
|
|
* Copyright 2015 Red Hat, Inc. and/or its affiliates.
|
|
*
|
|
* Authors:
|
|
* Avi Kivity <avi@redhat.com>
|
|
* Gleb Natapov <gleb@redhat.com>
|
|
* Wei Huang <wei@redhat.com>
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2. See
|
|
* the COPYING file in the top-level directory.
|
|
*
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/perf_event.h>
|
|
#include <asm/perf_event.h>
|
|
#include "x86.h"
|
|
#include "cpuid.h"
|
|
#include "lapic.h"
|
|
#include "pmu.h"
|
|
|
|
/* NOTE:
|
|
* - Each perf counter is defined as "struct kvm_pmc";
|
|
* - There are two types of perf counters: general purpose (gp) and fixed.
|
|
* gp counters are stored in gp_counters[] and fixed counters are stored
|
|
* in fixed_counters[] respectively. Both of them are part of "struct
|
|
* kvm_pmu";
|
|
* - pmu.c understands the difference between gp counters and fixed counters.
|
|
* However AMD doesn't support fixed-counters;
|
|
* - There are three types of index to access perf counters (PMC):
|
|
* 1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD
|
|
* has MSR_K7_PERFCTRn.
|
|
* 2. MSR Index (named idx): This normally is used by RDPMC instruction.
|
|
* For instance AMD RDPMC instruction uses 0000_0003h in ECX to access
|
|
* C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except
|
|
* that it also supports fixed counters. idx can be used to as index to
|
|
* gp and fixed counters.
|
|
* 3. Global PMC Index (named pmc): pmc is an index specific to PMU
|
|
* code. Each pmc, stored in kvm_pmc.idx field, is unique across
|
|
* all perf counters (both gp and fixed). The mapping relationship
|
|
* between pmc and perf counters is as the following:
|
|
* * Intel: [0 .. INTEL_PMC_MAX_GENERIC-1] <=> gp counters
|
|
* [INTEL_PMC_IDX_FIXED .. INTEL_PMC_IDX_FIXED + 2] <=> fixed
|
|
* * AMD: [0 .. AMD64_NUM_COUNTERS-1] <=> gp counters
|
|
*/
|
|
|
|
static void kvm_pmi_trigger_fn(struct irq_work *irq_work)
|
|
{
|
|
struct kvm_pmu *pmu = container_of(irq_work, struct kvm_pmu, irq_work);
|
|
struct kvm_vcpu *vcpu = pmu_to_vcpu(pmu);
|
|
|
|
kvm_pmu_deliver_pmi(vcpu);
|
|
}
|
|
|
|
static void kvm_perf_overflow(struct perf_event *perf_event,
|
|
struct perf_sample_data *data,
|
|
struct pt_regs *regs)
|
|
{
|
|
struct kvm_pmc *pmc = perf_event->overflow_handler_context;
|
|
struct kvm_pmu *pmu = pmc_to_pmu(pmc);
|
|
|
|
if (!test_and_set_bit(pmc->idx,
|
|
(unsigned long *)&pmu->reprogram_pmi)) {
|
|
__set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
|
|
kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
|
|
}
|
|
}
|
|
|
|
static void kvm_perf_overflow_intr(struct perf_event *perf_event,
|
|
struct perf_sample_data *data,
|
|
struct pt_regs *regs)
|
|
{
|
|
struct kvm_pmc *pmc = perf_event->overflow_handler_context;
|
|
struct kvm_pmu *pmu = pmc_to_pmu(pmc);
|
|
|
|
if (!test_and_set_bit(pmc->idx,
|
|
(unsigned long *)&pmu->reprogram_pmi)) {
|
|
__set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
|
|
kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
|
|
|
|
/*
|
|
* Inject PMI. If vcpu was in a guest mode during NMI PMI
|
|
* can be ejected on a guest mode re-entry. Otherwise we can't
|
|
* be sure that vcpu wasn't executing hlt instruction at the
|
|
* time of vmexit and is not going to re-enter guest mode until
|
|
* woken up. So we should wake it, but this is impossible from
|
|
* NMI context. Do it from irq work instead.
|
|
*/
|
|
if (!kvm_is_in_guest())
|
|
irq_work_queue(&pmc_to_pmu(pmc)->irq_work);
|
|
else
|
|
kvm_make_request(KVM_REQ_PMI, pmc->vcpu);
|
|
}
|
|
}
|
|
|
|
static void pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type,
|
|
unsigned config, bool exclude_user,
|
|
bool exclude_kernel, bool intr,
|
|
bool in_tx, bool in_tx_cp)
|
|
{
|
|
struct perf_event *event;
|
|
struct perf_event_attr attr = {
|
|
.type = type,
|
|
.size = sizeof(attr),
|
|
.pinned = true,
|
|
.exclude_idle = true,
|
|
.exclude_host = 1,
|
|
.exclude_user = exclude_user,
|
|
.exclude_kernel = exclude_kernel,
|
|
.config = config,
|
|
};
|
|
|
|
attr.sample_period = (-pmc->counter) & pmc_bitmask(pmc);
|
|
|
|
if (in_tx)
|
|
attr.config |= HSW_IN_TX;
|
|
if (in_tx_cp) {
|
|
/*
|
|
* HSW_IN_TX_CHECKPOINTED is not supported with nonzero
|
|
* period. Just clear the sample period so at least
|
|
* allocating the counter doesn't fail.
|
|
*/
|
|
attr.sample_period = 0;
|
|
attr.config |= HSW_IN_TX_CHECKPOINTED;
|
|
}
|
|
|
|
event = perf_event_create_kernel_counter(&attr, -1, current,
|
|
intr ? kvm_perf_overflow_intr :
|
|
kvm_perf_overflow, pmc);
|
|
if (IS_ERR(event)) {
|
|
printk_once("kvm_pmu: event creation failed %ld\n",
|
|
PTR_ERR(event));
|
|
return;
|
|
}
|
|
|
|
pmc->perf_event = event;
|
|
clear_bit(pmc->idx, (unsigned long*)&pmc_to_pmu(pmc)->reprogram_pmi);
|
|
}
|
|
|
|
void reprogram_gp_counter(struct kvm_pmc *pmc, u64 eventsel)
|
|
{
|
|
unsigned config, type = PERF_TYPE_RAW;
|
|
u8 event_select, unit_mask;
|
|
|
|
if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL)
|
|
printk_once("kvm pmu: pin control bit is ignored\n");
|
|
|
|
pmc->eventsel = eventsel;
|
|
|
|
pmc_stop_counter(pmc);
|
|
|
|
if (!(eventsel & ARCH_PERFMON_EVENTSEL_ENABLE) || !pmc_is_enabled(pmc))
|
|
return;
|
|
|
|
event_select = eventsel & ARCH_PERFMON_EVENTSEL_EVENT;
|
|
unit_mask = (eventsel & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
|
|
|
|
if (!(eventsel & (ARCH_PERFMON_EVENTSEL_EDGE |
|
|
ARCH_PERFMON_EVENTSEL_INV |
|
|
ARCH_PERFMON_EVENTSEL_CMASK |
|
|
HSW_IN_TX |
|
|
HSW_IN_TX_CHECKPOINTED))) {
|
|
config = kvm_x86_ops->pmu_ops->find_arch_event(pmc_to_pmu(pmc),
|
|
event_select,
|
|
unit_mask);
|
|
if (config != PERF_COUNT_HW_MAX)
|
|
type = PERF_TYPE_HARDWARE;
|
|
}
|
|
|
|
if (type == PERF_TYPE_RAW)
|
|
config = eventsel & X86_RAW_EVENT_MASK;
|
|
|
|
pmc_reprogram_counter(pmc, type, config,
|
|
!(eventsel & ARCH_PERFMON_EVENTSEL_USR),
|
|
!(eventsel & ARCH_PERFMON_EVENTSEL_OS),
|
|
eventsel & ARCH_PERFMON_EVENTSEL_INT,
|
|
(eventsel & HSW_IN_TX),
|
|
(eventsel & HSW_IN_TX_CHECKPOINTED));
|
|
}
|
|
EXPORT_SYMBOL_GPL(reprogram_gp_counter);
|
|
|
|
void reprogram_fixed_counter(struct kvm_pmc *pmc, u8 ctrl, int idx)
|
|
{
|
|
unsigned en_field = ctrl & 0x3;
|
|
bool pmi = ctrl & 0x8;
|
|
|
|
pmc_stop_counter(pmc);
|
|
|
|
if (!en_field || !pmc_is_enabled(pmc))
|
|
return;
|
|
|
|
pmc_reprogram_counter(pmc, PERF_TYPE_HARDWARE,
|
|
kvm_x86_ops->pmu_ops->find_fixed_event(idx),
|
|
!(en_field & 0x2), /* exclude user */
|
|
!(en_field & 0x1), /* exclude kernel */
|
|
pmi, false, false);
|
|
}
|
|
EXPORT_SYMBOL_GPL(reprogram_fixed_counter);
|
|
|
|
void reprogram_counter(struct kvm_pmu *pmu, int pmc_idx)
|
|
{
|
|
struct kvm_pmc *pmc = kvm_x86_ops->pmu_ops->pmc_idx_to_pmc(pmu, pmc_idx);
|
|
|
|
if (!pmc)
|
|
return;
|
|
|
|
if (pmc_is_gp(pmc))
|
|
reprogram_gp_counter(pmc, pmc->eventsel);
|
|
else {
|
|
int idx = pmc_idx - INTEL_PMC_IDX_FIXED;
|
|
u8 ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl, idx);
|
|
|
|
reprogram_fixed_counter(pmc, ctrl, idx);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(reprogram_counter);
|
|
|
|
void kvm_pmu_handle_event(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
|
|
u64 bitmask;
|
|
int bit;
|
|
|
|
bitmask = pmu->reprogram_pmi;
|
|
|
|
for_each_set_bit(bit, (unsigned long *)&bitmask, X86_PMC_IDX_MAX) {
|
|
struct kvm_pmc *pmc = kvm_x86_ops->pmu_ops->pmc_idx_to_pmc(pmu, bit);
|
|
|
|
if (unlikely(!pmc || !pmc->perf_event)) {
|
|
clear_bit(bit, (unsigned long *)&pmu->reprogram_pmi);
|
|
continue;
|
|
}
|
|
|
|
reprogram_counter(pmu, bit);
|
|
}
|
|
}
|
|
|
|
/* check if idx is a valid index to access PMU */
|
|
int kvm_pmu_is_valid_msr_idx(struct kvm_vcpu *vcpu, unsigned idx)
|
|
{
|
|
return kvm_x86_ops->pmu_ops->is_valid_msr_idx(vcpu, idx);
|
|
}
|
|
|
|
int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
|
|
{
|
|
bool fast_mode = idx & (1u << 31);
|
|
struct kvm_pmc *pmc;
|
|
u64 ctr_val;
|
|
|
|
pmc = kvm_x86_ops->pmu_ops->msr_idx_to_pmc(vcpu, idx);
|
|
if (!pmc)
|
|
return 1;
|
|
|
|
ctr_val = pmc_read_counter(pmc);
|
|
if (fast_mode)
|
|
ctr_val = (u32)ctr_val;
|
|
|
|
*data = ctr_val;
|
|
return 0;
|
|
}
|
|
|
|
void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (lapic_in_kernel(vcpu))
|
|
kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC);
|
|
}
|
|
|
|
bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr)
|
|
{
|
|
return kvm_x86_ops->pmu_ops->is_valid_msr(vcpu, msr);
|
|
}
|
|
|
|
int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *data)
|
|
{
|
|
return kvm_x86_ops->pmu_ops->get_msr(vcpu, msr, data);
|
|
}
|
|
|
|
int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
|
|
{
|
|
return kvm_x86_ops->pmu_ops->set_msr(vcpu, msr_info);
|
|
}
|
|
|
|
/* refresh PMU settings. This function generally is called when underlying
|
|
* settings are changed (such as changes of PMU CPUID by guest VMs), which
|
|
* should rarely happen.
|
|
*/
|
|
void kvm_pmu_refresh(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_x86_ops->pmu_ops->refresh(vcpu);
|
|
}
|
|
|
|
void kvm_pmu_reset(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
|
|
|
|
irq_work_sync(&pmu->irq_work);
|
|
kvm_x86_ops->pmu_ops->reset(vcpu);
|
|
}
|
|
|
|
void kvm_pmu_init(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
|
|
|
|
memset(pmu, 0, sizeof(*pmu));
|
|
kvm_x86_ops->pmu_ops->init(vcpu);
|
|
init_irq_work(&pmu->irq_work, kvm_pmi_trigger_fn);
|
|
kvm_pmu_refresh(vcpu);
|
|
}
|
|
|
|
void kvm_pmu_destroy(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_pmu_reset(vcpu);
|
|
}
|