571 lines
14 KiB
C
571 lines
14 KiB
C
/*
|
|
* Intel 3000/3010 Memory Controller kernel module
|
|
* Copyright (C) 2007 Akamai Technologies, Inc.
|
|
* Shamelessly copied from:
|
|
* Intel D82875P Memory Controller kernel module
|
|
* (C) 2003 Linux Networx (http://lnxi.com)
|
|
*
|
|
* This file may be distributed under the terms of the
|
|
* GNU General Public License.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/pci_ids.h>
|
|
#include <linux/edac.h>
|
|
#include "edac_core.h"
|
|
|
|
#define I3000_REVISION "1.1"
|
|
|
|
#define EDAC_MOD_STR "i3000_edac"
|
|
|
|
#define I3000_RANKS 8
|
|
#define I3000_RANKS_PER_CHANNEL 4
|
|
#define I3000_CHANNELS 2
|
|
|
|
/* Intel 3000 register addresses - device 0 function 0 - DRAM Controller */
|
|
|
|
#define I3000_MCHBAR 0x44 /* MCH Memory Mapped Register BAR */
|
|
#define I3000_MCHBAR_MASK 0xffffc000
|
|
#define I3000_MMR_WINDOW_SIZE 16384
|
|
|
|
#define I3000_EDEAP 0x70 /* Extended DRAM Error Address Pointer (8b)
|
|
*
|
|
* 7:1 reserved
|
|
* 0 bit 32 of address
|
|
*/
|
|
#define I3000_DEAP 0x58 /* DRAM Error Address Pointer (32b)
|
|
*
|
|
* 31:7 address
|
|
* 6:1 reserved
|
|
* 0 Error channel 0/1
|
|
*/
|
|
#define I3000_DEAP_GRAIN (1 << 7)
|
|
|
|
/*
|
|
* Helper functions to decode the DEAP/EDEAP hardware registers.
|
|
*
|
|
* The type promotion here is deliberate; we're deriving an
|
|
* unsigned long pfn and offset from hardware regs which are u8/u32.
|
|
*/
|
|
|
|
static inline unsigned long deap_pfn(u8 edeap, u32 deap)
|
|
{
|
|
deap >>= PAGE_SHIFT;
|
|
deap |= (edeap & 1) << (32 - PAGE_SHIFT);
|
|
return deap;
|
|
}
|
|
|
|
static inline unsigned long deap_offset(u32 deap)
|
|
{
|
|
return deap & ~(I3000_DEAP_GRAIN - 1) & ~PAGE_MASK;
|
|
}
|
|
|
|
static inline int deap_channel(u32 deap)
|
|
{
|
|
return deap & 1;
|
|
}
|
|
|
|
#define I3000_DERRSYN 0x5c /* DRAM Error Syndrome (8b)
|
|
*
|
|
* 7:0 DRAM ECC Syndrome
|
|
*/
|
|
|
|
#define I3000_ERRSTS 0xc8 /* Error Status Register (16b)
|
|
*
|
|
* 15:12 reserved
|
|
* 11 MCH Thermal Sensor Event
|
|
* for SMI/SCI/SERR
|
|
* 10 reserved
|
|
* 9 LOCK to non-DRAM Memory Flag (LCKF)
|
|
* 8 Received Refresh Timeout Flag (RRTOF)
|
|
* 7:2 reserved
|
|
* 1 Multi-bit DRAM ECC Error Flag (DMERR)
|
|
* 0 Single-bit DRAM ECC Error Flag (DSERR)
|
|
*/
|
|
#define I3000_ERRSTS_BITS 0x0b03 /* bits which indicate errors */
|
|
#define I3000_ERRSTS_UE 0x0002
|
|
#define I3000_ERRSTS_CE 0x0001
|
|
|
|
#define I3000_ERRCMD 0xca /* Error Command (16b)
|
|
*
|
|
* 15:12 reserved
|
|
* 11 SERR on MCH Thermal Sensor Event
|
|
* (TSESERR)
|
|
* 10 reserved
|
|
* 9 SERR on LOCK to non-DRAM Memory
|
|
* (LCKERR)
|
|
* 8 SERR on DRAM Refresh Timeout
|
|
* (DRTOERR)
|
|
* 7:2 reserved
|
|
* 1 SERR Multi-Bit DRAM ECC Error
|
|
* (DMERR)
|
|
* 0 SERR on Single-Bit ECC Error
|
|
* (DSERR)
|
|
*/
|
|
|
|
/* Intel MMIO register space - device 0 function 0 - MMR space */
|
|
|
|
#define I3000_DRB_SHIFT 25 /* 32MiB grain */
|
|
|
|
#define I3000_C0DRB 0x100 /* Channel 0 DRAM Rank Boundary (8b x 4)
|
|
*
|
|
* 7:0 Channel 0 DRAM Rank Boundary Address
|
|
*/
|
|
#define I3000_C1DRB 0x180 /* Channel 1 DRAM Rank Boundary (8b x 4)
|
|
*
|
|
* 7:0 Channel 1 DRAM Rank Boundary Address
|
|
*/
|
|
|
|
#define I3000_C0DRA 0x108 /* Channel 0 DRAM Rank Attribute (8b x 2)
|
|
*
|
|
* 7 reserved
|
|
* 6:4 DRAM odd Rank Attribute
|
|
* 3 reserved
|
|
* 2:0 DRAM even Rank Attribute
|
|
*
|
|
* Each attribute defines the page
|
|
* size of the corresponding rank:
|
|
* 000: unpopulated
|
|
* 001: reserved
|
|
* 010: 4 KB
|
|
* 011: 8 KB
|
|
* 100: 16 KB
|
|
* Others: reserved
|
|
*/
|
|
#define I3000_C1DRA 0x188 /* Channel 1 DRAM Rank Attribute (8b x 2) */
|
|
|
|
static inline unsigned char odd_rank_attrib(unsigned char dra)
|
|
{
|
|
return (dra & 0x70) >> 4;
|
|
}
|
|
|
|
static inline unsigned char even_rank_attrib(unsigned char dra)
|
|
{
|
|
return dra & 0x07;
|
|
}
|
|
|
|
#define I3000_C0DRC0 0x120 /* DRAM Controller Mode 0 (32b)
|
|
*
|
|
* 31:30 reserved
|
|
* 29 Initialization Complete (IC)
|
|
* 28:11 reserved
|
|
* 10:8 Refresh Mode Select (RMS)
|
|
* 7 reserved
|
|
* 6:4 Mode Select (SMS)
|
|
* 3:2 reserved
|
|
* 1:0 DRAM Type (DT)
|
|
*/
|
|
|
|
#define I3000_C0DRC1 0x124 /* DRAM Controller Mode 1 (32b)
|
|
*
|
|
* 31 Enhanced Addressing Enable (ENHADE)
|
|
* 30:0 reserved
|
|
*/
|
|
|
|
enum i3000p_chips {
|
|
I3000 = 0,
|
|
};
|
|
|
|
struct i3000_dev_info {
|
|
const char *ctl_name;
|
|
};
|
|
|
|
struct i3000_error_info {
|
|
u16 errsts;
|
|
u8 derrsyn;
|
|
u8 edeap;
|
|
u32 deap;
|
|
u16 errsts2;
|
|
};
|
|
|
|
static const struct i3000_dev_info i3000_devs[] = {
|
|
[I3000] = {
|
|
.ctl_name = "i3000"},
|
|
};
|
|
|
|
static struct pci_dev *mci_pdev;
|
|
static int i3000_registered = 1;
|
|
static struct edac_pci_ctl_info *i3000_pci;
|
|
|
|
static void i3000_get_error_info(struct mem_ctl_info *mci,
|
|
struct i3000_error_info *info)
|
|
{
|
|
struct pci_dev *pdev;
|
|
|
|
pdev = to_pci_dev(mci->pdev);
|
|
|
|
/*
|
|
* This is a mess because there is no atomic way to read all the
|
|
* registers at once and the registers can transition from CE being
|
|
* overwritten by UE.
|
|
*/
|
|
pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts);
|
|
if (!(info->errsts & I3000_ERRSTS_BITS))
|
|
return;
|
|
pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
|
|
pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
|
|
pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
|
|
pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts2);
|
|
|
|
/*
|
|
* If the error is the same for both reads then the first set
|
|
* of reads is valid. If there is a change then there is a CE
|
|
* with no info and the second set of reads is valid and
|
|
* should be UE info.
|
|
*/
|
|
if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
|
|
pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
|
|
pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
|
|
pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
|
|
}
|
|
|
|
/*
|
|
* Clear any error bits.
|
|
* (Yes, we really clear bits by writing 1 to them.)
|
|
*/
|
|
pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
|
|
I3000_ERRSTS_BITS);
|
|
}
|
|
|
|
static int i3000_process_error_info(struct mem_ctl_info *mci,
|
|
struct i3000_error_info *info,
|
|
int handle_errors)
|
|
{
|
|
int row, multi_chan, channel;
|
|
unsigned long pfn, offset;
|
|
|
|
multi_chan = mci->csrows[0]->nr_channels - 1;
|
|
|
|
if (!(info->errsts & I3000_ERRSTS_BITS))
|
|
return 0;
|
|
|
|
if (!handle_errors)
|
|
return 1;
|
|
|
|
if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
|
|
edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, 0, 0, 0,
|
|
-1, -1, -1,
|
|
"UE overwrote CE", "");
|
|
info->errsts = info->errsts2;
|
|
}
|
|
|
|
pfn = deap_pfn(info->edeap, info->deap);
|
|
offset = deap_offset(info->deap);
|
|
channel = deap_channel(info->deap);
|
|
|
|
row = edac_mc_find_csrow_by_page(mci, pfn);
|
|
|
|
if (info->errsts & I3000_ERRSTS_UE)
|
|
edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
|
|
pfn, offset, 0,
|
|
row, -1, -1,
|
|
"i3000 UE", "");
|
|
else
|
|
edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
|
|
pfn, offset, info->derrsyn,
|
|
row, multi_chan ? channel : 0, -1,
|
|
"i3000 CE", "");
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void i3000_check(struct mem_ctl_info *mci)
|
|
{
|
|
struct i3000_error_info info;
|
|
|
|
edac_dbg(1, "MC%d\n", mci->mc_idx);
|
|
i3000_get_error_info(mci, &info);
|
|
i3000_process_error_info(mci, &info, 1);
|
|
}
|
|
|
|
static int i3000_is_interleaved(const unsigned char *c0dra,
|
|
const unsigned char *c1dra,
|
|
const unsigned char *c0drb,
|
|
const unsigned char *c1drb)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* If the channels aren't populated identically then
|
|
* we're not interleaved.
|
|
*/
|
|
for (i = 0; i < I3000_RANKS_PER_CHANNEL / 2; i++)
|
|
if (odd_rank_attrib(c0dra[i]) != odd_rank_attrib(c1dra[i]) ||
|
|
even_rank_attrib(c0dra[i]) !=
|
|
even_rank_attrib(c1dra[i]))
|
|
return 0;
|
|
|
|
/*
|
|
* If the rank boundaries for the two channels are different
|
|
* then we're not interleaved.
|
|
*/
|
|
for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++)
|
|
if (c0drb[i] != c1drb[i])
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int i3000_probe1(struct pci_dev *pdev, int dev_idx)
|
|
{
|
|
int rc;
|
|
int i, j;
|
|
struct mem_ctl_info *mci = NULL;
|
|
struct edac_mc_layer layers[2];
|
|
unsigned long last_cumul_size, nr_pages;
|
|
int interleaved, nr_channels;
|
|
unsigned char dra[I3000_RANKS / 2], drb[I3000_RANKS];
|
|
unsigned char *c0dra = dra, *c1dra = &dra[I3000_RANKS_PER_CHANNEL / 2];
|
|
unsigned char *c0drb = drb, *c1drb = &drb[I3000_RANKS_PER_CHANNEL];
|
|
unsigned long mchbar;
|
|
void __iomem *window;
|
|
|
|
edac_dbg(0, "MC:\n");
|
|
|
|
pci_read_config_dword(pdev, I3000_MCHBAR, (u32 *) & mchbar);
|
|
mchbar &= I3000_MCHBAR_MASK;
|
|
window = ioremap_nocache(mchbar, I3000_MMR_WINDOW_SIZE);
|
|
if (!window) {
|
|
printk(KERN_ERR "i3000: cannot map mmio space at 0x%lx\n",
|
|
mchbar);
|
|
return -ENODEV;
|
|
}
|
|
|
|
c0dra[0] = readb(window + I3000_C0DRA + 0); /* ranks 0,1 */
|
|
c0dra[1] = readb(window + I3000_C0DRA + 1); /* ranks 2,3 */
|
|
c1dra[0] = readb(window + I3000_C1DRA + 0); /* ranks 0,1 */
|
|
c1dra[1] = readb(window + I3000_C1DRA + 1); /* ranks 2,3 */
|
|
|
|
for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++) {
|
|
c0drb[i] = readb(window + I3000_C0DRB + i);
|
|
c1drb[i] = readb(window + I3000_C1DRB + i);
|
|
}
|
|
|
|
iounmap(window);
|
|
|
|
/*
|
|
* Figure out how many channels we have.
|
|
*
|
|
* If we have what the datasheet calls "asymmetric channels"
|
|
* (essentially the same as what was called "virtual single
|
|
* channel mode" in the i82875) then it's a single channel as
|
|
* far as EDAC is concerned.
|
|
*/
|
|
interleaved = i3000_is_interleaved(c0dra, c1dra, c0drb, c1drb);
|
|
nr_channels = interleaved ? 2 : 1;
|
|
|
|
layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
|
|
layers[0].size = I3000_RANKS / nr_channels;
|
|
layers[0].is_virt_csrow = true;
|
|
layers[1].type = EDAC_MC_LAYER_CHANNEL;
|
|
layers[1].size = nr_channels;
|
|
layers[1].is_virt_csrow = false;
|
|
mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, 0);
|
|
if (!mci)
|
|
return -ENOMEM;
|
|
|
|
edac_dbg(3, "MC: init mci\n");
|
|
|
|
mci->pdev = &pdev->dev;
|
|
mci->mtype_cap = MEM_FLAG_DDR2;
|
|
|
|
mci->edac_ctl_cap = EDAC_FLAG_SECDED;
|
|
mci->edac_cap = EDAC_FLAG_SECDED;
|
|
|
|
mci->mod_name = EDAC_MOD_STR;
|
|
mci->mod_ver = I3000_REVISION;
|
|
mci->ctl_name = i3000_devs[dev_idx].ctl_name;
|
|
mci->dev_name = pci_name(pdev);
|
|
mci->edac_check = i3000_check;
|
|
mci->ctl_page_to_phys = NULL;
|
|
|
|
/*
|
|
* The dram rank boundary (DRB) reg values are boundary addresses
|
|
* for each DRAM rank with a granularity of 32MB. DRB regs are
|
|
* cumulative; the last one will contain the total memory
|
|
* contained in all ranks.
|
|
*
|
|
* If we're in interleaved mode then we're only walking through
|
|
* the ranks of controller 0, so we double all the values we see.
|
|
*/
|
|
for (last_cumul_size = i = 0; i < mci->nr_csrows; i++) {
|
|
u8 value;
|
|
u32 cumul_size;
|
|
struct csrow_info *csrow = mci->csrows[i];
|
|
|
|
value = drb[i];
|
|
cumul_size = value << (I3000_DRB_SHIFT - PAGE_SHIFT);
|
|
if (interleaved)
|
|
cumul_size <<= 1;
|
|
edac_dbg(3, "MC: (%d) cumul_size 0x%x\n", i, cumul_size);
|
|
if (cumul_size == last_cumul_size)
|
|
continue;
|
|
|
|
csrow->first_page = last_cumul_size;
|
|
csrow->last_page = cumul_size - 1;
|
|
nr_pages = cumul_size - last_cumul_size;
|
|
last_cumul_size = cumul_size;
|
|
|
|
for (j = 0; j < nr_channels; j++) {
|
|
struct dimm_info *dimm = csrow->channels[j]->dimm;
|
|
|
|
dimm->nr_pages = nr_pages / nr_channels;
|
|
dimm->grain = I3000_DEAP_GRAIN;
|
|
dimm->mtype = MEM_DDR2;
|
|
dimm->dtype = DEV_UNKNOWN;
|
|
dimm->edac_mode = EDAC_UNKNOWN;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Clear any error bits.
|
|
* (Yes, we really clear bits by writing 1 to them.)
|
|
*/
|
|
pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
|
|
I3000_ERRSTS_BITS);
|
|
|
|
rc = -ENODEV;
|
|
if (edac_mc_add_mc(mci)) {
|
|
edac_dbg(3, "MC: failed edac_mc_add_mc()\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* allocating generic PCI control info */
|
|
i3000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
|
|
if (!i3000_pci) {
|
|
printk(KERN_WARNING
|
|
"%s(): Unable to create PCI control\n",
|
|
__func__);
|
|
printk(KERN_WARNING
|
|
"%s(): PCI error report via EDAC not setup\n",
|
|
__func__);
|
|
}
|
|
|
|
/* get this far and it's successful */
|
|
edac_dbg(3, "MC: success\n");
|
|
return 0;
|
|
|
|
fail:
|
|
if (mci)
|
|
edac_mc_free(mci);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* returns count (>= 0), or negative on error */
|
|
static int i3000_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
|
|
{
|
|
int rc;
|
|
|
|
edac_dbg(0, "MC:\n");
|
|
|
|
if (pci_enable_device(pdev) < 0)
|
|
return -EIO;
|
|
|
|
rc = i3000_probe1(pdev, ent->driver_data);
|
|
if (!mci_pdev)
|
|
mci_pdev = pci_dev_get(pdev);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void i3000_remove_one(struct pci_dev *pdev)
|
|
{
|
|
struct mem_ctl_info *mci;
|
|
|
|
edac_dbg(0, "\n");
|
|
|
|
if (i3000_pci)
|
|
edac_pci_release_generic_ctl(i3000_pci);
|
|
|
|
mci = edac_mc_del_mc(&pdev->dev);
|
|
if (!mci)
|
|
return;
|
|
|
|
edac_mc_free(mci);
|
|
}
|
|
|
|
static const struct pci_device_id i3000_pci_tbl[] = {
|
|
{
|
|
PCI_VEND_DEV(INTEL, 3000_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0,
|
|
I3000},
|
|
{
|
|
0,
|
|
} /* 0 terminated list. */
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(pci, i3000_pci_tbl);
|
|
|
|
static struct pci_driver i3000_driver = {
|
|
.name = EDAC_MOD_STR,
|
|
.probe = i3000_init_one,
|
|
.remove = i3000_remove_one,
|
|
.id_table = i3000_pci_tbl,
|
|
};
|
|
|
|
static int __init i3000_init(void)
|
|
{
|
|
int pci_rc;
|
|
|
|
edac_dbg(3, "MC:\n");
|
|
|
|
/* Ensure that the OPSTATE is set correctly for POLL or NMI */
|
|
opstate_init();
|
|
|
|
pci_rc = pci_register_driver(&i3000_driver);
|
|
if (pci_rc < 0)
|
|
goto fail0;
|
|
|
|
if (!mci_pdev) {
|
|
i3000_registered = 0;
|
|
mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
|
|
PCI_DEVICE_ID_INTEL_3000_HB, NULL);
|
|
if (!mci_pdev) {
|
|
edac_dbg(0, "i3000 pci_get_device fail\n");
|
|
pci_rc = -ENODEV;
|
|
goto fail1;
|
|
}
|
|
|
|
pci_rc = i3000_init_one(mci_pdev, i3000_pci_tbl);
|
|
if (pci_rc < 0) {
|
|
edac_dbg(0, "i3000 init fail\n");
|
|
pci_rc = -ENODEV;
|
|
goto fail1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail1:
|
|
pci_unregister_driver(&i3000_driver);
|
|
|
|
fail0:
|
|
if (mci_pdev)
|
|
pci_dev_put(mci_pdev);
|
|
|
|
return pci_rc;
|
|
}
|
|
|
|
static void __exit i3000_exit(void)
|
|
{
|
|
edac_dbg(3, "MC:\n");
|
|
|
|
pci_unregister_driver(&i3000_driver);
|
|
if (!i3000_registered) {
|
|
i3000_remove_one(mci_pdev);
|
|
pci_dev_put(mci_pdev);
|
|
}
|
|
}
|
|
|
|
module_init(i3000_init);
|
|
module_exit(i3000_exit);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Akamai Technologies Arthur Ulfeldt/Jason Uhlenkott");
|
|
MODULE_DESCRIPTION("MC support for Intel 3000 memory hub controllers");
|
|
|
|
module_param(edac_op_state, int, 0444);
|
|
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
|