linux/drivers/net/wireless/ath/ath5k/phy.c
Felix Fietkau 5c17ddc4a0 ath5k: do not re-run AGC calibration periodically
All other Atheros drivers run the AGC gain calibration and DC offset
calibration only after reset. Running them periodically has caused stability
issues on some (primarily AR2315/2413/5413/5414 based) devices, leading to
messages such as:

ath5k phy0: gain calibration timeout (2462MHz)
ath5k phy0: calibration of channel 11 failed

Related bug reports:
https://dev.openwrt.org/ticket/10574
https://bugzilla.redhat.com/show_bug.cgi?id=795141

Signed-off-by: Felix Fietkau <nbd@openwrt.org>
Acked-by: Nick Kossifidis <mickflemm@gmail.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2012-03-06 15:16:18 -05:00

3951 lines
107 KiB
C

/*
* Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
* Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
* Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
* Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
/***********************\
* PHY related functions *
\***********************/
#include <linux/delay.h>
#include <linux/slab.h>
#include <asm/unaligned.h>
#include "ath5k.h"
#include "reg.h"
#include "rfbuffer.h"
#include "rfgain.h"
#include "../regd.h"
/**
* DOC: PHY related functions
*
* Here we handle the low-level functions related to baseband
* and analog frontend (RF) parts. This is by far the most complex
* part of the hw code so make sure you know what you are doing.
*
* Here is a list of what this is all about:
*
* - Channel setting/switching
*
* - Automatic Gain Control (AGC) calibration
*
* - Noise Floor calibration
*
* - I/Q imbalance calibration (QAM correction)
*
* - Calibration due to thermal changes (gain_F)
*
* - Spur noise mitigation
*
* - RF/PHY initialization for the various operating modes and bwmodes
*
* - Antenna control
*
* - TX power control per channel/rate/packet type
*
* Also have in mind we never got documentation for most of these
* functions, what we have comes mostly from Atheros's code, reverse
* engineering and patent docs/presentations etc.
*/
/******************\
* Helper functions *
\******************/
/**
* ath5k_hw_radio_revision() - Get the PHY Chip revision
* @ah: The &struct ath5k_hw
* @band: One of enum ieee80211_band
*
* Returns the revision number of a 2GHz, 5GHz or single chip
* radio.
*/
u16
ath5k_hw_radio_revision(struct ath5k_hw *ah, enum ieee80211_band band)
{
unsigned int i;
u32 srev;
u16 ret;
/*
* Set the radio chip access register
*/
switch (band) {
case IEEE80211_BAND_2GHZ:
ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
break;
case IEEE80211_BAND_5GHZ:
ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
break;
default:
return 0;
}
usleep_range(2000, 2500);
/* ...wait until PHY is ready and read the selected radio revision */
ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
for (i = 0; i < 8; i++)
ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
if (ah->ah_version == AR5K_AR5210) {
srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
} else {
srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
((srev & 0x0f) << 4), 8);
}
/* Reset to the 5GHz mode */
ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
return ret;
}
/**
* ath5k_channel_ok() - Check if a channel is supported by the hw
* @ah: The &struct ath5k_hw
* @channel: The &struct ieee80211_channel
*
* Note: We don't do any regulatory domain checks here, it's just
* a sanity check.
*/
bool
ath5k_channel_ok(struct ath5k_hw *ah, struct ieee80211_channel *channel)
{
u16 freq = channel->center_freq;
/* Check if the channel is in our supported range */
if (channel->band == IEEE80211_BAND_2GHZ) {
if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
(freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
return true;
} else if (channel->band == IEEE80211_BAND_5GHZ)
if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
(freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
return true;
return false;
}
/**
* ath5k_hw_chan_has_spur_noise() - Check if channel is sensitive to spur noise
* @ah: The &struct ath5k_hw
* @channel: The &struct ieee80211_channel
*/
bool
ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
struct ieee80211_channel *channel)
{
u8 refclk_freq;
if ((ah->ah_radio == AR5K_RF5112) ||
(ah->ah_radio == AR5K_RF5413) ||
(ah->ah_radio == AR5K_RF2413) ||
(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
refclk_freq = 40;
else
refclk_freq = 32;
if ((channel->center_freq % refclk_freq != 0) &&
((channel->center_freq % refclk_freq < 10) ||
(channel->center_freq % refclk_freq > 22)))
return true;
else
return false;
}
/**
* ath5k_hw_rfb_op() - Perform an operation on the given RF Buffer
* @ah: The &struct ath5k_hw
* @rf_regs: The struct ath5k_rf_reg
* @val: New value
* @reg_id: RF register ID
* @set: Indicate we need to swap data
*
* This is an internal function used to modify RF Banks before
* writing them to AR5K_RF_BUFFER. Check out rfbuffer.h for more
* infos.
*/
static unsigned int
ath5k_hw_rfb_op(struct ath5k_hw *ah, const struct ath5k_rf_reg *rf_regs,
u32 val, u8 reg_id, bool set)
{
const struct ath5k_rf_reg *rfreg = NULL;
u8 offset, bank, num_bits, col, position;
u16 entry;
u32 mask, data, last_bit, bits_shifted, first_bit;
u32 *rfb;
s32 bits_left;
int i;
data = 0;
rfb = ah->ah_rf_banks;
for (i = 0; i < ah->ah_rf_regs_count; i++) {
if (rf_regs[i].index == reg_id) {
rfreg = &rf_regs[i];
break;
}
}
if (rfb == NULL || rfreg == NULL) {
ATH5K_PRINTF("Rf register not found!\n");
/* should not happen */
return 0;
}
bank = rfreg->bank;
num_bits = rfreg->field.len;
first_bit = rfreg->field.pos;
col = rfreg->field.col;
/* first_bit is an offset from bank's
* start. Since we have all banks on
* the same array, we use this offset
* to mark each bank's start */
offset = ah->ah_offset[bank];
/* Boundary check */
if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
ATH5K_PRINTF("invalid values at offset %u\n", offset);
return 0;
}
entry = ((first_bit - 1) / 8) + offset;
position = (first_bit - 1) % 8;
if (set)
data = ath5k_hw_bitswap(val, num_bits);
for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
position = 0, entry++) {
last_bit = (position + bits_left > 8) ? 8 :
position + bits_left;
mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
(col * 8);
if (set) {
rfb[entry] &= ~mask;
rfb[entry] |= ((data << position) << (col * 8)) & mask;
data >>= (8 - position);
} else {
data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
<< bits_shifted;
bits_shifted += last_bit - position;
}
bits_left -= 8 - position;
}
data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
return data;
}
/**
* ath5k_hw_write_ofdm_timings() - set OFDM timings on AR5212
* @ah: the &struct ath5k_hw
* @channel: the currently set channel upon reset
*
* Write the delta slope coefficient (used on pilot tracking ?) for OFDM
* operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
*
* Since delta slope is floating point we split it on its exponent and
* mantissa and provide these values on hw.
*
* For more infos i think this patent is related
* "http://www.freepatentsonline.com/7184495.html"
*/
static inline int
ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
struct ieee80211_channel *channel)
{
/* Get exponent and mantissa and set it */
u32 coef_scaled, coef_exp, coef_man,
ds_coef_exp, ds_coef_man, clock;
BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
(channel->hw_value == AR5K_MODE_11B));
/* Get coefficient
* ALGO: coef = (5 * clock / carrier_freq) / 2
* we scale coef by shifting clock value by 24 for
* better precision since we use integers */
switch (ah->ah_bwmode) {
case AR5K_BWMODE_40MHZ:
clock = 40 * 2;
break;
case AR5K_BWMODE_10MHZ:
clock = 40 / 2;
break;
case AR5K_BWMODE_5MHZ:
clock = 40 / 4;
break;
default:
clock = 40;
break;
}
coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
/* Get exponent
* ALGO: coef_exp = 14 - highest set bit position */
coef_exp = ilog2(coef_scaled);
/* Doesn't make sense if it's zero*/
if (!coef_scaled || !coef_exp)
return -EINVAL;
/* Note: we've shifted coef_scaled by 24 */
coef_exp = 14 - (coef_exp - 24);
/* Get mantissa (significant digits)
* ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
coef_man = coef_scaled +
(1 << (24 - coef_exp - 1));
/* Calculate delta slope coefficient exponent
* and mantissa (remove scaling) and set them on hw */
ds_coef_man = coef_man >> (24 - coef_exp);
ds_coef_exp = coef_exp - 16;
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
return 0;
}
/**
* ath5k_hw_phy_disable() - Disable PHY
* @ah: The &struct ath5k_hw
*/
int ath5k_hw_phy_disable(struct ath5k_hw *ah)
{
/*Just a try M.F.*/
ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
return 0;
}
/**
* ath5k_hw_wait_for_synth() - Wait for synth to settle
* @ah: The &struct ath5k_hw
* @channel: The &struct ieee80211_channel
*/
static void
ath5k_hw_wait_for_synth(struct ath5k_hw *ah,
struct ieee80211_channel *channel)
{
/*
* On 5211+ read activation -> rx delay
* and use it (100ns steps).
*/
if (ah->ah_version != AR5K_AR5210) {
u32 delay;
delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
AR5K_PHY_RX_DELAY_M;
delay = (channel->hw_value == AR5K_MODE_11B) ?
((delay << 2) / 22) : (delay / 10);
if (ah->ah_bwmode == AR5K_BWMODE_10MHZ)
delay = delay << 1;
if (ah->ah_bwmode == AR5K_BWMODE_5MHZ)
delay = delay << 2;
/* XXX: /2 on turbo ? Let's be safe
* for now */
usleep_range(100 + delay, 100 + (2 * delay));
} else {
usleep_range(1000, 1500);
}
}
/**********************\
* RF Gain optimization *
\**********************/
/**
* DOC: RF Gain optimization
*
* This code is used to optimize RF gain on different environments
* (temperature mostly) based on feedback from a power detector.
*
* It's only used on RF5111 and RF5112, later RF chips seem to have
* auto adjustment on hw -notice they have a much smaller BANK 7 and
* no gain optimization ladder-.
*
* For more infos check out this patent doc
* "http://www.freepatentsonline.com/7400691.html"
*
* This paper describes power drops as seen on the receiver due to
* probe packets
* "http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
* %20of%20Power%20Control.pdf"
*
* And this is the MadWiFi bug entry related to the above
* "http://madwifi-project.org/ticket/1659"
* with various measurements and diagrams
*/
/**
* ath5k_hw_rfgain_opt_init() - Initialize ah_gain during attach
* @ah: The &struct ath5k_hw
*/
int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
{
/* Initialize the gain optimization values */
switch (ah->ah_radio) {
case AR5K_RF5111:
ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
ah->ah_gain.g_low = 20;
ah->ah_gain.g_high = 35;
ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
break;
case AR5K_RF5112:
ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
ah->ah_gain.g_low = 20;
ah->ah_gain.g_high = 85;
ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
break;
default:
return -EINVAL;
}
return 0;
}
/**
* ath5k_hw_request_rfgain_probe() - Request a PAPD probe packet
* @ah: The &struct ath5k_hw
*
* Schedules a gain probe check on the next transmitted packet.
* That means our next packet is going to be sent with lower
* tx power and a Peak to Average Power Detector (PAPD) will try
* to measure the gain.
*
* TODO: Force a tx packet (bypassing PCU arbitrator etc)
* just after we enable the probe so that we don't mess with
* standard traffic.
*/
static void
ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
{
/* Skip if gain calibration is inactive or
* we already handle a probe request */
if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
return;
/* Send the packet with 2dB below max power as
* patent doc suggest */
ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
AR5K_PHY_PAPD_PROBE_TXPOWER) |
AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
}
/**
* ath5k_hw_rf_gainf_corr() - Calculate Gain_F measurement correction
* @ah: The &struct ath5k_hw
*
* Calculate Gain_F measurement correction
* based on the current step for RF5112 rev. 2
*/
static u32
ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
{
u32 mix, step;
u32 *rf;
const struct ath5k_gain_opt *go;
const struct ath5k_gain_opt_step *g_step;
const struct ath5k_rf_reg *rf_regs;
/* Only RF5112 Rev. 2 supports it */
if ((ah->ah_radio != AR5K_RF5112) ||
(ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
return 0;
go = &rfgain_opt_5112;
rf_regs = rf_regs_5112a;
ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
g_step = &go->go_step[ah->ah_gain.g_step_idx];
if (ah->ah_rf_banks == NULL)
return 0;
rf = ah->ah_rf_banks;
ah->ah_gain.g_f_corr = 0;
/* No VGA (Variable Gain Amplifier) override, skip */
if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
return 0;
/* Mix gain stepping */
step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
/* Mix gain override */
mix = g_step->gos_param[0];
switch (mix) {
case 3:
ah->ah_gain.g_f_corr = step * 2;
break;
case 2:
ah->ah_gain.g_f_corr = (step - 5) * 2;
break;
case 1:
ah->ah_gain.g_f_corr = step;
break;
default:
ah->ah_gain.g_f_corr = 0;
break;
}
return ah->ah_gain.g_f_corr;
}
/**
* ath5k_hw_rf_check_gainf_readback() - Validate Gain_F feedback from detector
* @ah: The &struct ath5k_hw
*
* Check if current gain_F measurement is in the range of our
* power detector windows. If we get a measurement outside range
* we know it's not accurate (detectors can't measure anything outside
* their detection window) so we must ignore it.
*
* Returns true if readback was O.K. or false on failure
*/
static bool
ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
{
const struct ath5k_rf_reg *rf_regs;
u32 step, mix_ovr, level[4];
u32 *rf;
if (ah->ah_rf_banks == NULL)
return false;
rf = ah->ah_rf_banks;
if (ah->ah_radio == AR5K_RF5111) {
rf_regs = rf_regs_5111;
ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
false);
level[0] = 0;
level[1] = (step == 63) ? 50 : step + 4;
level[2] = (step != 63) ? 64 : level[0];
level[3] = level[2] + 50;
ah->ah_gain.g_high = level[3] -
(step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
ah->ah_gain.g_low = level[0] +
(step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
} else {
rf_regs = rf_regs_5112;
ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
false);
level[0] = level[2] = 0;
if (mix_ovr == 1) {
level[1] = level[3] = 83;
} else {
level[1] = level[3] = 107;
ah->ah_gain.g_high = 55;
}
}
return (ah->ah_gain.g_current >= level[0] &&
ah->ah_gain.g_current <= level[1]) ||
(ah->ah_gain.g_current >= level[2] &&
ah->ah_gain.g_current <= level[3]);
}
/**
* ath5k_hw_rf_gainf_adjust() - Perform Gain_F adjustment
* @ah: The &struct ath5k_hw
*
* Choose the right target gain based on current gain
* and RF gain optimization ladder
*/
static s8
ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
{
const struct ath5k_gain_opt *go;
const struct ath5k_gain_opt_step *g_step;
int ret = 0;
switch (ah->ah_radio) {
case AR5K_RF5111:
go = &rfgain_opt_5111;
break;
case AR5K_RF5112:
go = &rfgain_opt_5112;
break;
default:
return 0;
}
g_step = &go->go_step[ah->ah_gain.g_step_idx];
if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
/* Reached maximum */
if (ah->ah_gain.g_step_idx == 0)
return -1;
for (ah->ah_gain.g_target = ah->ah_gain.g_current;
ah->ah_gain.g_target >= ah->ah_gain.g_high &&
ah->ah_gain.g_step_idx > 0;
g_step = &go->go_step[ah->ah_gain.g_step_idx])
ah->ah_gain.g_target -= 2 *
(go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
g_step->gos_gain);
ret = 1;
goto done;
}
if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
/* Reached minimum */
if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
return -2;
for (ah->ah_gain.g_target = ah->ah_gain.g_current;
ah->ah_gain.g_target <= ah->ah_gain.g_low &&
ah->ah_gain.g_step_idx < go->go_steps_count - 1;
g_step = &go->go_step[ah->ah_gain.g_step_idx])
ah->ah_gain.g_target -= 2 *
(go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
g_step->gos_gain);
ret = 2;
goto done;
}
done:
ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
"ret %d, gain step %u, current gain %u, target gain %u\n",
ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
ah->ah_gain.g_target);
return ret;
}
/**
* ath5k_hw_gainf_calibrate() - Do a gain_F calibration
* @ah: The &struct ath5k_hw
*
* Main callback for thermal RF gain calibration engine
* Check for a new gain reading and schedule an adjustment
* if needed.
*
* Returns one of enum ath5k_rfgain codes
*/
enum ath5k_rfgain
ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
{
u32 data, type;
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
if (ah->ah_rf_banks == NULL ||
ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
return AR5K_RFGAIN_INACTIVE;
/* No check requested, either engine is inactive
* or an adjustment is already requested */
if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
goto done;
/* Read the PAPD (Peak to Average Power Detector)
* register */
data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
/* No probe is scheduled, read gain_F measurement */
if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
/* If tx packet is CCK correct the gain_F measurement
* by cck ofdm gain delta */
if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
ah->ah_gain.g_current +=
ee->ee_cck_ofdm_gain_delta;
else
ah->ah_gain.g_current +=
AR5K_GAIN_CCK_PROBE_CORR;
}
/* Further correct gain_F measurement for
* RF5112A radios */
if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
ath5k_hw_rf_gainf_corr(ah);
ah->ah_gain.g_current =
ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
(ah->ah_gain.g_current - ah->ah_gain.g_f_corr) :
0;
}
/* Check if measurement is ok and if we need
* to adjust gain, schedule a gain adjustment,
* else switch back to the active state */
if (ath5k_hw_rf_check_gainf_readback(ah) &&
AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
ath5k_hw_rf_gainf_adjust(ah)) {
ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
} else {
ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
}
}
done:
return ah->ah_gain.g_state;
}
/**
* ath5k_hw_rfgain_init() - Write initial RF gain settings to hw
* @ah: The &struct ath5k_hw
* @band: One of enum ieee80211_band
*
* Write initial RF gain table to set the RF sensitivity.
*
* NOTE: This one works on all RF chips and has nothing to do
* with Gain_F calibration
*/
static int
ath5k_hw_rfgain_init(struct ath5k_hw *ah, enum ieee80211_band band)
{
const struct ath5k_ini_rfgain *ath5k_rfg;
unsigned int i, size, index;
switch (ah->ah_radio) {
case AR5K_RF5111:
ath5k_rfg = rfgain_5111;
size = ARRAY_SIZE(rfgain_5111);
break;
case AR5K_RF5112:
ath5k_rfg = rfgain_5112;
size = ARRAY_SIZE(rfgain_5112);
break;
case AR5K_RF2413:
ath5k_rfg = rfgain_2413;
size = ARRAY_SIZE(rfgain_2413);
break;
case AR5K_RF2316:
ath5k_rfg = rfgain_2316;
size = ARRAY_SIZE(rfgain_2316);
break;
case AR5K_RF5413:
ath5k_rfg = rfgain_5413;
size = ARRAY_SIZE(rfgain_5413);
break;
case AR5K_RF2317:
case AR5K_RF2425:
ath5k_rfg = rfgain_2425;
size = ARRAY_SIZE(rfgain_2425);
break;
default:
return -EINVAL;
}
index = (band == IEEE80211_BAND_2GHZ) ? 1 : 0;
for (i = 0; i < size; i++) {
AR5K_REG_WAIT(i);
ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[index],
(u32)ath5k_rfg[i].rfg_register);
}
return 0;
}
/********************\
* RF Registers setup *
\********************/
/**
* ath5k_hw_rfregs_init() - Initialize RF register settings
* @ah: The &struct ath5k_hw
* @channel: The &struct ieee80211_channel
* @mode: One of enum ath5k_driver_mode
*
* Setup RF registers by writing RF buffer on hw. For
* more infos on this, check out rfbuffer.h
*/
static int
ath5k_hw_rfregs_init(struct ath5k_hw *ah,
struct ieee80211_channel *channel,
unsigned int mode)
{
const struct ath5k_rf_reg *rf_regs;
const struct ath5k_ini_rfbuffer *ini_rfb;
const struct ath5k_gain_opt *go = NULL;
const struct ath5k_gain_opt_step *g_step;
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
u8 ee_mode = 0;
u32 *rfb;
int i, obdb = -1, bank = -1;
switch (ah->ah_radio) {
case AR5K_RF5111:
rf_regs = rf_regs_5111;
ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
ini_rfb = rfb_5111;
ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
go = &rfgain_opt_5111;
break;
case AR5K_RF5112:
if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
rf_regs = rf_regs_5112a;
ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
ini_rfb = rfb_5112a;
ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
} else {
rf_regs = rf_regs_5112;
ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
ini_rfb = rfb_5112;
ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
}
go = &rfgain_opt_5112;
break;
case AR5K_RF2413:
rf_regs = rf_regs_2413;
ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
ini_rfb = rfb_2413;
ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
break;
case AR5K_RF2316:
rf_regs = rf_regs_2316;
ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
ini_rfb = rfb_2316;
ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
break;
case AR5K_RF5413:
rf_regs = rf_regs_5413;
ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
ini_rfb = rfb_5413;
ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
break;
case AR5K_RF2317:
rf_regs = rf_regs_2425;
ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
ini_rfb = rfb_2317;
ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
break;
case AR5K_RF2425:
rf_regs = rf_regs_2425;
ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
ini_rfb = rfb_2425;
ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
} else {
ini_rfb = rfb_2417;
ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
}
break;
default:
return -EINVAL;
}
/* If it's the first time we set RF buffer, allocate
* ah->ah_rf_banks based on ah->ah_rf_banks_size
* we set above */
if (ah->ah_rf_banks == NULL) {
ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
GFP_KERNEL);
if (ah->ah_rf_banks == NULL) {
ATH5K_ERR(ah, "out of memory\n");
return -ENOMEM;
}
}
/* Copy values to modify them */
rfb = ah->ah_rf_banks;
for (i = 0; i < ah->ah_rf_banks_size; i++) {
if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
ATH5K_ERR(ah, "invalid bank\n");
return -EINVAL;
}
/* Bank changed, write down the offset */
if (bank != ini_rfb[i].rfb_bank) {
bank = ini_rfb[i].rfb_bank;
ah->ah_offset[bank] = i;
}
rfb[i] = ini_rfb[i].rfb_mode_data[mode];
}
/* Set Output and Driver bias current (OB/DB) */
if (channel->band == IEEE80211_BAND_2GHZ) {
if (channel->hw_value == AR5K_MODE_11B)
ee_mode = AR5K_EEPROM_MODE_11B;
else
ee_mode = AR5K_EEPROM_MODE_11G;
/* For RF511X/RF211X combination we
* use b_OB and b_DB parameters stored
* in eeprom on ee->ee_ob[ee_mode][0]
*
* For all other chips we use OB/DB for 2GHz
* stored in the b/g modal section just like
* 802.11a on ee->ee_ob[ee_mode][1] */
if ((ah->ah_radio == AR5K_RF5111) ||
(ah->ah_radio == AR5K_RF5112))
obdb = 0;
else
obdb = 1;
ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
AR5K_RF_OB_2GHZ, true);
ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
AR5K_RF_DB_2GHZ, true);
/* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
} else if ((channel->band == IEEE80211_BAND_5GHZ) ||
(ah->ah_radio == AR5K_RF5111)) {
/* For 11a, Turbo and XR we need to choose
* OB/DB based on frequency range */
ee_mode = AR5K_EEPROM_MODE_11A;
obdb = channel->center_freq >= 5725 ? 3 :
(channel->center_freq >= 5500 ? 2 :
(channel->center_freq >= 5260 ? 1 :
(channel->center_freq > 4000 ? 0 : -1)));
if (obdb < 0)
return -EINVAL;
ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
AR5K_RF_OB_5GHZ, true);
ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
AR5K_RF_DB_5GHZ, true);
}
g_step = &go->go_step[ah->ah_gain.g_step_idx];
/* Set turbo mode (N/A on RF5413) */
if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
(ah->ah_radio != AR5K_RF5413))
ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_TURBO, false);
/* Bank Modifications (chip-specific) */
if (ah->ah_radio == AR5K_RF5111) {
/* Set gain_F settings according to current step */
if (channel->hw_value != AR5K_MODE_11B) {
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
AR5K_PHY_FRAME_CTL_TX_CLIP,
g_step->gos_param[0]);
ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
AR5K_RF_PWD_90, true);
ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
AR5K_RF_PWD_84, true);
ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
AR5K_RF_RFGAIN_SEL, true);
/* We programmed gain_F parameters, switch back
* to active state */
ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
}
/* Bank 6/7 setup */
ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
AR5K_RF_PWD_XPD, true);
ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
AR5K_RF_XPD_GAIN, true);
ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
AR5K_RF_GAIN_I, true);
ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
AR5K_RF_PLO_SEL, true);
/* Tweak power detectors for half/quarter rate support */
if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
u8 wait_i;
ath5k_hw_rfb_op(ah, rf_regs, 0x1f,
AR5K_RF_WAIT_S, true);
wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
0x1f : 0x10;
ath5k_hw_rfb_op(ah, rf_regs, wait_i,
AR5K_RF_WAIT_I, true);
ath5k_hw_rfb_op(ah, rf_regs, 3,
AR5K_RF_MAX_TIME, true);
}
}
if (ah->ah_radio == AR5K_RF5112) {
/* Set gain_F settings according to current step */
if (channel->hw_value != AR5K_MODE_11B) {
ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
AR5K_RF_MIXGAIN_OVR, true);
ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
AR5K_RF_PWD_138, true);
ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
AR5K_RF_PWD_137, true);
ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
AR5K_RF_PWD_136, true);
ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
AR5K_RF_PWD_132, true);
ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
AR5K_RF_PWD_131, true);
ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
AR5K_RF_PWD_130, true);
/* We programmed gain_F parameters, switch back
* to active state */
ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
}
/* Bank 6/7 setup */
ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
AR5K_RF_XPD_SEL, true);
if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
/* Rev. 1 supports only one xpd */
ath5k_hw_rfb_op(ah, rf_regs,
ee->ee_x_gain[ee_mode],
AR5K_RF_XPD_GAIN, true);
} else {
u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
if (ee->ee_pd_gains[ee_mode] > 1) {
ath5k_hw_rfb_op(ah, rf_regs,
pdg_curve_to_idx[0],
AR5K_RF_PD_GAIN_LO, true);
ath5k_hw_rfb_op(ah, rf_regs,
pdg_curve_to_idx[1],
AR5K_RF_PD_GAIN_HI, true);
} else {
ath5k_hw_rfb_op(ah, rf_regs,
pdg_curve_to_idx[0],
AR5K_RF_PD_GAIN_LO, true);
ath5k_hw_rfb_op(ah, rf_regs,
pdg_curve_to_idx[0],
AR5K_RF_PD_GAIN_HI, true);
}
/* Lower synth voltage on Rev 2 */
if (ah->ah_radio == AR5K_RF5112 &&
(ah->ah_radio_5ghz_revision & AR5K_SREV_REV) > 0) {
ath5k_hw_rfb_op(ah, rf_regs, 2,
AR5K_RF_HIGH_VC_CP, true);
ath5k_hw_rfb_op(ah, rf_regs, 2,
AR5K_RF_MID_VC_CP, true);
ath5k_hw_rfb_op(ah, rf_regs, 2,
AR5K_RF_LOW_VC_CP, true);
ath5k_hw_rfb_op(ah, rf_regs, 2,
AR5K_RF_PUSH_UP, true);
}
/* Decrease power consumption on 5213+ BaseBand */
if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
ath5k_hw_rfb_op(ah, rf_regs, 1,
AR5K_RF_PAD2GND, true);
ath5k_hw_rfb_op(ah, rf_regs, 1,
AR5K_RF_XB2_LVL, true);
ath5k_hw_rfb_op(ah, rf_regs, 1,
AR5K_RF_XB5_LVL, true);
ath5k_hw_rfb_op(ah, rf_regs, 1,
AR5K_RF_PWD_167, true);
ath5k_hw_rfb_op(ah, rf_regs, 1,
AR5K_RF_PWD_166, true);
}
}
ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
AR5K_RF_GAIN_I, true);
/* Tweak power detector for half/quarter rates */
if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
u8 pd_delay;
pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
0xf : 0x8;
ath5k_hw_rfb_op(ah, rf_regs, pd_delay,
AR5K_RF_PD_PERIOD_A, true);
ath5k_hw_rfb_op(ah, rf_regs, 0xf,
AR5K_RF_PD_DELAY_A, true);
}
}
if (ah->ah_radio == AR5K_RF5413 &&
channel->band == IEEE80211_BAND_2GHZ) {
ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
true);
/* Set optimum value for early revisions (on pci-e chips) */
if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
ah->ah_mac_srev < AR5K_SREV_AR5413)
ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
AR5K_RF_PWD_ICLOBUF_2G, true);
}
/* Write RF banks on hw */
for (i = 0; i < ah->ah_rf_banks_size; i++) {
AR5K_REG_WAIT(i);
ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
}
return 0;
}
/**************************\
PHY/RF channel functions
\**************************/
/**
* ath5k_hw_rf5110_chan2athchan() - Convert channel freq on RF5110
* @channel: The &struct ieee80211_channel
*
* Map channel frequency to IEEE channel number and convert it
* to an internal channel value used by the RF5110 chipset.
*/
static u32
ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
{
u32 athchan;
athchan = (ath5k_hw_bitswap(
(ieee80211_frequency_to_channel(
channel->center_freq) - 24) / 2, 5)
<< 1) | (1 << 6) | 0x1;
return athchan;
}
/**
* ath5k_hw_rf5110_channel() - Set channel frequency on RF5110
* @ah: The &struct ath5k_hw
* @channel: The &struct ieee80211_channel
*/
static int
ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
struct ieee80211_channel *channel)
{
u32 data;
/*
* Set the channel and wait
*/
data = ath5k_hw_rf5110_chan2athchan(channel);
ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
usleep_range(1000, 1500);
return 0;
}
/**
* ath5k_hw_rf5111_chan2athchan() - Handle 2GHz channels on RF5111/2111
* @ieee: IEEE channel number
* @athchan: The &struct ath5k_athchan_2ghz
*
* In order to enable the RF2111 frequency converter on RF5111/2111 setups
* we need to add some offsets and extra flags to the data values we pass
* on to the PHY. So for every 2GHz channel this function gets called
* to do the conversion.
*/
static int
ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
struct ath5k_athchan_2ghz *athchan)
{
int channel;
/* Cast this value to catch negative channel numbers (>= -19) */
channel = (int)ieee;
/*
* Map 2GHz IEEE channel to 5GHz Atheros channel
*/
if (channel <= 13) {
athchan->a2_athchan = 115 + channel;
athchan->a2_flags = 0x46;
} else if (channel == 14) {
athchan->a2_athchan = 124;
athchan->a2_flags = 0x44;
} else if (channel >= 15 && channel <= 26) {
athchan->a2_athchan = ((channel - 14) * 4) + 132;
athchan->a2_flags = 0x46;
} else
return -EINVAL;
return 0;
}
/**
* ath5k_hw_rf5111_channel() - Set channel frequency on RF5111/2111
* @ah: The &struct ath5k_hw
* @channel: The &struct ieee80211_channel
*/
static int
ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
struct ieee80211_channel *channel)
{
struct ath5k_athchan_2ghz ath5k_channel_2ghz;
unsigned int ath5k_channel =
ieee80211_frequency_to_channel(channel->center_freq);
u32 data0, data1, clock;
int ret;
/*
* Set the channel on the RF5111 radio
*/
data0 = data1 = 0;
if (channel->band == IEEE80211_BAND_2GHZ) {
/* Map 2GHz channel to 5GHz Atheros channel ID */
ret = ath5k_hw_rf5111_chan2athchan(
ieee80211_frequency_to_channel(channel->center_freq),
&ath5k_channel_2ghz);
if (ret)
return ret;
ath5k_channel = ath5k_channel_2ghz.a2_athchan;
data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
<< 5) | (1 << 4);
}
if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
clock = 1;
data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
(clock << 1) | (1 << 10) | 1;
} else {
clock = 0;
data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
<< 2) | (clock << 1) | (1 << 10) | 1;
}
ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
AR5K_RF_BUFFER);
ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
AR5K_RF_BUFFER_CONTROL_3);
return 0;
}
/**
* ath5k_hw_rf5112_channel() - Set channel frequency on 5112 and newer
* @ah: The &struct ath5k_hw
* @channel: The &struct ieee80211_channel
*
* On RF5112/2112 and newer we don't need to do any conversion.
* We pass the frequency value after a few modifications to the
* chip directly.
*
* NOTE: Make sure channel frequency given is within our range or else
* we might damage the chip ! Use ath5k_channel_ok before calling this one.
*/
static int
ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
struct ieee80211_channel *channel)
{
u32 data, data0, data1, data2;
u16 c;
data = data0 = data1 = data2 = 0;
c = channel->center_freq;
/* My guess based on code:
* 2GHz RF has 2 synth modes, one with a Local Oscillator
* at 2224Hz and one with a LO at 2192Hz. IF is 1520Hz
* (3040/2). data0 is used to set the PLL divider and data1
* selects synth mode. */
if (c < 4800) {
/* Channel 14 and all frequencies with 2Hz spacing
* below/above (non-standard channels) */
if (!((c - 2224) % 5)) {
/* Same as (c - 2224) / 5 */
data0 = ((2 * (c - 704)) - 3040) / 10;
data1 = 1;
/* Channel 1 and all frequencies with 5Hz spacing
* below/above (standard channels without channel 14) */
} else if (!((c - 2192) % 5)) {
/* Same as (c - 2192) / 5 */
data0 = ((2 * (c - 672)) - 3040) / 10;
data1 = 0;
} else
return -EINVAL;
data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
/* This is more complex, we have a single synthesizer with
* 4 reference clock settings (?) based on frequency spacing
* and set using data2. LO is at 4800Hz and data0 is again used
* to set some divider.
*
* NOTE: There is an old atheros presentation at Stanford
* that mentions a method called dual direct conversion
* with 1GHz sliding IF for RF5110. Maybe that's what we
* have here, or an updated version. */
} else if ((c % 5) != 2 || c > 5435) {
if (!(c % 20) && c >= 5120) {
data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
data2 = ath5k_hw_bitswap(3, 2);
} else if (!(c % 10)) {
data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
data2 = ath5k_hw_bitswap(2, 2);
} else if (!(c % 5)) {
data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
data2 = ath5k_hw_bitswap(1, 2);
} else
return -EINVAL;
} else {
data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
data2 = ath5k_hw_bitswap(0, 2);
}
data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
return 0;
}
/**
* ath5k_hw_rf2425_channel() - Set channel frequency on RF2425
* @ah: The &struct ath5k_hw
* @channel: The &struct ieee80211_channel
*
* AR2425/2417 have a different 2GHz RF so code changes
* a little bit from RF5112.
*/
static int
ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
struct ieee80211_channel *channel)
{
u32 data, data0, data2;
u16 c;
data = data0 = data2 = 0;
c = channel->center_freq;
if (c < 4800) {
data0 = ath5k_hw_bitswap((c - 2272), 8);
data2 = 0;
/* ? 5GHz ? */
} else if ((c % 5) != 2 || c > 5435) {
if (!(c % 20) && c < 5120)
data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
else if (!(c % 10))
data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
else if (!(c % 5))
data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
else
return -EINVAL;
data2 = ath5k_hw_bitswap(1, 2);
} else {
data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
data2 = ath5k_hw_bitswap(0, 2);
}
data = (data0 << 4) | data2 << 2 | 0x1001;
ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
return 0;
}
/**
* ath5k_hw_channel() - Set a channel on the radio chip
* @ah: The &struct ath5k_hw
* @channel: The &struct ieee80211_channel
*
* This is the main function called to set a channel on the
* radio chip based on the radio chip version.
*/
static int
ath5k_hw_channel(struct ath5k_hw *ah,
struct ieee80211_channel *channel)
{
int ret;
/*
* Check bounds supported by the PHY (we don't care about regulatory
* restrictions at this point).
*/
if (!ath5k_channel_ok(ah, channel)) {
ATH5K_ERR(ah,
"channel frequency (%u MHz) out of supported "
"band range\n",
channel->center_freq);
return -EINVAL;
}
/*
* Set the channel and wait
*/
switch (ah->ah_radio) {
case AR5K_RF5110:
ret = ath5k_hw_rf5110_channel(ah, channel);
break;
case AR5K_RF5111:
ret = ath5k_hw_rf5111_channel(ah, channel);
break;
case AR5K_RF2317:
case AR5K_RF2425:
ret = ath5k_hw_rf2425_channel(ah, channel);
break;
default:
ret = ath5k_hw_rf5112_channel(ah, channel);
break;
}
if (ret)
return ret;
/* Set JAPAN setting for channel 14 */
if (channel->center_freq == 2484) {
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
AR5K_PHY_CCKTXCTL_JAPAN);
} else {
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
AR5K_PHY_CCKTXCTL_WORLD);
}
ah->ah_current_channel = channel;
return 0;
}
/*****************\
PHY calibration
\*****************/
/**
* DOC: PHY Calibration routines
*
* Noise floor calibration: When we tell the hardware to
* perform a noise floor calibration by setting the
* AR5K_PHY_AGCCTL_NF bit on AR5K_PHY_AGCCTL, it will periodically
* sample-and-hold the minimum noise level seen at the antennas.
* This value is then stored in a ring buffer of recently measured
* noise floor values so we have a moving window of the last few
* samples. The median of the values in the history is then loaded
* into the hardware for its own use for RSSI and CCA measurements.
* This type of calibration doesn't interfere with traffic.
*
* AGC calibration: When we tell the hardware to perform
* an AGC (Automatic Gain Control) calibration by setting the
* AR5K_PHY_AGCCTL_CAL, hw disconnects the antennas and does
* a calibration on the DC offsets of ADCs. During this period
* rx/tx gets disabled so we have to deal with it on the driver
* part.
*
* I/Q calibration: When we tell the hardware to perform
* an I/Q calibration, it tries to correct I/Q imbalance and
* fix QAM constellation by sampling data from rxed frames.
* It doesn't interfere with traffic.
*
* For more infos on AGC and I/Q calibration check out patent doc
* #03/094463.
*/
/**
* ath5k_hw_read_measured_noise_floor() - Read measured NF from hw
* @ah: The &struct ath5k_hw
*/
static s32
ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
{
s32 val;
val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8);
}
/**
* ath5k_hw_init_nfcal_hist() - Initialize NF calibration history buffer
* @ah: The &struct ath5k_hw
*/
void
ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
{
int i;
ah->ah_nfcal_hist.index = 0;
for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
}
/**
* ath5k_hw_update_nfcal_hist() - Update NF calibration history buffer
* @ah: The &struct ath5k_hw
* @noise_floor: The NF we got from hw
*/
static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
{
struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX - 1);
hist->nfval[hist->index] = noise_floor;
}
/**
* ath5k_hw_get_median_noise_floor() - Get median NF from history buffer
* @ah: The &struct ath5k_hw
*/
static s16
ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
{
s16 sort[ATH5K_NF_CAL_HIST_MAX];
s16 tmp;
int i, j;
memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
if (sort[j] > sort[j - 1]) {
tmp = sort[j];
sort[j] = sort[j - 1];
sort[j - 1] = tmp;
}
}
}
for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
"cal %d:%d\n", i, sort[i]);
}
return sort[(ATH5K_NF_CAL_HIST_MAX - 1) / 2];
}
/**
* ath5k_hw_update_noise_floor() - Update NF on hardware
* @ah: The &struct ath5k_hw
*
* This is the main function we call to perform a NF calibration,
* it reads NF from hardware, calculates the median and updates
* NF on hw.
*/
void
ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
{
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
u32 val;
s16 nf, threshold;
u8 ee_mode;
/* keep last value if calibration hasn't completed */
if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
"NF did not complete in calibration window\n");
return;
}
ah->ah_cal_mask |= AR5K_CALIBRATION_NF;
ee_mode = ath5k_eeprom_mode_from_channel(ah->ah_current_channel);
/* completed NF calibration, test threshold */
nf = ath5k_hw_read_measured_noise_floor(ah);
threshold = ee->ee_noise_floor_thr[ee_mode];
if (nf > threshold) {
ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
"noise floor failure detected; "
"read %d, threshold %d\n",
nf, threshold);
nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
}
ath5k_hw_update_nfcal_hist(ah, nf);
nf = ath5k_hw_get_median_noise_floor(ah);
/* load noise floor (in .5 dBm) so the hardware will use it */
val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
val |= (nf * 2) & AR5K_PHY_NF_M;
ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
0, false);
/*
* Load a high max CCA Power value (-50 dBm in .5 dBm units)
* so that we're not capped by the median we just loaded.
* This will be used as the initial value for the next noise
* floor calibration.
*/
val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
AR5K_PHY_AGCCTL_NF_EN |
AR5K_PHY_AGCCTL_NF_NOUPDATE |
AR5K_PHY_AGCCTL_NF);
ah->ah_noise_floor = nf;
ah->ah_cal_mask &= ~AR5K_CALIBRATION_NF;
ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
"noise floor calibrated: %d\n", nf);
}
/**
* ath5k_hw_rf5110_calibrate() - Perform a PHY calibration on RF5110
* @ah: The &struct ath5k_hw
* @channel: The &struct ieee80211_channel
*
* Do a complete PHY calibration (AGC + NF + I/Q) on RF5110
*/
static int
ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
struct ieee80211_channel *channel)
{
u32 phy_sig, phy_agc, phy_sat, beacon;
int ret;
if (!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL))
return 0;
/*
* Disable beacons and RX/TX queues, wait
*/
AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
usleep_range(2000, 2500);
/*
* Set the channel (with AGC turned off)
*/
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
udelay(10);
ret = ath5k_hw_channel(ah, channel);
/*
* Activate PHY and wait
*/
ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
usleep_range(1000, 1500);
AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
if (ret)
return ret;
/*
* Calibrate the radio chip
*/
/* Remember normal state */
phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
/* Update radio registers */
ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
AR5K_PHY_AGCCOARSE_LO)) |
AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
AR5K_PHY_ADCSAT_THR)) |
AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
udelay(20);
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
udelay(10);
ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
usleep_range(1000, 1500);
/*
* Enable calibration and wait until completion
*/
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
AR5K_PHY_AGCCTL_CAL, 0, false);
/* Reset to normal state */
ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
if (ret) {
ATH5K_ERR(ah, "calibration timeout (%uMHz)\n",
channel->center_freq);
return ret;
}
/*
* Re-enable RX/TX and beacons
*/
AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
return 0;
}
/**
* ath5k_hw_rf511x_iq_calibrate() - Perform I/Q calibration on RF5111 and newer
* @ah: The &struct ath5k_hw
*/
static int
ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
{
u32 i_pwr, q_pwr;
s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
int i;
/* Skip if I/Q calibration is not needed or if it's still running */
if (!ah->ah_iq_cal_needed)
return -EINVAL;
else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN) {
ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
"I/Q calibration still running");
return -EBUSY;
}
/* Calibration has finished, get the results and re-run */
/* Work around for empty results which can apparently happen on 5212:
* Read registers up to 10 times until we get both i_pr and q_pwr */
for (i = 0; i <= 10; i++) {
iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
"iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
if (i_pwr && q_pwr)
break;
}
i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
if (ah->ah_version == AR5K_AR5211)
q_coffd = q_pwr >> 6;
else
q_coffd = q_pwr >> 7;
/* In case i_coffd became zero, cancel calibration
* not only it's too small, it'll also result a divide
* by zero later on. */
if (i_coffd == 0 || q_coffd < 2)
return -ECANCELED;
/* Protect against loss of sign bits */
i_coff = (-iq_corr) / i_coffd;
i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
if (ah->ah_version == AR5K_AR5211)
q_coff = (i_pwr / q_coffd) - 64;
else
q_coff = (i_pwr / q_coffd) - 128;
q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
"new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
i_coff, q_coff, i_coffd, q_coffd);
/* Commit new I/Q values (set enable bit last to match HAL sources) */
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
/* Re-enable calibration -if we don't we'll commit
* the same values again and again */
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
return 0;
}
/**
* ath5k_hw_phy_calibrate() - Perform a PHY calibration
* @ah: The &struct ath5k_hw
* @channel: The &struct ieee80211_channel
*
* The main function we call from above to perform
* a short or full PHY calibration based on RF chip
* and current channel
*/
int
ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
struct ieee80211_channel *channel)
{
int ret;
if (ah->ah_radio == AR5K_RF5110)
return ath5k_hw_rf5110_calibrate(ah, channel);
ret = ath5k_hw_rf511x_iq_calibrate(ah);
if (ret) {
ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
"No I/Q correction performed (%uMHz)\n",
channel->center_freq);
/* Happens all the time if there is not much
* traffic, consider it normal behaviour. */
ret = 0;
}
/* On full calibration request a PAPD probe for
* gainf calibration if needed */
if ((ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
(ah->ah_radio == AR5K_RF5111 ||
ah->ah_radio == AR5K_RF5112) &&
channel->hw_value != AR5K_MODE_11B)
ath5k_hw_request_rfgain_probe(ah);
/* Update noise floor */
if (!(ah->ah_cal_mask & AR5K_CALIBRATION_NF))
ath5k_hw_update_noise_floor(ah);
return ret;
}
/***************************\
* Spur mitigation functions *
\***************************/
/**
* ath5k_hw_set_spur_mitigation_filter() - Configure SPUR filter
* @ah: The &struct ath5k_hw
* @channel: The &struct ieee80211_channel
*
* This function gets called during PHY initialization to
* configure the spur filter for the given channel. Spur is noise
* generated due to "reflection" effects, for more information on this
* method check out patent US7643810
*/
static void
ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
struct ieee80211_channel *channel)
{
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
u32 mag_mask[4] = {0, 0, 0, 0};
u32 pilot_mask[2] = {0, 0};
/* Note: fbin values are scaled up by 2 */
u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
s32 spur_delta_phase, spur_freq_sigma_delta;
s32 spur_offset, num_symbols_x16;
u8 num_symbol_offsets, i, freq_band;
/* Convert current frequency to fbin value (the same way channels
* are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
* up by 2 so we can compare it later */
if (channel->band == IEEE80211_BAND_2GHZ) {
chan_fbin = (channel->center_freq - 2300) * 10;
freq_band = AR5K_EEPROM_BAND_2GHZ;
} else {
chan_fbin = (channel->center_freq - 4900) * 10;
freq_band = AR5K_EEPROM_BAND_5GHZ;
}
/* Check if any spur_chan_fbin from EEPROM is
* within our current channel's spur detection range */
spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
/* XXX: Half/Quarter channels ?*/
if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
spur_detection_window *= 2;
for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
/* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
* so it's zero if we got nothing from EEPROM */
if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
break;
}
if ((chan_fbin - spur_detection_window <=
(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
(chan_fbin + spur_detection_window >=
(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
break;
}
}
/* We need to enable spur filter for this channel */
if (spur_chan_fbin) {
spur_offset = spur_chan_fbin - chan_fbin;
/*
* Calculate deltas:
* spur_freq_sigma_delta -> spur_offset / sample_freq << 21
* spur_delta_phase -> spur_offset / chip_freq << 11
* Note: Both values have 100Hz resolution
*/
switch (ah->ah_bwmode) {
case AR5K_BWMODE_40MHZ:
/* Both sample_freq and chip_freq are 80MHz */
spur_delta_phase = (spur_offset << 16) / 25;
spur_freq_sigma_delta = (spur_delta_phase >> 10);
symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2;
break;
case AR5K_BWMODE_10MHZ:
/* Both sample_freq and chip_freq are 20MHz (?) */
spur_delta_phase = (spur_offset << 18) / 25;
spur_freq_sigma_delta = (spur_delta_phase >> 10);
symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2;
case AR5K_BWMODE_5MHZ:
/* Both sample_freq and chip_freq are 10MHz (?) */
spur_delta_phase = (spur_offset << 19) / 25;
spur_freq_sigma_delta = (spur_delta_phase >> 10);
symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4;
default:
if (channel->band == IEEE80211_BAND_5GHZ) {
/* Both sample_freq and chip_freq are 40MHz */
spur_delta_phase = (spur_offset << 17) / 25;
spur_freq_sigma_delta =
(spur_delta_phase >> 10);
symbol_width =
AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
} else {
/* sample_freq -> 40MHz chip_freq -> 44MHz
* (for b compatibility) */
spur_delta_phase = (spur_offset << 17) / 25;
spur_freq_sigma_delta =
(spur_offset << 8) / 55;
symbol_width =
AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
}
break;
}
/* Calculate pilot and magnitude masks */
/* Scale up spur_offset by 1000 to switch to 100HZ resolution
* and divide by symbol_width to find how many symbols we have
* Note: number of symbols is scaled up by 16 */
num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
/* Spur is on a symbol if num_symbols_x16 % 16 is zero */
if (!(num_symbols_x16 & 0xF))
/* _X_ */
num_symbol_offsets = 3;
else
/* _xx_ */
num_symbol_offsets = 4;
for (i = 0; i < num_symbol_offsets; i++) {
/* Calculate pilot mask */
s32 curr_sym_off =
(num_symbols_x16 / 16) + i + 25;
/* Pilot magnitude mask seems to be a way to
* declare the boundaries for our detection
* window or something, it's 2 for the middle
* value(s) where the symbol is expected to be
* and 1 on the boundary values */
u8 plt_mag_map =
(i == 0 || i == (num_symbol_offsets - 1))
? 1 : 2;
if (curr_sym_off >= 0 && curr_sym_off <= 32) {
if (curr_sym_off <= 25)
pilot_mask[0] |= 1 << curr_sym_off;
else if (curr_sym_off >= 27)
pilot_mask[0] |= 1 << (curr_sym_off - 1);
} else if (curr_sym_off >= 33 && curr_sym_off <= 52)
pilot_mask[1] |= 1 << (curr_sym_off - 33);
/* Calculate magnitude mask (for viterbi decoder) */
if (curr_sym_off >= -1 && curr_sym_off <= 14)
mag_mask[0] |=
plt_mag_map << (curr_sym_off + 1) * 2;
else if (curr_sym_off >= 15 && curr_sym_off <= 30)
mag_mask[1] |=
plt_mag_map << (curr_sym_off - 15) * 2;
else if (curr_sym_off >= 31 && curr_sym_off <= 46)
mag_mask[2] |=
plt_mag_map << (curr_sym_off - 31) * 2;
else if (curr_sym_off >= 47 && curr_sym_off <= 53)
mag_mask[3] |=
plt_mag_map << (curr_sym_off - 47) * 2;
}
/* Write settings on hw to enable spur filter */
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
/* XXX: Self correlator also ? */
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
AR5K_PHY_IQ_PILOT_MASK_EN |
AR5K_PHY_IQ_CHAN_MASK_EN |
AR5K_PHY_IQ_SPUR_FILT_EN);
/* Set delta phase and freq sigma delta */
ath5k_hw_reg_write(ah,
AR5K_REG_SM(spur_delta_phase,
AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
AR5K_REG_SM(spur_freq_sigma_delta,
AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
AR5K_PHY_TIMING_11);
/* Write pilot masks */
ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
AR5K_PHY_TIMING_8_PILOT_MASK_2,
pilot_mask[1]);
ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
AR5K_PHY_TIMING_10_PILOT_MASK_2,
pilot_mask[1]);
/* Write magnitude masks */
ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
AR5K_PHY_BIN_MASK_CTL_MASK_4,
mag_mask[3]);
ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
AR5K_PHY_BIN_MASK2_4_MASK_4,
mag_mask[3]);
} else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
AR5K_PHY_IQ_SPUR_FILT_EN) {
/* Clean up spur mitigation settings and disable filter */
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
AR5K_PHY_BIN_MASK_CTL_RATE, 0);
AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
AR5K_PHY_IQ_PILOT_MASK_EN |
AR5K_PHY_IQ_CHAN_MASK_EN |
AR5K_PHY_IQ_SPUR_FILT_EN);
ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
/* Clear pilot masks */
ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
AR5K_PHY_TIMING_8_PILOT_MASK_2,
0);
ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
AR5K_PHY_TIMING_10_PILOT_MASK_2,
0);
/* Clear magnitude masks */
ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
AR5K_PHY_BIN_MASK_CTL_MASK_4,
0);
ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
AR5K_PHY_BIN_MASK2_4_MASK_4,
0);
}
}
/*****************\
* Antenna control *
\*****************/
/**
* DOC: Antenna control
*
* Hw supports up to 14 antennas ! I haven't found any card that implements
* that. The maximum number of antennas I've seen is up to 4 (2 for 2GHz and 2
* for 5GHz). Antenna 1 (MAIN) should be omnidirectional, 2 (AUX)
* omnidirectional or sectorial and antennas 3-14 sectorial (or directional).
*
* We can have a single antenna for RX and multiple antennas for TX.
* RX antenna is our "default" antenna (usually antenna 1) set on
* DEFAULT_ANTENNA register and TX antenna is set on each TX control descriptor
* (0 for automatic selection, 1 - 14 antenna number).
*
* We can let hw do all the work doing fast antenna diversity for both
* tx and rx or we can do things manually. Here are the options we have
* (all are bits of STA_ID1 register):
*
* AR5K_STA_ID1_DEFAULT_ANTENNA -> When 0 is set as the TX antenna on TX
* control descriptor, use the default antenna to transmit or else use the last
* antenna on which we received an ACK.
*
* AR5K_STA_ID1_DESC_ANTENNA -> Update default antenna after each TX frame to
* the antenna on which we got the ACK for that frame.
*
* AR5K_STA_ID1_RTS_DEF_ANTENNA -> Use default antenna for RTS or else use the
* one on the TX descriptor.
*
* AR5K_STA_ID1_SELFGEN_DEF_ANT -> Use default antenna for self generated frames
* (ACKs etc), or else use current antenna (the one we just used for TX).
*
* Using the above we support the following scenarios:
*
* AR5K_ANTMODE_DEFAULT -> Hw handles antenna diversity etc automatically
*
* AR5K_ANTMODE_FIXED_A -> Only antenna A (MAIN) is present
*
* AR5K_ANTMODE_FIXED_B -> Only antenna B (AUX) is present
*
* AR5K_ANTMODE_SINGLE_AP -> Sta locked on a single ap
*
* AR5K_ANTMODE_SECTOR_AP -> AP with tx antenna set on tx desc
*
* AR5K_ANTMODE_SECTOR_STA -> STA with tx antenna set on tx desc
*
* AR5K_ANTMODE_DEBUG Debug mode -A -> Rx, B-> Tx-
*
* Also note that when setting antenna to F on tx descriptor card inverts
* current tx antenna.
*/
/**
* ath5k_hw_set_def_antenna() - Set default rx antenna on AR5211/5212 and newer
* @ah: The &struct ath5k_hw
* @ant: Antenna number
*/
static void
ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
{
if (ah->ah_version != AR5K_AR5210)
ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
}
/**
* ath5k_hw_set_fast_div() - Enable/disable fast rx antenna diversity
* @ah: The &struct ath5k_hw
* @ee_mode: One of enum ath5k_driver_mode
* @enable: True to enable, false to disable
*/
static void
ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
{
switch (ee_mode) {
case AR5K_EEPROM_MODE_11G:
/* XXX: This is set to
* disabled on initvals !!! */
case AR5K_EEPROM_MODE_11A:
if (enable)
AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
else
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
break;
case AR5K_EEPROM_MODE_11B:
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
break;
default:
return;
}
if (enable) {
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
AR5K_PHY_RESTART_DIV_GC, 4);
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
AR5K_PHY_FAST_ANT_DIV_EN);
} else {
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
AR5K_PHY_RESTART_DIV_GC, 0);
AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
AR5K_PHY_FAST_ANT_DIV_EN);
}
}
/**
* ath5k_hw_set_antenna_switch() - Set up antenna switch table
* @ah: The &struct ath5k_hw
* @ee_mode: One of enum ath5k_driver_mode
*
* Switch table comes from EEPROM and includes information on controlling
* the 2 antenna RX attenuators
*/
void
ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
{
u8 ant0, ant1;
/*
* In case a fixed antenna was set as default
* use the same switch table twice.
*/
if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
ant0 = ant1 = AR5K_ANT_SWTABLE_A;
else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
ant0 = ant1 = AR5K_ANT_SWTABLE_B;
else {
ant0 = AR5K_ANT_SWTABLE_A;
ant1 = AR5K_ANT_SWTABLE_B;
}
/* Set antenna idle switch table */
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
(ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
AR5K_PHY_ANT_CTL_TXRX_EN));
/* Set antenna switch tables */
ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
AR5K_PHY_ANT_SWITCH_TABLE_0);
ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
AR5K_PHY_ANT_SWITCH_TABLE_1);
}
/**
* ath5k_hw_set_antenna_mode() - Set antenna operating mode
* @ah: The &struct ath5k_hw
* @ant_mode: One of enum ath5k_ant_mode
*/
void
ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
{
struct ieee80211_channel *channel = ah->ah_current_channel;
bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
bool use_def_for_sg;
int ee_mode;
u8 def_ant, tx_ant;
u32 sta_id1 = 0;
/* if channel is not initialized yet we can't set the antennas
* so just store the mode. it will be set on the next reset */
if (channel == NULL) {
ah->ah_ant_mode = ant_mode;
return;
}
def_ant = ah->ah_def_ant;
ee_mode = ath5k_eeprom_mode_from_channel(channel);
if (ee_mode < 0) {
ATH5K_ERR(ah,
"invalid channel: %d\n", channel->center_freq);
return;
}
switch (ant_mode) {
case AR5K_ANTMODE_DEFAULT:
tx_ant = 0;
use_def_for_tx = false;
update_def_on_tx = false;
use_def_for_rts = false;
use_def_for_sg = false;
fast_div = true;
break;
case AR5K_ANTMODE_FIXED_A:
def_ant = 1;
tx_ant = 1;
use_def_for_tx = true;
update_def_on_tx = false;
use_def_for_rts = true;
use_def_for_sg = true;
fast_div = false;
break;
case AR5K_ANTMODE_FIXED_B:
def_ant = 2;
tx_ant = 2;
use_def_for_tx = true;
update_def_on_tx = false;
use_def_for_rts = true;
use_def_for_sg = true;
fast_div = false;
break;
case AR5K_ANTMODE_SINGLE_AP:
def_ant = 1; /* updated on tx */
tx_ant = 0;
use_def_for_tx = true;
update_def_on_tx = true;
use_def_for_rts = true;
use_def_for_sg = true;
fast_div = true;
break;
case AR5K_ANTMODE_SECTOR_AP:
tx_ant = 1; /* variable */
use_def_for_tx = false;
update_def_on_tx = false;
use_def_for_rts = true;
use_def_for_sg = false;
fast_div = false;
break;
case AR5K_ANTMODE_SECTOR_STA:
tx_ant = 1; /* variable */
use_def_for_tx = true;
update_def_on_tx = false;
use_def_for_rts = true;
use_def_for_sg = false;
fast_div = true;
break;
case AR5K_ANTMODE_DEBUG:
def_ant = 1;
tx_ant = 2;
use_def_for_tx = false;
update_def_on_tx = false;
use_def_for_rts = false;
use_def_for_sg = false;
fast_div = false;
break;
default:
return;
}
ah->ah_tx_ant = tx_ant;
ah->ah_ant_mode = ant_mode;
ah->ah_def_ant = def_ant;
sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
if (sta_id1)
AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
ath5k_hw_set_antenna_switch(ah, ee_mode);
/* Note: set diversity before default antenna
* because it won't work correctly */
ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
ath5k_hw_set_def_antenna(ah, def_ant);
}
/****************\
* TX power setup *
\****************/
/*
* Helper functions
*/
/**
* ath5k_get_interpolated_value() - Get interpolated Y val between two points
* @target: X value of the middle point
* @x_left: X value of the left point
* @x_right: X value of the right point
* @y_left: Y value of the left point
* @y_right: Y value of the right point
*/
static s16
ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
s16 y_left, s16 y_right)
{
s16 ratio, result;
/* Avoid divide by zero and skip interpolation
* if we have the same point */
if ((x_left == x_right) || (y_left == y_right))
return y_left;
/*
* Since we use ints and not fps, we need to scale up in
* order to get a sane ratio value (or else we 'll eg. get
* always 1 instead of 1.25, 1.75 etc). We scale up by 100
* to have some accuracy both for 0.5 and 0.25 steps.
*/
ratio = ((100 * y_right - 100 * y_left) / (x_right - x_left));
/* Now scale down to be in range */
result = y_left + (ratio * (target - x_left) / 100);
return result;
}
/**
* ath5k_get_linear_pcdac_min() - Find vertical boundary (min pwr) for the
* linear PCDAC curve
* @stepL: Left array with y values (pcdac steps)
* @stepR: Right array with y values (pcdac steps)
* @pwrL: Left array with x values (power steps)
* @pwrR: Right array with x values (power steps)
*
* Since we have the top of the curve and we draw the line below
* until we reach 1 (1 pcdac step) we need to know which point
* (x value) that is so that we don't go below x axis and have negative
* pcdac values when creating the curve, or fill the table with zeros.
*/
static s16
ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
const s16 *pwrL, const s16 *pwrR)
{
s8 tmp;
s16 min_pwrL, min_pwrR;
s16 pwr_i;
/* Some vendors write the same pcdac value twice !!! */
if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
return max(pwrL[0], pwrR[0]);
if (pwrL[0] == pwrL[1])
min_pwrL = pwrL[0];
else {
pwr_i = pwrL[0];
do {
pwr_i--;
tmp = (s8) ath5k_get_interpolated_value(pwr_i,
pwrL[0], pwrL[1],
stepL[0], stepL[1]);
} while (tmp > 1);
min_pwrL = pwr_i;
}
if (pwrR[0] == pwrR[1])
min_pwrR = pwrR[0];
else {
pwr_i = pwrR[0];
do {
pwr_i--;
tmp = (s8) ath5k_get_interpolated_value(pwr_i,
pwrR[0], pwrR[1],
stepR[0], stepR[1]);
} while (tmp > 1);
min_pwrR = pwr_i;
}
/* Keep the right boundary so that it works for both curves */
return max(min_pwrL, min_pwrR);
}
/**
* ath5k_create_power_curve() - Create a Power to PDADC or PCDAC curve
* @pmin: Minimum power value (xmin)
* @pmax: Maximum power value (xmax)
* @pwr: Array of power steps (x values)
* @vpd: Array of matching PCDAC/PDADC steps (y values)
* @num_points: Number of provided points
* @vpd_table: Array to fill with the full PCDAC/PDADC values (y values)
* @type: One of enum ath5k_powertable_type (eeprom.h)
*
* Interpolate (pwr,vpd) points to create a Power to PDADC or a
* Power to PCDAC curve.
*
* Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
* steps (offsets) on y axis. Power can go up to 31.5dB and max
* PCDAC/PDADC step for each curve is 64 but we can write more than
* one curves on hw so we can go up to 128 (which is the max step we
* can write on the final table).
*
* We write y values (PCDAC/PDADC steps) on hw.
*/
static void
ath5k_create_power_curve(s16 pmin, s16 pmax,
const s16 *pwr, const u8 *vpd,
u8 num_points,
u8 *vpd_table, u8 type)
{
u8 idx[2] = { 0, 1 };
s16 pwr_i = 2 * pmin;
int i;
if (num_points < 2)
return;
/* We want the whole line, so adjust boundaries
* to cover the entire power range. Note that
* power values are already 0.25dB so no need
* to multiply pwr_i by 2 */
if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
pwr_i = pmin;
pmin = 0;
pmax = 63;
}
/* Find surrounding turning points (TPs)
* and interpolate between them */
for (i = 0; (i <= (u16) (pmax - pmin)) &&
(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
/* We passed the right TP, move to the next set of TPs
* if we pass the last TP, extrapolate above using the last
* two TPs for ratio */
if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
idx[0]++;
idx[1]++;
}
vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
pwr[idx[0]], pwr[idx[1]],
vpd[idx[0]], vpd[idx[1]]);
/* Increase by 0.5dB
* (0.25 dB units) */
pwr_i += 2;
}
}
/**
* ath5k_get_chan_pcal_surrounding_piers() - Get surrounding calibration piers
* for a given channel.
* @ah: The &struct ath5k_hw
* @channel: The &struct ieee80211_channel
* @pcinfo_l: The &struct ath5k_chan_pcal_info to put the left cal. pier
* @pcinfo_r: The &struct ath5k_chan_pcal_info to put the right cal. pier
*
* Get the surrounding per-channel power calibration piers
* for a given frequency so that we can interpolate between
* them and come up with an appropriate dataset for our current
* channel.
*/
static void
ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
struct ieee80211_channel *channel,
struct ath5k_chan_pcal_info **pcinfo_l,
struct ath5k_chan_pcal_info **pcinfo_r)
{
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
struct ath5k_chan_pcal_info *pcinfo;
u8 idx_l, idx_r;
u8 mode, max, i;
u32 target = channel->center_freq;
idx_l = 0;
idx_r = 0;
switch (channel->hw_value) {
case AR5K_EEPROM_MODE_11A:
pcinfo = ee->ee_pwr_cal_a;
mode = AR5K_EEPROM_MODE_11A;
break;
case AR5K_EEPROM_MODE_11B:
pcinfo = ee->ee_pwr_cal_b;
mode = AR5K_EEPROM_MODE_11B;
break;
case AR5K_EEPROM_MODE_11G:
default:
pcinfo = ee->ee_pwr_cal_g;
mode = AR5K_EEPROM_MODE_11G;
break;
}
max = ee->ee_n_piers[mode] - 1;
/* Frequency is below our calibrated
* range. Use the lowest power curve
* we have */
if (target < pcinfo[0].freq) {
idx_l = idx_r = 0;
goto done;
}
/* Frequency is above our calibrated
* range. Use the highest power curve
* we have */
if (target > pcinfo[max].freq) {
idx_l = idx_r = max;
goto done;
}
/* Frequency is inside our calibrated
* channel range. Pick the surrounding
* calibration piers so that we can
* interpolate */
for (i = 0; i <= max; i++) {
/* Frequency matches one of our calibration
* piers, no need to interpolate, just use
* that calibration pier */
if (pcinfo[i].freq == target) {
idx_l = idx_r = i;
goto done;
}
/* We found a calibration pier that's above
* frequency, use this pier and the previous
* one to interpolate */
if (target < pcinfo[i].freq) {
idx_r = i;
idx_l = idx_r - 1;
goto done;
}
}
done:
*pcinfo_l = &pcinfo[idx_l];
*pcinfo_r = &pcinfo[idx_r];
}
/**
* ath5k_get_rate_pcal_data() - Get the interpolated per-rate power
* calibration data
* @ah: The &struct ath5k_hw *ah,
* @channel: The &struct ieee80211_channel
* @rates: The &struct ath5k_rate_pcal_info to fill
*
* Get the surrounding per-rate power calibration data
* for a given frequency and interpolate between power
* values to set max target power supported by hw for
* each rate on this frequency.
*/
static void
ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
struct ieee80211_channel *channel,
struct ath5k_rate_pcal_info *rates)
{
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
struct ath5k_rate_pcal_info *rpinfo;
u8 idx_l, idx_r;
u8 mode, max, i;
u32 target = channel->center_freq;
idx_l = 0;
idx_r = 0;
switch (channel->hw_value) {
case AR5K_MODE_11A:
rpinfo = ee->ee_rate_tpwr_a;
mode = AR5K_EEPROM_MODE_11A;
break;
case AR5K_MODE_11B:
rpinfo = ee->ee_rate_tpwr_b;
mode = AR5K_EEPROM_MODE_11B;
break;
case AR5K_MODE_11G:
default:
rpinfo = ee->ee_rate_tpwr_g;
mode = AR5K_EEPROM_MODE_11G;
break;
}
max = ee->ee_rate_target_pwr_num[mode] - 1;
/* Get the surrounding calibration
* piers - same as above */
if (target < rpinfo[0].freq) {
idx_l = idx_r = 0;
goto done;
}
if (target > rpinfo[max].freq) {
idx_l = idx_r = max;
goto done;
}
for (i = 0; i <= max; i++) {
if (rpinfo[i].freq == target) {
idx_l = idx_r = i;
goto done;
}
if (target < rpinfo[i].freq) {
idx_r = i;
idx_l = idx_r - 1;
goto done;
}
}
done:
/* Now interpolate power value, based on the frequency */
rates->freq = target;
rates->target_power_6to24 =
ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
rpinfo[idx_r].freq,
rpinfo[idx_l].target_power_6to24,
rpinfo[idx_r].target_power_6to24);
rates->target_power_36 =
ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
rpinfo[idx_r].freq,
rpinfo[idx_l].target_power_36,
rpinfo[idx_r].target_power_36);
rates->target_power_48 =
ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
rpinfo[idx_r].freq,
rpinfo[idx_l].target_power_48,
rpinfo[idx_r].target_power_48);
rates->target_power_54 =
ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
rpinfo[idx_r].freq,
rpinfo[idx_l].target_power_54,
rpinfo[idx_r].target_power_54);
}
/**
* ath5k_get_max_ctl_power() - Get max edge power for a given frequency
* @ah: the &struct ath5k_hw
* @channel: The &struct ieee80211_channel
*
* Get the max edge power for this channel if
* we have such data from EEPROM's Conformance Test
* Limits (CTL), and limit max power if needed.
*/
static void
ath5k_get_max_ctl_power(struct ath5k_hw *ah,
struct ieee80211_channel *channel)
{
struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
u8 *ctl_val = ee->ee_ctl;
s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
s16 edge_pwr = 0;
u8 rep_idx;
u8 i, ctl_mode;
u8 ctl_idx = 0xFF;
u32 target = channel->center_freq;
ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
switch (channel->hw_value) {
case AR5K_MODE_11A:
if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
ctl_mode |= AR5K_CTL_TURBO;
else
ctl_mode |= AR5K_CTL_11A;
break;
case AR5K_MODE_11G:
if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
ctl_mode |= AR5K_CTL_TURBOG;
else
ctl_mode |= AR5K_CTL_11G;
break;
case AR5K_MODE_11B:
ctl_mode |= AR5K_CTL_11B;
break;
default:
return;
}
for (i = 0; i < ee->ee_ctls; i++) {
if (ctl_val[i] == ctl_mode) {
ctl_idx = i;
break;
}
}
/* If we have a CTL dataset available grab it and find the
* edge power for our frequency */
if (ctl_idx == 0xFF)
return;
/* Edge powers are sorted by frequency from lower
* to higher. Each CTL corresponds to 8 edge power
* measurements. */
rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
/* Don't do boundaries check because we
* might have more that one bands defined
* for this mode */
/* Get the edge power that's closer to our
* frequency */
for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
rep_idx += i;
if (target <= rep[rep_idx].freq)
edge_pwr = (s16) rep[rep_idx].edge;
}
if (edge_pwr)
ah->ah_txpower.txp_max_pwr = 4 * min(edge_pwr, max_chan_pwr);
}
/*
* Power to PCDAC table functions
*/
/**
* DOC: Power to PCDAC table functions
*
* For RF5111 we have an XPD -eXternal Power Detector- curve
* for each calibrated channel. Each curve has 0,5dB Power steps
* on x axis and PCDAC steps (offsets) on y axis and looks like an
* exponential function. To recreate the curve we read 11 points
* from eeprom (eeprom.c) and interpolate here.
*
* For RF5112 we have 4 XPD -eXternal Power Detector- curves
* for each calibrated channel on 0, -6, -12 and -18dBm but we only
* use the higher (3) and the lower (0) curves. Each curve again has 0.5dB
* power steps on x axis and PCDAC steps on y axis and looks like a
* linear function. To recreate the curve and pass the power values
* on hw, we get 4 points for xpd 0 (lower gain -> max power)
* and 3 points for xpd 3 (higher gain -> lower power) from eeprom (eeprom.c)
* and interpolate here.
*
* For a given channel we get the calibrated points (piers) for it or
* -if we don't have calibration data for this specific channel- from the
* available surrounding channels we have calibration data for, after we do a
* linear interpolation between them. Then since we have our calibrated points
* for this channel, we do again a linear interpolation between them to get the
* whole curve.
*
* We finally write the Y values of the curve(s) (the PCDAC values) on hw
*/
/**
* ath5k_fill_pwr_to_pcdac_table() - Fill Power to PCDAC table on RF5111
* @ah: The &struct ath5k_hw
* @table_min: Minimum power (x min)
* @table_max: Maximum power (x max)
*
* No further processing is needed for RF5111, the only thing we have to
* do is fill the values below and above calibration range since eeprom data
* may not cover the entire PCDAC table.
*/
static void
ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
s16 *table_max)
{
u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
u8 *pcdac_tmp = ah->ah_txpower.tmpL[0];
u8 pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
s16 min_pwr, max_pwr;
/* Get table boundaries */
min_pwr = table_min[0];
pcdac_0 = pcdac_tmp[0];
max_pwr = table_max[0];
pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
/* Extrapolate below minimum using pcdac_0 */
pcdac_i = 0;
for (i = 0; i < min_pwr; i++)
pcdac_out[pcdac_i++] = pcdac_0;
/* Copy values from pcdac_tmp */
pwr_idx = min_pwr;
for (i = 0; pwr_idx <= max_pwr &&
pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
pcdac_out[pcdac_i++] = pcdac_tmp[i];
pwr_idx++;
}
/* Extrapolate above maximum */
while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
pcdac_out[pcdac_i++] = pcdac_n;
}
/**
* ath5k_combine_linear_pcdac_curves() - Combine available PCDAC Curves
* @ah: The &struct ath5k_hw
* @table_min: Minimum power (x min)
* @table_max: Maximum power (x max)
* @pdcurves: Number of pd curves
*
* Combine available XPD Curves and fill Linear Power to PCDAC table on RF5112
* RFX112 can have up to 2 curves (one for low txpower range and one for
* higher txpower range). We need to put them both on pcdac_out and place
* them in the correct location. In case we only have one curve available
* just fit it on pcdac_out (it's supposed to cover the entire range of
* available pwr levels since it's always the higher power curve). Extrapolate
* below and above final table if needed.
*/
static void
ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
s16 *table_max, u8 pdcurves)
{
u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
u8 *pcdac_low_pwr;
u8 *pcdac_high_pwr;
u8 *pcdac_tmp;
u8 pwr;
s16 max_pwr_idx;
s16 min_pwr_idx;
s16 mid_pwr_idx = 0;
/* Edge flag turns on the 7nth bit on the PCDAC
* to declare the higher power curve (force values
* to be greater than 64). If we only have one curve
* we don't need to set this, if we have 2 curves and
* fill the table backwards this can also be used to
* switch from higher power curve to lower power curve */
u8 edge_flag;
int i;
/* When we have only one curve available
* that's the higher power curve. If we have
* two curves the first is the high power curve
* and the next is the low power curve. */
if (pdcurves > 1) {
pcdac_low_pwr = ah->ah_txpower.tmpL[1];
pcdac_high_pwr = ah->ah_txpower.tmpL[0];
mid_pwr_idx = table_max[1] - table_min[1] - 1;
max_pwr_idx = (table_max[0] - table_min[0]) / 2;
/* If table size goes beyond 31.5dB, keep the
* upper 31.5dB range when setting tx power.
* Note: 126 = 31.5 dB in quarter dB steps */
if (table_max[0] - table_min[1] > 126)
min_pwr_idx = table_max[0] - 126;
else
min_pwr_idx = table_min[1];
/* Since we fill table backwards
* start from high power curve */
pcdac_tmp = pcdac_high_pwr;
edge_flag = 0x40;
} else {
pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
pcdac_high_pwr = ah->ah_txpower.tmpL[0];
min_pwr_idx = table_min[0];
max_pwr_idx = (table_max[0] - table_min[0]) / 2;
pcdac_tmp = pcdac_high_pwr;
edge_flag = 0;
}
/* This is used when setting tx power*/
ah->ah_txpower.txp_min_idx = min_pwr_idx / 2;
/* Fill Power to PCDAC table backwards */
pwr = max_pwr_idx;
for (i = 63; i >= 0; i--) {
/* Entering lower power range, reset
* edge flag and set pcdac_tmp to lower
* power curve.*/
if (edge_flag == 0x40 &&
(2 * pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
edge_flag = 0x00;
pcdac_tmp = pcdac_low_pwr;
pwr = mid_pwr_idx / 2;
}
/* Don't go below 1, extrapolate below if we have
* already switched to the lower power curve -or
* we only have one curve and edge_flag is zero
* anyway */
if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
while (i >= 0) {
pcdac_out[i] = pcdac_out[i + 1];
i--;
}
break;
}
pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
/* Extrapolate above if pcdac is greater than
* 126 -this can happen because we OR pcdac_out
* value with edge_flag on high power curve */
if (pcdac_out[i] > 126)
pcdac_out[i] = 126;
/* Decrease by a 0.5dB step */
pwr--;
}
}
/**
* ath5k_write_pcdac_table() - Write the PCDAC values on hw
* @ah: The &struct ath5k_hw
*/
static void
ath5k_write_pcdac_table(struct ath5k_hw *ah)
{
u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
int i;
/*
* Write TX power values
*/
for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
ath5k_hw_reg_write(ah,
(((pcdac_out[2 * i + 0] << 8 | 0xff) & 0xffff) << 0) |
(((pcdac_out[2 * i + 1] << 8 | 0xff) & 0xffff) << 16),
AR5K_PHY_PCDAC_TXPOWER(i));
}
}
/*
* Power to PDADC table functions
*/
/**
* DOC: Power to PDADC table functions
*
* For RF2413 and later we have a Power to PDADC table (Power Detector)
* instead of a PCDAC (Power Control) and 4 pd gain curves for each
* calibrated channel. Each curve has power on x axis in 0.5 db steps and
* PDADC steps on y axis and looks like an exponential function like the
* RF5111 curve.
*
* To recreate the curves we read the points from eeprom (eeprom.c)
* and interpolate here. Note that in most cases only 2 (higher and lower)
* curves are used (like RF5112) but vendors have the opportunity to include
* all 4 curves on eeprom. The final curve (higher power) has an extra
* point for better accuracy like RF5112.
*
* The process is similar to what we do above for RF5111/5112
*/
/**
* ath5k_combine_pwr_to_pdadc_curves() - Combine the various PDADC curves
* @ah: The &struct ath5k_hw
* @pwr_min: Minimum power (x min)
* @pwr_max: Maximum power (x max)
* @pdcurves: Number of available curves
*
* Combine the various pd curves and create the final Power to PDADC table
* We can have up to 4 pd curves, we need to do a similar process
* as we do for RF5112. This time we don't have an edge_flag but we
* set the gain boundaries on a separate register.
*/
static void
ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
{
u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
u8 *pdadc_tmp;
s16 pdadc_0;
u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
u8 pd_gain_overlap;
/* Note: Register value is initialized on initvals
* there is no feedback from hw.
* XXX: What about pd_gain_overlap from EEPROM ? */
pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
/* Create final PDADC table */
for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
pdadc_tmp = ah->ah_txpower.tmpL[pdg];
if (pdg == pdcurves - 1)
/* 2 dB boundary stretch for last
* (higher power) curve */
gain_boundaries[pdg] = pwr_max[pdg] + 4;
else
/* Set gain boundary in the middle
* between this curve and the next one */
gain_boundaries[pdg] =
(pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
/* Sanity check in case our 2 db stretch got out of
* range. */
if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
/* For the first curve (lower power)
* start from 0 dB */
if (pdg == 0)
pdadc_0 = 0;
else
/* For the other curves use the gain overlap */
pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
pd_gain_overlap;
/* Force each power step to be at least 0.5 dB */
if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
else
pwr_step = 1;
/* If pdadc_0 is negative, we need to extrapolate
* below this pdgain by a number of pwr_steps */
while ((pdadc_0 < 0) && (pdadc_i < 128)) {
s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
pdadc_0++;
}
/* Set last pwr level, using gain boundaries */
pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
/* Limit it to be inside pwr range */
table_size = pwr_max[pdg] - pwr_min[pdg];
max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
/* Fill pdadc_out table */
while (pdadc_0 < max_idx && pdadc_i < 128)
pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
/* Need to extrapolate above this pdgain? */
if (pdadc_n <= max_idx)
continue;
/* Force each power step to be at least 0.5 dB */
if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
pwr_step = pdadc_tmp[table_size - 1] -
pdadc_tmp[table_size - 2];
else
pwr_step = 1;
/* Extrapolate above */
while ((pdadc_0 < (s16) pdadc_n) &&
(pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
s16 tmp = pdadc_tmp[table_size - 1] +
(pdadc_0 - max_idx) * pwr_step;
pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
pdadc_0++;
}
}
while (pdg < AR5K_EEPROM_N_PD_GAINS) {
gain_boundaries[pdg] = gain_boundaries[pdg - 1];
pdg++;
}
while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
pdadc_i++;
}
/* Set gain boundaries */
ath5k_hw_reg_write(ah,
AR5K_REG_SM(pd_gain_overlap,
AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
AR5K_REG_SM(gain_boundaries[0],
AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
AR5K_REG_SM(gain_boundaries[1],
AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
AR5K_REG_SM(gain_boundaries[2],
AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
AR5K_REG_SM(gain_boundaries[3],
AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
AR5K_PHY_TPC_RG5);
/* Used for setting rate power table */
ah->ah_txpower.txp_min_idx = pwr_min[0];
}
/**
* ath5k_write_pwr_to_pdadc_table() - Write the PDADC values on hw
* @ah: The &struct ath5k_hw
* @ee_mode: One of enum ath5k_driver_mode
*/
static void
ath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode)
{
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode];
u8 pdcurves = ee->ee_pd_gains[ee_mode];
u32 reg;
u8 i;
/* Select the right pdgain curves */
/* Clear current settings */
reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
AR5K_PHY_TPC_RG1_PDGAIN_2 |
AR5K_PHY_TPC_RG1_PDGAIN_3 |
AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
/*
* Use pd_gains curve from eeprom
*
* This overrides the default setting from initvals
* in case some vendors (e.g. Zcomax) don't use the default
* curves. If we don't honor their settings we 'll get a
* 5dB (1 * gain overlap ?) drop.
*/
reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
switch (pdcurves) {
case 3:
reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
/* Fall through */
case 2:
reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
/* Fall through */
case 1:
reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
break;
}
ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
/*
* Write TX power values
*/
for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
u32 val = get_unaligned_le32(&pdadc_out[4 * i]);
ath5k_hw_reg_write(ah, val, AR5K_PHY_PDADC_TXPOWER(i));
}
}
/*
* Common code for PCDAC/PDADC tables
*/
/**
* ath5k_setup_channel_powertable() - Set up power table for this channel
* @ah: The &struct ath5k_hw
* @channel: The &struct ieee80211_channel
* @ee_mode: One of enum ath5k_driver_mode
* @type: One of enum ath5k_powertable_type (eeprom.h)
*
* This is the main function that uses all of the above
* to set PCDAC/PDADC table on hw for the current channel.
* This table is used for tx power calibration on the baseband,
* without it we get weird tx power levels and in some cases
* distorted spectral mask
*/
static int
ath5k_setup_channel_powertable(struct ath5k_hw *ah,
struct ieee80211_channel *channel,
u8 ee_mode, u8 type)
{
struct ath5k_pdgain_info *pdg_L, *pdg_R;
struct ath5k_chan_pcal_info *pcinfo_L;
struct ath5k_chan_pcal_info *pcinfo_R;
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
s16 table_min[AR5K_EEPROM_N_PD_GAINS];
s16 table_max[AR5K_EEPROM_N_PD_GAINS];
u8 *tmpL;
u8 *tmpR;
u32 target = channel->center_freq;
int pdg, i;
/* Get surrounding freq piers for this channel */
ath5k_get_chan_pcal_surrounding_piers(ah, channel,
&pcinfo_L,
&pcinfo_R);
/* Loop over pd gain curves on
* surrounding freq piers by index */
for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
/* Fill curves in reverse order
* from lower power (max gain)
* to higher power. Use curve -> idx
* backmapping we did on eeprom init */
u8 idx = pdg_curve_to_idx[pdg];
/* Grab the needed curves by index */
pdg_L = &pcinfo_L->pd_curves[idx];
pdg_R = &pcinfo_R->pd_curves[idx];
/* Initialize the temp tables */
tmpL = ah->ah_txpower.tmpL[pdg];
tmpR = ah->ah_txpower.tmpR[pdg];
/* Set curve's x boundaries and create
* curves so that they cover the same
* range (if we don't do that one table
* will have values on some range and the
* other one won't have any so interpolation
* will fail) */
table_min[pdg] = min(pdg_L->pd_pwr[0],
pdg_R->pd_pwr[0]) / 2;
table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
/* Now create the curves on surrounding channels
* and interpolate if needed to get the final
* curve for this gain on this channel */
switch (type) {
case AR5K_PWRTABLE_LINEAR_PCDAC:
/* Override min/max so that we don't loose
* accuracy (don't divide by 2) */
table_min[pdg] = min(pdg_L->pd_pwr[0],
pdg_R->pd_pwr[0]);
table_max[pdg] =
max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
pdg_R->pd_pwr[pdg_R->pd_points - 1]);
/* Override minimum so that we don't get
* out of bounds while extrapolating
* below. Don't do this when we have 2
* curves and we are on the high power curve
* because table_min is ok in this case */
if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
table_min[pdg] =
ath5k_get_linear_pcdac_min(pdg_L->pd_step,
pdg_R->pd_step,
pdg_L->pd_pwr,
pdg_R->pd_pwr);
/* Don't go too low because we will
* miss the upper part of the curve.
* Note: 126 = 31.5dB (max power supported)
* in 0.25dB units */
if (table_max[pdg] - table_min[pdg] > 126)
table_min[pdg] = table_max[pdg] - 126;
}
/* Fall through */
case AR5K_PWRTABLE_PWR_TO_PCDAC:
case AR5K_PWRTABLE_PWR_TO_PDADC:
ath5k_create_power_curve(table_min[pdg],
table_max[pdg],
pdg_L->pd_pwr,
pdg_L->pd_step,
pdg_L->pd_points, tmpL, type);
/* We are in a calibration
* pier, no need to interpolate
* between freq piers */
if (pcinfo_L == pcinfo_R)
continue;
ath5k_create_power_curve(table_min[pdg],
table_max[pdg],
pdg_R->pd_pwr,
pdg_R->pd_step,
pdg_R->pd_points, tmpR, type);
break;
default:
return -EINVAL;
}
/* Interpolate between curves
* of surrounding freq piers to
* get the final curve for this
* pd gain. Re-use tmpL for interpolation
* output */
for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
tmpL[i] = (u8) ath5k_get_interpolated_value(target,
(s16) pcinfo_L->freq,
(s16) pcinfo_R->freq,
(s16) tmpL[i],
(s16) tmpR[i]);
}
}
/* Now we have a set of curves for this
* channel on tmpL (x range is table_max - table_min
* and y values are tmpL[pdg][]) sorted in the same
* order as EEPROM (because we've used the backmapping).
* So for RF5112 it's from higher power to lower power
* and for RF2413 it's from lower power to higher power.
* For RF5111 we only have one curve. */
/* Fill min and max power levels for this
* channel by interpolating the values on
* surrounding channels to complete the dataset */
ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
(s16) pcinfo_L->freq,
(s16) pcinfo_R->freq,
pcinfo_L->min_pwr, pcinfo_R->min_pwr);
ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
(s16) pcinfo_L->freq,
(s16) pcinfo_R->freq,
pcinfo_L->max_pwr, pcinfo_R->max_pwr);
/* Fill PCDAC/PDADC table */
switch (type) {
case AR5K_PWRTABLE_LINEAR_PCDAC:
/* For RF5112 we can have one or two curves
* and each curve covers a certain power lvl
* range so we need to do some more processing */
ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
ee->ee_pd_gains[ee_mode]);
/* Set txp.offset so that we can
* match max power value with max
* table index */
ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
break;
case AR5K_PWRTABLE_PWR_TO_PCDAC:
/* We are done for RF5111 since it has only
* one curve, just fit the curve on the table */
ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
/* No rate powertable adjustment for RF5111 */
ah->ah_txpower.txp_min_idx = 0;
ah->ah_txpower.txp_offset = 0;
break;
case AR5K_PWRTABLE_PWR_TO_PDADC:
/* Set PDADC boundaries and fill
* final PDADC table */
ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
ee->ee_pd_gains[ee_mode]);
/* Set txp.offset, note that table_min
* can be negative */
ah->ah_txpower.txp_offset = table_min[0];
break;
default:
return -EINVAL;
}
ah->ah_txpower.txp_setup = true;
return 0;
}
/**
* ath5k_write_channel_powertable() - Set power table for current channel on hw
* @ah: The &struct ath5k_hw
* @ee_mode: One of enum ath5k_driver_mode
* @type: One of enum ath5k_powertable_type (eeprom.h)
*/
static void
ath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type)
{
if (type == AR5K_PWRTABLE_PWR_TO_PDADC)
ath5k_write_pwr_to_pdadc_table(ah, ee_mode);
else
ath5k_write_pcdac_table(ah);
}
/**
* DOC: Per-rate tx power setting
*
* This is the code that sets the desired tx power limit (below
* maximum) on hw for each rate (we also have TPC that sets
* power per packet type). We do that by providing an index on the
* PCDAC/PDADC table we set up above, for each rate.
*
* For now we only limit txpower based on maximum tx power
* supported by hw (what's inside rate_info) + conformance test
* limits. We need to limit this even more, based on regulatory domain
* etc to be safe. Normally this is done from above so we don't care
* here, all we care is that the tx power we set will be O.K.
* for the hw (e.g. won't create noise on PA etc).
*
* Rate power table contains indices to PCDAC/PDADC table (0.5dB steps -
* x values) and is indexed as follows:
* rates[0] - rates[7] -> OFDM rates
* rates[8] - rates[14] -> CCK rates
* rates[15] -> XR rates (they all have the same power)
*/
/**
* ath5k_setup_rate_powertable() - Set up rate power table for a given tx power
* @ah: The &struct ath5k_hw
* @max_pwr: The maximum tx power requested in 0.5dB steps
* @rate_info: The &struct ath5k_rate_pcal_info to fill
* @ee_mode: One of enum ath5k_driver_mode
*/
static void
ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
struct ath5k_rate_pcal_info *rate_info,
u8 ee_mode)
{
unsigned int i;
u16 *rates;
/* max_pwr is power level we got from driver/user in 0.5dB
* units, switch to 0.25dB units so we can compare */
max_pwr *= 2;
max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
/* apply rate limits */
rates = ah->ah_txpower.txp_rates_power_table;
/* OFDM rates 6 to 24Mb/s */
for (i = 0; i < 5; i++)
rates[i] = min(max_pwr, rate_info->target_power_6to24);
/* Rest OFDM rates */
rates[5] = min(rates[0], rate_info->target_power_36);
rates[6] = min(rates[0], rate_info->target_power_48);
rates[7] = min(rates[0], rate_info->target_power_54);
/* CCK rates */
/* 1L */
rates[8] = min(rates[0], rate_info->target_power_6to24);
/* 2L */
rates[9] = min(rates[0], rate_info->target_power_36);
/* 2S */
rates[10] = min(rates[0], rate_info->target_power_36);
/* 5L */
rates[11] = min(rates[0], rate_info->target_power_48);
/* 5S */
rates[12] = min(rates[0], rate_info->target_power_48);
/* 11L */
rates[13] = min(rates[0], rate_info->target_power_54);
/* 11S */
rates[14] = min(rates[0], rate_info->target_power_54);
/* XR rates */
rates[15] = min(rates[0], rate_info->target_power_6to24);
/* CCK rates have different peak to average ratio
* so we have to tweak their power so that gainf
* correction works ok. For this we use OFDM to
* CCK delta from eeprom */
if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
(ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
for (i = 8; i <= 15; i++)
rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
/* Now that we have all rates setup use table offset to
* match the power range set by user with the power indices
* on PCDAC/PDADC table */
for (i = 0; i < 16; i++) {
rates[i] += ah->ah_txpower.txp_offset;
/* Don't get out of bounds */
if (rates[i] > 63)
rates[i] = 63;
}
/* Min/max in 0.25dB units */
ah->ah_txpower.txp_min_pwr = 2 * rates[7];
ah->ah_txpower.txp_cur_pwr = 2 * rates[0];
ah->ah_txpower.txp_ofdm = rates[7];
}
/**
* ath5k_hw_txpower() - Set transmission power limit for a given channel
* @ah: The &struct ath5k_hw
* @channel: The &struct ieee80211_channel
* @txpower: Requested tx power in 0.5dB steps
*
* Combines all of the above to set the requested tx power limit
* on hw.
*/
static int
ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
u8 txpower)
{
struct ath5k_rate_pcal_info rate_info;
struct ieee80211_channel *curr_channel = ah->ah_current_channel;
int ee_mode;
u8 type;
int ret;
if (txpower > AR5K_TUNE_MAX_TXPOWER) {
ATH5K_ERR(ah, "invalid tx power: %u\n", txpower);
return -EINVAL;
}
ee_mode = ath5k_eeprom_mode_from_channel(channel);
if (ee_mode < 0) {
ATH5K_ERR(ah,
"invalid channel: %d\n", channel->center_freq);
return -EINVAL;
}
/* Initialize TX power table */
switch (ah->ah_radio) {
case AR5K_RF5110:
/* TODO */
return 0;
case AR5K_RF5111:
type = AR5K_PWRTABLE_PWR_TO_PCDAC;
break;
case AR5K_RF5112:
type = AR5K_PWRTABLE_LINEAR_PCDAC;
break;
case AR5K_RF2413:
case AR5K_RF5413:
case AR5K_RF2316:
case AR5K_RF2317:
case AR5K_RF2425:
type = AR5K_PWRTABLE_PWR_TO_PDADC;
break;
default:
return -EINVAL;
}
/*
* If we don't change channel/mode skip tx powertable calculation
* and use the cached one.
*/
if (!ah->ah_txpower.txp_setup ||
(channel->hw_value != curr_channel->hw_value) ||
(channel->center_freq != curr_channel->center_freq)) {
/* Reset TX power values */
memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
/* Calculate the powertable */
ret = ath5k_setup_channel_powertable(ah, channel,
ee_mode, type);
if (ret)
return ret;
}
/* Write table on hw */
ath5k_write_channel_powertable(ah, ee_mode, type);
/* Limit max power if we have a CTL available */
ath5k_get_max_ctl_power(ah, channel);
/* FIXME: Antenna reduction stuff */
/* FIXME: Limit power on turbo modes */
/* FIXME: TPC scale reduction */
/* Get surrounding channels for per-rate power table
* calibration */
ath5k_get_rate_pcal_data(ah, channel, &rate_info);
/* Setup rate power table */
ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
/* Write rate power table on hw */
ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
/* FIXME: TPC support */
if (ah->ah_txpower.txp_tpc) {
ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
ath5k_hw_reg_write(ah,
AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
AR5K_TPC);
} else {
ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
}
return 0;
}
/**
* ath5k_hw_set_txpower_limit() - Set txpower limit for the current channel
* @ah: The &struct ath5k_hw
* @txpower: The requested tx power limit in 0.5dB steps
*
* This function provides access to ath5k_hw_txpower to the driver in
* case user or an application changes it while PHY is running.
*/
int
ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
{
ATH5K_DBG(ah, ATH5K_DEBUG_TXPOWER,
"changing txpower to %d\n", txpower);
return ath5k_hw_txpower(ah, ah->ah_current_channel, txpower);
}
/*************\
Init function
\*************/
/**
* ath5k_hw_phy_init() - Initialize PHY
* @ah: The &struct ath5k_hw
* @channel: The @struct ieee80211_channel
* @mode: One of enum ath5k_driver_mode
* @fast: Try a fast channel switch instead
*
* This is the main function used during reset to initialize PHY
* or do a fast channel change if possible.
*
* NOTE: Do not call this one from the driver, it assumes PHY is in a
* warm reset state !
*/
int
ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
u8 mode, bool fast)
{
struct ieee80211_channel *curr_channel;
int ret, i;
u32 phy_tst1;
ret = 0;
/*
* Sanity check for fast flag
* Don't try fast channel change when changing modulation
* mode/band. We check for chip compatibility on
* ath5k_hw_reset.
*/
curr_channel = ah->ah_current_channel;
if (fast && (channel->hw_value != curr_channel->hw_value))
return -EINVAL;
/*
* On fast channel change we only set the synth parameters
* while PHY is running, enable calibration and skip the rest.
*/
if (fast) {
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
AR5K_PHY_RFBUS_REQ_REQUEST);
for (i = 0; i < 100; i++) {
if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT))
break;
udelay(5);
}
/* Failed */
if (i >= 100)
return -EIO;
/* Set channel and wait for synth */
ret = ath5k_hw_channel(ah, channel);
if (ret)
return ret;
ath5k_hw_wait_for_synth(ah, channel);
}
/*
* Set TX power
*
* Note: We need to do that before we set
* RF buffer settings on 5211/5212+ so that we
* properly set curve indices.
*/
ret = ath5k_hw_txpower(ah, channel, ah->ah_txpower.txp_cur_pwr ?
ah->ah_txpower.txp_cur_pwr / 2 : AR5K_TUNE_MAX_TXPOWER);
if (ret)
return ret;
/* Write OFDM timings on 5212*/
if (ah->ah_version == AR5K_AR5212 &&
channel->hw_value != AR5K_MODE_11B) {
ret = ath5k_hw_write_ofdm_timings(ah, channel);
if (ret)
return ret;
/* Spur info is available only from EEPROM versions
* greater than 5.3, but the EEPROM routines will use
* static values for older versions */
if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
ath5k_hw_set_spur_mitigation_filter(ah,
channel);
}
/* If we used fast channel switching
* we are done, release RF bus and
* fire up NF calibration.
*
* Note: Only NF calibration due to
* channel change, not AGC calibration
* since AGC is still running !
*/
if (fast) {
/*
* Release RF Bus grant
*/
AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
AR5K_PHY_RFBUS_REQ_REQUEST);
/*
* Start NF calibration
*/
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
AR5K_PHY_AGCCTL_NF);
return ret;
}
/*
* For 5210 we do all initialization using
* initvals, so we don't have to modify
* any settings (5210 also only supports
* a/aturbo modes)
*/
if (ah->ah_version != AR5K_AR5210) {
/*
* Write initial RF gain settings
* This should work for both 5111/5112
*/
ret = ath5k_hw_rfgain_init(ah, channel->band);
if (ret)
return ret;
usleep_range(1000, 1500);
/*
* Write RF buffer
*/
ret = ath5k_hw_rfregs_init(ah, channel, mode);
if (ret)
return ret;
/*Enable/disable 802.11b mode on 5111
(enable 2111 frequency converter + CCK)*/
if (ah->ah_radio == AR5K_RF5111) {
if (mode == AR5K_MODE_11B)
AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
AR5K_TXCFG_B_MODE);
else
AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
AR5K_TXCFG_B_MODE);
}
} else if (ah->ah_version == AR5K_AR5210) {
usleep_range(1000, 1500);
/* Disable phy and wait */
ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
usleep_range(1000, 1500);
}
/* Set channel on PHY */
ret = ath5k_hw_channel(ah, channel);
if (ret)
return ret;
/*
* Enable the PHY and wait until completion
* This includes BaseBand and Synthesizer
* activation.
*/
ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
ath5k_hw_wait_for_synth(ah, channel);
/*
* Perform ADC test to see if baseband is ready
* Set tx hold and check adc test register
*/
phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
for (i = 0; i <= 20; i++) {
if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
break;
usleep_range(200, 250);
}
ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
/*
* Start automatic gain control calibration
*
* During AGC calibration RX path is re-routed to
* a power detector so we don't receive anything.
*
* This method is used to calibrate some static offsets
* used together with on-the fly I/Q calibration (the
* one performed via ath5k_hw_phy_calibrate), which doesn't
* interrupt rx path.
*
* While rx path is re-routed to the power detector we also
* start a noise floor calibration to measure the
* card's noise floor (the noise we measure when we are not
* transmitting or receiving anything).
*
* If we are in a noisy environment, AGC calibration may time
* out and/or noise floor calibration might timeout.
*/
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
/* At the same time start I/Q calibration for QAM constellation
* -no need for CCK- */
ah->ah_iq_cal_needed = false;
if (!(mode == AR5K_MODE_11B)) {
ah->ah_iq_cal_needed = true;
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
AR5K_PHY_IQ_RUN);
}
/* Wait for gain calibration to finish (we check for I/Q calibration
* during ath5k_phy_calibrate) */
if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
AR5K_PHY_AGCCTL_CAL, 0, false)) {
ATH5K_ERR(ah, "gain calibration timeout (%uMHz)\n",
channel->center_freq);
}
/* Restore antenna mode */
ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
return ret;
}