linux/net/wireless/wext-compat.c
Greg Kroah-Hartman b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00

1511 lines
39 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* cfg80211 - wext compat code
*
* This is temporary code until all wireless functionality is migrated
* into cfg80211, when that happens all the exports here go away and
* we directly assign the wireless handlers of wireless interfaces.
*
* Copyright 2008-2009 Johannes Berg <johannes@sipsolutions.net>
*/
#include <linux/export.h>
#include <linux/wireless.h>
#include <linux/nl80211.h>
#include <linux/if_arp.h>
#include <linux/etherdevice.h>
#include <linux/slab.h>
#include <net/iw_handler.h>
#include <net/cfg80211.h>
#include <net/cfg80211-wext.h>
#include "wext-compat.h"
#include "core.h"
#include "rdev-ops.h"
int cfg80211_wext_giwname(struct net_device *dev,
struct iw_request_info *info,
char *name, char *extra)
{
strcpy(name, "IEEE 802.11");
return 0;
}
EXPORT_WEXT_HANDLER(cfg80211_wext_giwname);
int cfg80211_wext_siwmode(struct net_device *dev, struct iw_request_info *info,
u32 *mode, char *extra)
{
struct wireless_dev *wdev = dev->ieee80211_ptr;
struct cfg80211_registered_device *rdev;
struct vif_params vifparams;
enum nl80211_iftype type;
rdev = wiphy_to_rdev(wdev->wiphy);
switch (*mode) {
case IW_MODE_INFRA:
type = NL80211_IFTYPE_STATION;
break;
case IW_MODE_ADHOC:
type = NL80211_IFTYPE_ADHOC;
break;
case IW_MODE_REPEAT:
type = NL80211_IFTYPE_WDS;
break;
case IW_MODE_MONITOR:
type = NL80211_IFTYPE_MONITOR;
break;
default:
return -EINVAL;
}
if (type == wdev->iftype)
return 0;
memset(&vifparams, 0, sizeof(vifparams));
return cfg80211_change_iface(rdev, dev, type, &vifparams);
}
EXPORT_WEXT_HANDLER(cfg80211_wext_siwmode);
int cfg80211_wext_giwmode(struct net_device *dev, struct iw_request_info *info,
u32 *mode, char *extra)
{
struct wireless_dev *wdev = dev->ieee80211_ptr;
if (!wdev)
return -EOPNOTSUPP;
switch (wdev->iftype) {
case NL80211_IFTYPE_AP:
*mode = IW_MODE_MASTER;
break;
case NL80211_IFTYPE_STATION:
*mode = IW_MODE_INFRA;
break;
case NL80211_IFTYPE_ADHOC:
*mode = IW_MODE_ADHOC;
break;
case NL80211_IFTYPE_MONITOR:
*mode = IW_MODE_MONITOR;
break;
case NL80211_IFTYPE_WDS:
*mode = IW_MODE_REPEAT;
break;
case NL80211_IFTYPE_AP_VLAN:
*mode = IW_MODE_SECOND; /* FIXME */
break;
default:
*mode = IW_MODE_AUTO;
break;
}
return 0;
}
EXPORT_WEXT_HANDLER(cfg80211_wext_giwmode);
int cfg80211_wext_giwrange(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *data, char *extra)
{
struct wireless_dev *wdev = dev->ieee80211_ptr;
struct iw_range *range = (struct iw_range *) extra;
enum nl80211_band band;
int i, c = 0;
if (!wdev)
return -EOPNOTSUPP;
data->length = sizeof(struct iw_range);
memset(range, 0, sizeof(struct iw_range));
range->we_version_compiled = WIRELESS_EXT;
range->we_version_source = 21;
range->retry_capa = IW_RETRY_LIMIT;
range->retry_flags = IW_RETRY_LIMIT;
range->min_retry = 0;
range->max_retry = 255;
range->min_rts = 0;
range->max_rts = 2347;
range->min_frag = 256;
range->max_frag = 2346;
range->max_encoding_tokens = 4;
range->max_qual.updated = IW_QUAL_NOISE_INVALID;
switch (wdev->wiphy->signal_type) {
case CFG80211_SIGNAL_TYPE_NONE:
break;
case CFG80211_SIGNAL_TYPE_MBM:
range->max_qual.level = (u8)-110;
range->max_qual.qual = 70;
range->avg_qual.qual = 35;
range->max_qual.updated |= IW_QUAL_DBM;
range->max_qual.updated |= IW_QUAL_QUAL_UPDATED;
range->max_qual.updated |= IW_QUAL_LEVEL_UPDATED;
break;
case CFG80211_SIGNAL_TYPE_UNSPEC:
range->max_qual.level = 100;
range->max_qual.qual = 100;
range->avg_qual.qual = 50;
range->max_qual.updated |= IW_QUAL_QUAL_UPDATED;
range->max_qual.updated |= IW_QUAL_LEVEL_UPDATED;
break;
}
range->avg_qual.level = range->max_qual.level / 2;
range->avg_qual.noise = range->max_qual.noise / 2;
range->avg_qual.updated = range->max_qual.updated;
for (i = 0; i < wdev->wiphy->n_cipher_suites; i++) {
switch (wdev->wiphy->cipher_suites[i]) {
case WLAN_CIPHER_SUITE_TKIP:
range->enc_capa |= (IW_ENC_CAPA_CIPHER_TKIP |
IW_ENC_CAPA_WPA);
break;
case WLAN_CIPHER_SUITE_CCMP:
range->enc_capa |= (IW_ENC_CAPA_CIPHER_CCMP |
IW_ENC_CAPA_WPA2);
break;
case WLAN_CIPHER_SUITE_WEP40:
range->encoding_size[range->num_encoding_sizes++] =
WLAN_KEY_LEN_WEP40;
break;
case WLAN_CIPHER_SUITE_WEP104:
range->encoding_size[range->num_encoding_sizes++] =
WLAN_KEY_LEN_WEP104;
break;
}
}
for (band = 0; band < NUM_NL80211_BANDS; band ++) {
struct ieee80211_supported_band *sband;
sband = wdev->wiphy->bands[band];
if (!sband)
continue;
for (i = 0; i < sband->n_channels && c < IW_MAX_FREQUENCIES; i++) {
struct ieee80211_channel *chan = &sband->channels[i];
if (!(chan->flags & IEEE80211_CHAN_DISABLED)) {
range->freq[c].i =
ieee80211_frequency_to_channel(
chan->center_freq);
range->freq[c].m = chan->center_freq;
range->freq[c].e = 6;
c++;
}
}
}
range->num_channels = c;
range->num_frequency = c;
IW_EVENT_CAPA_SET_KERNEL(range->event_capa);
IW_EVENT_CAPA_SET(range->event_capa, SIOCGIWAP);
IW_EVENT_CAPA_SET(range->event_capa, SIOCGIWSCAN);
if (wdev->wiphy->max_scan_ssids > 0)
range->scan_capa |= IW_SCAN_CAPA_ESSID;
return 0;
}
EXPORT_WEXT_HANDLER(cfg80211_wext_giwrange);
/**
* cfg80211_wext_freq - get wext frequency for non-"auto"
* @dev: the net device
* @freq: the wext freq encoding
*
* Returns a frequency, or a negative error code, or 0 for auto.
*/
int cfg80211_wext_freq(struct iw_freq *freq)
{
/*
* Parse frequency - return 0 for auto and
* -EINVAL for impossible things.
*/
if (freq->e == 0) {
enum nl80211_band band = NL80211_BAND_2GHZ;
if (freq->m < 0)
return 0;
if (freq->m > 14)
band = NL80211_BAND_5GHZ;
return ieee80211_channel_to_frequency(freq->m, band);
} else {
int i, div = 1000000;
for (i = 0; i < freq->e; i++)
div /= 10;
if (div <= 0)
return -EINVAL;
return freq->m / div;
}
}
int cfg80211_wext_siwrts(struct net_device *dev,
struct iw_request_info *info,
struct iw_param *rts, char *extra)
{
struct wireless_dev *wdev = dev->ieee80211_ptr;
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
u32 orts = wdev->wiphy->rts_threshold;
int err;
if (rts->disabled || !rts->fixed)
wdev->wiphy->rts_threshold = (u32) -1;
else if (rts->value < 0)
return -EINVAL;
else
wdev->wiphy->rts_threshold = rts->value;
err = rdev_set_wiphy_params(rdev, WIPHY_PARAM_RTS_THRESHOLD);
if (err)
wdev->wiphy->rts_threshold = orts;
return err;
}
EXPORT_WEXT_HANDLER(cfg80211_wext_siwrts);
int cfg80211_wext_giwrts(struct net_device *dev,
struct iw_request_info *info,
struct iw_param *rts, char *extra)
{
struct wireless_dev *wdev = dev->ieee80211_ptr;
rts->value = wdev->wiphy->rts_threshold;
rts->disabled = rts->value == (u32) -1;
rts->fixed = 1;
return 0;
}
EXPORT_WEXT_HANDLER(cfg80211_wext_giwrts);
int cfg80211_wext_siwfrag(struct net_device *dev,
struct iw_request_info *info,
struct iw_param *frag, char *extra)
{
struct wireless_dev *wdev = dev->ieee80211_ptr;
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
u32 ofrag = wdev->wiphy->frag_threshold;
int err;
if (frag->disabled || !frag->fixed)
wdev->wiphy->frag_threshold = (u32) -1;
else if (frag->value < 256)
return -EINVAL;
else {
/* Fragment length must be even, so strip LSB. */
wdev->wiphy->frag_threshold = frag->value & ~0x1;
}
err = rdev_set_wiphy_params(rdev, WIPHY_PARAM_FRAG_THRESHOLD);
if (err)
wdev->wiphy->frag_threshold = ofrag;
return err;
}
EXPORT_WEXT_HANDLER(cfg80211_wext_siwfrag);
int cfg80211_wext_giwfrag(struct net_device *dev,
struct iw_request_info *info,
struct iw_param *frag, char *extra)
{
struct wireless_dev *wdev = dev->ieee80211_ptr;
frag->value = wdev->wiphy->frag_threshold;
frag->disabled = frag->value == (u32) -1;
frag->fixed = 1;
return 0;
}
EXPORT_WEXT_HANDLER(cfg80211_wext_giwfrag);
static int cfg80211_wext_siwretry(struct net_device *dev,
struct iw_request_info *info,
struct iw_param *retry, char *extra)
{
struct wireless_dev *wdev = dev->ieee80211_ptr;
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
u32 changed = 0;
u8 olong = wdev->wiphy->retry_long;
u8 oshort = wdev->wiphy->retry_short;
int err;
if (retry->disabled || retry->value < 1 || retry->value > 255 ||
(retry->flags & IW_RETRY_TYPE) != IW_RETRY_LIMIT)
return -EINVAL;
if (retry->flags & IW_RETRY_LONG) {
wdev->wiphy->retry_long = retry->value;
changed |= WIPHY_PARAM_RETRY_LONG;
} else if (retry->flags & IW_RETRY_SHORT) {
wdev->wiphy->retry_short = retry->value;
changed |= WIPHY_PARAM_RETRY_SHORT;
} else {
wdev->wiphy->retry_short = retry->value;
wdev->wiphy->retry_long = retry->value;
changed |= WIPHY_PARAM_RETRY_LONG;
changed |= WIPHY_PARAM_RETRY_SHORT;
}
if (!changed)
return 0;
err = rdev_set_wiphy_params(rdev, changed);
if (err) {
wdev->wiphy->retry_short = oshort;
wdev->wiphy->retry_long = olong;
}
return err;
}
int cfg80211_wext_giwretry(struct net_device *dev,
struct iw_request_info *info,
struct iw_param *retry, char *extra)
{
struct wireless_dev *wdev = dev->ieee80211_ptr;
retry->disabled = 0;
if (retry->flags == 0 || (retry->flags & IW_RETRY_SHORT)) {
/*
* First return short value, iwconfig will ask long value
* later if needed
*/
retry->flags |= IW_RETRY_LIMIT | IW_RETRY_SHORT;
retry->value = wdev->wiphy->retry_short;
if (wdev->wiphy->retry_long == wdev->wiphy->retry_short)
retry->flags |= IW_RETRY_LONG;
return 0;
}
if (retry->flags & IW_RETRY_LONG) {
retry->flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
retry->value = wdev->wiphy->retry_long;
}
return 0;
}
EXPORT_WEXT_HANDLER(cfg80211_wext_giwretry);
static int __cfg80211_set_encryption(struct cfg80211_registered_device *rdev,
struct net_device *dev, bool pairwise,
const u8 *addr, bool remove, bool tx_key,
int idx, struct key_params *params)
{
struct wireless_dev *wdev = dev->ieee80211_ptr;
int err, i;
bool rejoin = false;
if (pairwise && !addr)
return -EINVAL;
/*
* In many cases we won't actually need this, but it's better
* to do it first in case the allocation fails. Don't use wext.
*/
if (!wdev->wext.keys) {
wdev->wext.keys = kzalloc(sizeof(*wdev->wext.keys),
GFP_KERNEL);
if (!wdev->wext.keys)
return -ENOMEM;
for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++)
wdev->wext.keys->params[i].key =
wdev->wext.keys->data[i];
}
if (wdev->iftype != NL80211_IFTYPE_ADHOC &&
wdev->iftype != NL80211_IFTYPE_STATION)
return -EOPNOTSUPP;
if (params->cipher == WLAN_CIPHER_SUITE_AES_CMAC) {
if (!wdev->current_bss)
return -ENOLINK;
if (!rdev->ops->set_default_mgmt_key)
return -EOPNOTSUPP;
if (idx < 4 || idx > 5)
return -EINVAL;
} else if (idx < 0 || idx > 3)
return -EINVAL;
if (remove) {
err = 0;
if (wdev->current_bss) {
/*
* If removing the current TX key, we will need to
* join a new IBSS without the privacy bit clear.
*/
if (idx == wdev->wext.default_key &&
wdev->iftype == NL80211_IFTYPE_ADHOC) {
__cfg80211_leave_ibss(rdev, wdev->netdev, true);
rejoin = true;
}
if (!pairwise && addr &&
!(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
err = -ENOENT;
else
err = rdev_del_key(rdev, dev, idx, pairwise,
addr);
}
wdev->wext.connect.privacy = false;
/*
* Applications using wireless extensions expect to be
* able to delete keys that don't exist, so allow that.
*/
if (err == -ENOENT)
err = 0;
if (!err) {
if (!addr && idx < 4) {
memset(wdev->wext.keys->data[idx], 0,
sizeof(wdev->wext.keys->data[idx]));
wdev->wext.keys->params[idx].key_len = 0;
wdev->wext.keys->params[idx].cipher = 0;
}
if (idx == wdev->wext.default_key)
wdev->wext.default_key = -1;
else if (idx == wdev->wext.default_mgmt_key)
wdev->wext.default_mgmt_key = -1;
}
if (!err && rejoin)
err = cfg80211_ibss_wext_join(rdev, wdev);
return err;
}
if (addr)
tx_key = false;
if (cfg80211_validate_key_settings(rdev, params, idx, pairwise, addr))
return -EINVAL;
err = 0;
if (wdev->current_bss)
err = rdev_add_key(rdev, dev, idx, pairwise, addr, params);
else if (params->cipher != WLAN_CIPHER_SUITE_WEP40 &&
params->cipher != WLAN_CIPHER_SUITE_WEP104)
return -EINVAL;
if (err)
return err;
/*
* We only need to store WEP keys, since they're the only keys that
* can be be set before a connection is established and persist after
* disconnecting.
*/
if (!addr && (params->cipher == WLAN_CIPHER_SUITE_WEP40 ||
params->cipher == WLAN_CIPHER_SUITE_WEP104)) {
wdev->wext.keys->params[idx] = *params;
memcpy(wdev->wext.keys->data[idx],
params->key, params->key_len);
wdev->wext.keys->params[idx].key =
wdev->wext.keys->data[idx];
}
if ((params->cipher == WLAN_CIPHER_SUITE_WEP40 ||
params->cipher == WLAN_CIPHER_SUITE_WEP104) &&
(tx_key || (!addr && wdev->wext.default_key == -1))) {
if (wdev->current_bss) {
/*
* If we are getting a new TX key from not having
* had one before we need to join a new IBSS with
* the privacy bit set.
*/
if (wdev->iftype == NL80211_IFTYPE_ADHOC &&
wdev->wext.default_key == -1) {
__cfg80211_leave_ibss(rdev, wdev->netdev, true);
rejoin = true;
}
err = rdev_set_default_key(rdev, dev, idx, true, true);
}
if (!err) {
wdev->wext.default_key = idx;
if (rejoin)
err = cfg80211_ibss_wext_join(rdev, wdev);
}
return err;
}
if (params->cipher == WLAN_CIPHER_SUITE_AES_CMAC &&
(tx_key || (!addr && wdev->wext.default_mgmt_key == -1))) {
if (wdev->current_bss)
err = rdev_set_default_mgmt_key(rdev, dev, idx);
if (!err)
wdev->wext.default_mgmt_key = idx;
return err;
}
return 0;
}
static int cfg80211_set_encryption(struct cfg80211_registered_device *rdev,
struct net_device *dev, bool pairwise,
const u8 *addr, bool remove, bool tx_key,
int idx, struct key_params *params)
{
int err;
wdev_lock(dev->ieee80211_ptr);
err = __cfg80211_set_encryption(rdev, dev, pairwise, addr,
remove, tx_key, idx, params);
wdev_unlock(dev->ieee80211_ptr);
return err;
}
static int cfg80211_wext_siwencode(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *erq, char *keybuf)
{
struct wireless_dev *wdev = dev->ieee80211_ptr;
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
int idx, err;
bool remove = false;
struct key_params params;
if (wdev->iftype != NL80211_IFTYPE_STATION &&
wdev->iftype != NL80211_IFTYPE_ADHOC)
return -EOPNOTSUPP;
/* no use -- only MFP (set_default_mgmt_key) is optional */
if (!rdev->ops->del_key ||
!rdev->ops->add_key ||
!rdev->ops->set_default_key)
return -EOPNOTSUPP;
idx = erq->flags & IW_ENCODE_INDEX;
if (idx == 0) {
idx = wdev->wext.default_key;
if (idx < 0)
idx = 0;
} else if (idx < 1 || idx > 4)
return -EINVAL;
else
idx--;
if (erq->flags & IW_ENCODE_DISABLED)
remove = true;
else if (erq->length == 0) {
/* No key data - just set the default TX key index */
err = 0;
wdev_lock(wdev);
if (wdev->current_bss)
err = rdev_set_default_key(rdev, dev, idx, true,
true);
if (!err)
wdev->wext.default_key = idx;
wdev_unlock(wdev);
return err;
}
memset(&params, 0, sizeof(params));
params.key = keybuf;
params.key_len = erq->length;
if (erq->length == 5)
params.cipher = WLAN_CIPHER_SUITE_WEP40;
else if (erq->length == 13)
params.cipher = WLAN_CIPHER_SUITE_WEP104;
else if (!remove)
return -EINVAL;
return cfg80211_set_encryption(rdev, dev, false, NULL, remove,
wdev->wext.default_key == -1,
idx, &params);
}
static int cfg80211_wext_siwencodeext(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *erq, char *extra)
{
struct wireless_dev *wdev = dev->ieee80211_ptr;
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
struct iw_encode_ext *ext = (struct iw_encode_ext *) extra;
const u8 *addr;
int idx;
bool remove = false;
struct key_params params;
u32 cipher;
if (wdev->iftype != NL80211_IFTYPE_STATION &&
wdev->iftype != NL80211_IFTYPE_ADHOC)
return -EOPNOTSUPP;
/* no use -- only MFP (set_default_mgmt_key) is optional */
if (!rdev->ops->del_key ||
!rdev->ops->add_key ||
!rdev->ops->set_default_key)
return -EOPNOTSUPP;
switch (ext->alg) {
case IW_ENCODE_ALG_NONE:
remove = true;
cipher = 0;
break;
case IW_ENCODE_ALG_WEP:
if (ext->key_len == 5)
cipher = WLAN_CIPHER_SUITE_WEP40;
else if (ext->key_len == 13)
cipher = WLAN_CIPHER_SUITE_WEP104;
else
return -EINVAL;
break;
case IW_ENCODE_ALG_TKIP:
cipher = WLAN_CIPHER_SUITE_TKIP;
break;
case IW_ENCODE_ALG_CCMP:
cipher = WLAN_CIPHER_SUITE_CCMP;
break;
case IW_ENCODE_ALG_AES_CMAC:
cipher = WLAN_CIPHER_SUITE_AES_CMAC;
break;
default:
return -EOPNOTSUPP;
}
if (erq->flags & IW_ENCODE_DISABLED)
remove = true;
idx = erq->flags & IW_ENCODE_INDEX;
if (cipher == WLAN_CIPHER_SUITE_AES_CMAC) {
if (idx < 4 || idx > 5) {
idx = wdev->wext.default_mgmt_key;
if (idx < 0)
return -EINVAL;
} else
idx--;
} else {
if (idx < 1 || idx > 4) {
idx = wdev->wext.default_key;
if (idx < 0)
return -EINVAL;
} else
idx--;
}
addr = ext->addr.sa_data;
if (is_broadcast_ether_addr(addr))
addr = NULL;
memset(&params, 0, sizeof(params));
params.key = ext->key;
params.key_len = ext->key_len;
params.cipher = cipher;
if (ext->ext_flags & IW_ENCODE_EXT_RX_SEQ_VALID) {
params.seq = ext->rx_seq;
params.seq_len = 6;
}
return cfg80211_set_encryption(
rdev, dev,
!(ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY),
addr, remove,
ext->ext_flags & IW_ENCODE_EXT_SET_TX_KEY,
idx, &params);
}
static int cfg80211_wext_giwencode(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *erq, char *keybuf)
{
struct wireless_dev *wdev = dev->ieee80211_ptr;
int idx;
if (wdev->iftype != NL80211_IFTYPE_STATION &&
wdev->iftype != NL80211_IFTYPE_ADHOC)
return -EOPNOTSUPP;
idx = erq->flags & IW_ENCODE_INDEX;
if (idx == 0) {
idx = wdev->wext.default_key;
if (idx < 0)
idx = 0;
} else if (idx < 1 || idx > 4)
return -EINVAL;
else
idx--;
erq->flags = idx + 1;
if (!wdev->wext.keys || !wdev->wext.keys->params[idx].cipher) {
erq->flags |= IW_ENCODE_DISABLED;
erq->length = 0;
return 0;
}
erq->length = min_t(size_t, erq->length,
wdev->wext.keys->params[idx].key_len);
memcpy(keybuf, wdev->wext.keys->params[idx].key, erq->length);
erq->flags |= IW_ENCODE_ENABLED;
return 0;
}
static int cfg80211_wext_siwfreq(struct net_device *dev,
struct iw_request_info *info,
struct iw_freq *wextfreq, char *extra)
{
struct wireless_dev *wdev = dev->ieee80211_ptr;
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
struct cfg80211_chan_def chandef = {
.width = NL80211_CHAN_WIDTH_20_NOHT,
};
int freq;
switch (wdev->iftype) {
case NL80211_IFTYPE_STATION:
return cfg80211_mgd_wext_siwfreq(dev, info, wextfreq, extra);
case NL80211_IFTYPE_ADHOC:
return cfg80211_ibss_wext_siwfreq(dev, info, wextfreq, extra);
case NL80211_IFTYPE_MONITOR:
freq = cfg80211_wext_freq(wextfreq);
if (freq < 0)
return freq;
if (freq == 0)
return -EINVAL;
chandef.center_freq1 = freq;
chandef.chan = ieee80211_get_channel(&rdev->wiphy, freq);
if (!chandef.chan)
return -EINVAL;
return cfg80211_set_monitor_channel(rdev, &chandef);
case NL80211_IFTYPE_MESH_POINT:
freq = cfg80211_wext_freq(wextfreq);
if (freq < 0)
return freq;
if (freq == 0)
return -EINVAL;
chandef.center_freq1 = freq;
chandef.chan = ieee80211_get_channel(&rdev->wiphy, freq);
if (!chandef.chan)
return -EINVAL;
return cfg80211_set_mesh_channel(rdev, wdev, &chandef);
default:
return -EOPNOTSUPP;
}
}
static int cfg80211_wext_giwfreq(struct net_device *dev,
struct iw_request_info *info,
struct iw_freq *freq, char *extra)
{
struct wireless_dev *wdev = dev->ieee80211_ptr;
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
struct cfg80211_chan_def chandef;
int ret;
switch (wdev->iftype) {
case NL80211_IFTYPE_STATION:
return cfg80211_mgd_wext_giwfreq(dev, info, freq, extra);
case NL80211_IFTYPE_ADHOC:
return cfg80211_ibss_wext_giwfreq(dev, info, freq, extra);
case NL80211_IFTYPE_MONITOR:
if (!rdev->ops->get_channel)
return -EINVAL;
ret = rdev_get_channel(rdev, wdev, &chandef);
if (ret)
return ret;
freq->m = chandef.chan->center_freq;
freq->e = 6;
return 0;
default:
return -EINVAL;
}
}
static int cfg80211_wext_siwtxpower(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *data, char *extra)
{
struct wireless_dev *wdev = dev->ieee80211_ptr;
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
enum nl80211_tx_power_setting type;
int dbm = 0;
if ((data->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
return -EINVAL;
if (data->txpower.flags & IW_TXPOW_RANGE)
return -EINVAL;
if (!rdev->ops->set_tx_power)
return -EOPNOTSUPP;
/* only change when not disabling */
if (!data->txpower.disabled) {
rfkill_set_sw_state(rdev->rfkill, false);
if (data->txpower.fixed) {
/*
* wext doesn't support negative values, see
* below where it's for automatic
*/
if (data->txpower.value < 0)
return -EINVAL;
dbm = data->txpower.value;
type = NL80211_TX_POWER_FIXED;
/* TODO: do regulatory check! */
} else {
/*
* Automatic power level setting, max being the value
* passed in from userland.
*/
if (data->txpower.value < 0) {
type = NL80211_TX_POWER_AUTOMATIC;
} else {
dbm = data->txpower.value;
type = NL80211_TX_POWER_LIMITED;
}
}
} else {
rfkill_set_sw_state(rdev->rfkill, true);
schedule_work(&rdev->rfkill_sync);
return 0;
}
return rdev_set_tx_power(rdev, wdev, type, DBM_TO_MBM(dbm));
}
static int cfg80211_wext_giwtxpower(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *data, char *extra)
{
struct wireless_dev *wdev = dev->ieee80211_ptr;
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
int err, val;
if ((data->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
return -EINVAL;
if (data->txpower.flags & IW_TXPOW_RANGE)
return -EINVAL;
if (!rdev->ops->get_tx_power)
return -EOPNOTSUPP;
err = rdev_get_tx_power(rdev, wdev, &val);
if (err)
return err;
/* well... oh well */
data->txpower.fixed = 1;
data->txpower.disabled = rfkill_blocked(rdev->rfkill);
data->txpower.value = val;
data->txpower.flags = IW_TXPOW_DBM;
return 0;
}
static int cfg80211_set_auth_alg(struct wireless_dev *wdev,
s32 auth_alg)
{
int nr_alg = 0;
if (!auth_alg)
return -EINVAL;
if (auth_alg & ~(IW_AUTH_ALG_OPEN_SYSTEM |
IW_AUTH_ALG_SHARED_KEY |
IW_AUTH_ALG_LEAP))
return -EINVAL;
if (auth_alg & IW_AUTH_ALG_OPEN_SYSTEM) {
nr_alg++;
wdev->wext.connect.auth_type = NL80211_AUTHTYPE_OPEN_SYSTEM;
}
if (auth_alg & IW_AUTH_ALG_SHARED_KEY) {
nr_alg++;
wdev->wext.connect.auth_type = NL80211_AUTHTYPE_SHARED_KEY;
}
if (auth_alg & IW_AUTH_ALG_LEAP) {
nr_alg++;
wdev->wext.connect.auth_type = NL80211_AUTHTYPE_NETWORK_EAP;
}
if (nr_alg > 1)
wdev->wext.connect.auth_type = NL80211_AUTHTYPE_AUTOMATIC;
return 0;
}
static int cfg80211_set_wpa_version(struct wireless_dev *wdev, u32 wpa_versions)
{
if (wpa_versions & ~(IW_AUTH_WPA_VERSION_WPA |
IW_AUTH_WPA_VERSION_WPA2|
IW_AUTH_WPA_VERSION_DISABLED))
return -EINVAL;
if ((wpa_versions & IW_AUTH_WPA_VERSION_DISABLED) &&
(wpa_versions & (IW_AUTH_WPA_VERSION_WPA|
IW_AUTH_WPA_VERSION_WPA2)))
return -EINVAL;
if (wpa_versions & IW_AUTH_WPA_VERSION_DISABLED)
wdev->wext.connect.crypto.wpa_versions &=
~(NL80211_WPA_VERSION_1|NL80211_WPA_VERSION_2);
if (wpa_versions & IW_AUTH_WPA_VERSION_WPA)
wdev->wext.connect.crypto.wpa_versions |=
NL80211_WPA_VERSION_1;
if (wpa_versions & IW_AUTH_WPA_VERSION_WPA2)
wdev->wext.connect.crypto.wpa_versions |=
NL80211_WPA_VERSION_2;
return 0;
}
static int cfg80211_set_cipher_group(struct wireless_dev *wdev, u32 cipher)
{
if (cipher & IW_AUTH_CIPHER_WEP40)
wdev->wext.connect.crypto.cipher_group =
WLAN_CIPHER_SUITE_WEP40;
else if (cipher & IW_AUTH_CIPHER_WEP104)
wdev->wext.connect.crypto.cipher_group =
WLAN_CIPHER_SUITE_WEP104;
else if (cipher & IW_AUTH_CIPHER_TKIP)
wdev->wext.connect.crypto.cipher_group =
WLAN_CIPHER_SUITE_TKIP;
else if (cipher & IW_AUTH_CIPHER_CCMP)
wdev->wext.connect.crypto.cipher_group =
WLAN_CIPHER_SUITE_CCMP;
else if (cipher & IW_AUTH_CIPHER_AES_CMAC)
wdev->wext.connect.crypto.cipher_group =
WLAN_CIPHER_SUITE_AES_CMAC;
else if (cipher & IW_AUTH_CIPHER_NONE)
wdev->wext.connect.crypto.cipher_group = 0;
else
return -EINVAL;
return 0;
}
static int cfg80211_set_cipher_pairwise(struct wireless_dev *wdev, u32 cipher)
{
int nr_ciphers = 0;
u32 *ciphers_pairwise = wdev->wext.connect.crypto.ciphers_pairwise;
if (cipher & IW_AUTH_CIPHER_WEP40) {
ciphers_pairwise[nr_ciphers] = WLAN_CIPHER_SUITE_WEP40;
nr_ciphers++;
}
if (cipher & IW_AUTH_CIPHER_WEP104) {
ciphers_pairwise[nr_ciphers] = WLAN_CIPHER_SUITE_WEP104;
nr_ciphers++;
}
if (cipher & IW_AUTH_CIPHER_TKIP) {
ciphers_pairwise[nr_ciphers] = WLAN_CIPHER_SUITE_TKIP;
nr_ciphers++;
}
if (cipher & IW_AUTH_CIPHER_CCMP) {
ciphers_pairwise[nr_ciphers] = WLAN_CIPHER_SUITE_CCMP;
nr_ciphers++;
}
if (cipher & IW_AUTH_CIPHER_AES_CMAC) {
ciphers_pairwise[nr_ciphers] = WLAN_CIPHER_SUITE_AES_CMAC;
nr_ciphers++;
}
BUILD_BUG_ON(NL80211_MAX_NR_CIPHER_SUITES < 5);
wdev->wext.connect.crypto.n_ciphers_pairwise = nr_ciphers;
return 0;
}
static int cfg80211_set_key_mgt(struct wireless_dev *wdev, u32 key_mgt)
{
int nr_akm_suites = 0;
if (key_mgt & ~(IW_AUTH_KEY_MGMT_802_1X |
IW_AUTH_KEY_MGMT_PSK))
return -EINVAL;
if (key_mgt & IW_AUTH_KEY_MGMT_802_1X) {
wdev->wext.connect.crypto.akm_suites[nr_akm_suites] =
WLAN_AKM_SUITE_8021X;
nr_akm_suites++;
}
if (key_mgt & IW_AUTH_KEY_MGMT_PSK) {
wdev->wext.connect.crypto.akm_suites[nr_akm_suites] =
WLAN_AKM_SUITE_PSK;
nr_akm_suites++;
}
wdev->wext.connect.crypto.n_akm_suites = nr_akm_suites;
return 0;
}
static int cfg80211_wext_siwauth(struct net_device *dev,
struct iw_request_info *info,
struct iw_param *data, char *extra)
{
struct wireless_dev *wdev = dev->ieee80211_ptr;
if (wdev->iftype != NL80211_IFTYPE_STATION)
return -EOPNOTSUPP;
switch (data->flags & IW_AUTH_INDEX) {
case IW_AUTH_PRIVACY_INVOKED:
wdev->wext.connect.privacy = data->value;
return 0;
case IW_AUTH_WPA_VERSION:
return cfg80211_set_wpa_version(wdev, data->value);
case IW_AUTH_CIPHER_GROUP:
return cfg80211_set_cipher_group(wdev, data->value);
case IW_AUTH_KEY_MGMT:
return cfg80211_set_key_mgt(wdev, data->value);
case IW_AUTH_CIPHER_PAIRWISE:
return cfg80211_set_cipher_pairwise(wdev, data->value);
case IW_AUTH_80211_AUTH_ALG:
return cfg80211_set_auth_alg(wdev, data->value);
case IW_AUTH_WPA_ENABLED:
case IW_AUTH_RX_UNENCRYPTED_EAPOL:
case IW_AUTH_DROP_UNENCRYPTED:
case IW_AUTH_MFP:
return 0;
default:
return -EOPNOTSUPP;
}
}
static int cfg80211_wext_giwauth(struct net_device *dev,
struct iw_request_info *info,
struct iw_param *data, char *extra)
{
/* XXX: what do we need? */
return -EOPNOTSUPP;
}
static int cfg80211_wext_siwpower(struct net_device *dev,
struct iw_request_info *info,
struct iw_param *wrq, char *extra)
{
struct wireless_dev *wdev = dev->ieee80211_ptr;
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
bool ps = wdev->ps;
int timeout = wdev->ps_timeout;
int err;
if (wdev->iftype != NL80211_IFTYPE_STATION)
return -EINVAL;
if (!rdev->ops->set_power_mgmt)
return -EOPNOTSUPP;
if (wrq->disabled) {
ps = false;
} else {
switch (wrq->flags & IW_POWER_MODE) {
case IW_POWER_ON: /* If not specified */
case IW_POWER_MODE: /* If set all mask */
case IW_POWER_ALL_R: /* If explicitely state all */
ps = true;
break;
default: /* Otherwise we ignore */
return -EINVAL;
}
if (wrq->flags & ~(IW_POWER_MODE | IW_POWER_TIMEOUT))
return -EINVAL;
if (wrq->flags & IW_POWER_TIMEOUT)
timeout = wrq->value / 1000;
}
err = rdev_set_power_mgmt(rdev, dev, ps, timeout);
if (err)
return err;
wdev->ps = ps;
wdev->ps_timeout = timeout;
return 0;
}
static int cfg80211_wext_giwpower(struct net_device *dev,
struct iw_request_info *info,
struct iw_param *wrq, char *extra)
{
struct wireless_dev *wdev = dev->ieee80211_ptr;
wrq->disabled = !wdev->ps;
return 0;
}
static int cfg80211_wds_wext_siwap(struct net_device *dev,
struct iw_request_info *info,
struct sockaddr *addr, char *extra)
{
struct wireless_dev *wdev = dev->ieee80211_ptr;
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
int err;
if (WARN_ON(wdev->iftype != NL80211_IFTYPE_WDS))
return -EINVAL;
if (addr->sa_family != ARPHRD_ETHER)
return -EINVAL;
if (netif_running(dev))
return -EBUSY;
if (!rdev->ops->set_wds_peer)
return -EOPNOTSUPP;
err = rdev_set_wds_peer(rdev, dev, (u8 *)&addr->sa_data);
if (err)
return err;
memcpy(&wdev->wext.bssid, (u8 *) &addr->sa_data, ETH_ALEN);
return 0;
}
static int cfg80211_wds_wext_giwap(struct net_device *dev,
struct iw_request_info *info,
struct sockaddr *addr, char *extra)
{
struct wireless_dev *wdev = dev->ieee80211_ptr;
if (WARN_ON(wdev->iftype != NL80211_IFTYPE_WDS))
return -EINVAL;
addr->sa_family = ARPHRD_ETHER;
memcpy(&addr->sa_data, wdev->wext.bssid, ETH_ALEN);
return 0;
}
static int cfg80211_wext_siwrate(struct net_device *dev,
struct iw_request_info *info,
struct iw_param *rate, char *extra)
{
struct wireless_dev *wdev = dev->ieee80211_ptr;
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
struct cfg80211_bitrate_mask mask;
u32 fixed, maxrate;
struct ieee80211_supported_band *sband;
int band, ridx;
bool match = false;
if (!rdev->ops->set_bitrate_mask)
return -EOPNOTSUPP;
memset(&mask, 0, sizeof(mask));
fixed = 0;
maxrate = (u32)-1;
if (rate->value < 0) {
/* nothing */
} else if (rate->fixed) {
fixed = rate->value / 100000;
} else {
maxrate = rate->value / 100000;
}
for (band = 0; band < NUM_NL80211_BANDS; band++) {
sband = wdev->wiphy->bands[band];
if (sband == NULL)
continue;
for (ridx = 0; ridx < sband->n_bitrates; ridx++) {
struct ieee80211_rate *srate = &sband->bitrates[ridx];
if (fixed == srate->bitrate) {
mask.control[band].legacy = 1 << ridx;
match = true;
break;
}
if (srate->bitrate <= maxrate) {
mask.control[band].legacy |= 1 << ridx;
match = true;
}
}
}
if (!match)
return -EINVAL;
return rdev_set_bitrate_mask(rdev, dev, NULL, &mask);
}
static int cfg80211_wext_giwrate(struct net_device *dev,
struct iw_request_info *info,
struct iw_param *rate, char *extra)
{
struct wireless_dev *wdev = dev->ieee80211_ptr;
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
/* we are under RTNL - globally locked - so can use a static struct */
static struct station_info sinfo;
u8 addr[ETH_ALEN];
int err;
if (wdev->iftype != NL80211_IFTYPE_STATION)
return -EOPNOTSUPP;
if (!rdev->ops->get_station)
return -EOPNOTSUPP;
err = 0;
wdev_lock(wdev);
if (wdev->current_bss)
memcpy(addr, wdev->current_bss->pub.bssid, ETH_ALEN);
else
err = -EOPNOTSUPP;
wdev_unlock(wdev);
if (err)
return err;
err = rdev_get_station(rdev, dev, addr, &sinfo);
if (err)
return err;
if (!(sinfo.filled & BIT(NL80211_STA_INFO_TX_BITRATE)))
return -EOPNOTSUPP;
rate->value = 100000 * cfg80211_calculate_bitrate(&sinfo.txrate);
return 0;
}
/* Get wireless statistics. Called by /proc/net/wireless and by SIOCGIWSTATS */
static struct iw_statistics *cfg80211_wireless_stats(struct net_device *dev)
{
struct wireless_dev *wdev = dev->ieee80211_ptr;
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
/* we are under RTNL - globally locked - so can use static structs */
static struct iw_statistics wstats;
static struct station_info sinfo;
u8 bssid[ETH_ALEN];
if (dev->ieee80211_ptr->iftype != NL80211_IFTYPE_STATION)
return NULL;
if (!rdev->ops->get_station)
return NULL;
/* Grab BSSID of current BSS, if any */
wdev_lock(wdev);
if (!wdev->current_bss) {
wdev_unlock(wdev);
return NULL;
}
memcpy(bssid, wdev->current_bss->pub.bssid, ETH_ALEN);
wdev_unlock(wdev);
memset(&sinfo, 0, sizeof(sinfo));
if (rdev_get_station(rdev, dev, bssid, &sinfo))
return NULL;
memset(&wstats, 0, sizeof(wstats));
switch (rdev->wiphy.signal_type) {
case CFG80211_SIGNAL_TYPE_MBM:
if (sinfo.filled & BIT(NL80211_STA_INFO_SIGNAL)) {
int sig = sinfo.signal;
wstats.qual.updated |= IW_QUAL_LEVEL_UPDATED;
wstats.qual.updated |= IW_QUAL_QUAL_UPDATED;
wstats.qual.updated |= IW_QUAL_DBM;
wstats.qual.level = sig;
if (sig < -110)
sig = -110;
else if (sig > -40)
sig = -40;
wstats.qual.qual = sig + 110;
break;
}
case CFG80211_SIGNAL_TYPE_UNSPEC:
if (sinfo.filled & BIT(NL80211_STA_INFO_SIGNAL)) {
wstats.qual.updated |= IW_QUAL_LEVEL_UPDATED;
wstats.qual.updated |= IW_QUAL_QUAL_UPDATED;
wstats.qual.level = sinfo.signal;
wstats.qual.qual = sinfo.signal;
break;
}
default:
wstats.qual.updated |= IW_QUAL_LEVEL_INVALID;
wstats.qual.updated |= IW_QUAL_QUAL_INVALID;
}
wstats.qual.updated |= IW_QUAL_NOISE_INVALID;
if (sinfo.filled & BIT(NL80211_STA_INFO_RX_DROP_MISC))
wstats.discard.misc = sinfo.rx_dropped_misc;
if (sinfo.filled & BIT(NL80211_STA_INFO_TX_FAILED))
wstats.discard.retries = sinfo.tx_failed;
return &wstats;
}
static int cfg80211_wext_siwap(struct net_device *dev,
struct iw_request_info *info,
struct sockaddr *ap_addr, char *extra)
{
struct wireless_dev *wdev = dev->ieee80211_ptr;
switch (wdev->iftype) {
case NL80211_IFTYPE_ADHOC:
return cfg80211_ibss_wext_siwap(dev, info, ap_addr, extra);
case NL80211_IFTYPE_STATION:
return cfg80211_mgd_wext_siwap(dev, info, ap_addr, extra);
case NL80211_IFTYPE_WDS:
return cfg80211_wds_wext_siwap(dev, info, ap_addr, extra);
default:
return -EOPNOTSUPP;
}
}
static int cfg80211_wext_giwap(struct net_device *dev,
struct iw_request_info *info,
struct sockaddr *ap_addr, char *extra)
{
struct wireless_dev *wdev = dev->ieee80211_ptr;
switch (wdev->iftype) {
case NL80211_IFTYPE_ADHOC:
return cfg80211_ibss_wext_giwap(dev, info, ap_addr, extra);
case NL80211_IFTYPE_STATION:
return cfg80211_mgd_wext_giwap(dev, info, ap_addr, extra);
case NL80211_IFTYPE_WDS:
return cfg80211_wds_wext_giwap(dev, info, ap_addr, extra);
default:
return -EOPNOTSUPP;
}
}
static int cfg80211_wext_siwessid(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *data, char *ssid)
{
struct wireless_dev *wdev = dev->ieee80211_ptr;
switch (wdev->iftype) {
case NL80211_IFTYPE_ADHOC:
return cfg80211_ibss_wext_siwessid(dev, info, data, ssid);
case NL80211_IFTYPE_STATION:
return cfg80211_mgd_wext_siwessid(dev, info, data, ssid);
default:
return -EOPNOTSUPP;
}
}
static int cfg80211_wext_giwessid(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *data, char *ssid)
{
struct wireless_dev *wdev = dev->ieee80211_ptr;
data->flags = 0;
data->length = 0;
switch (wdev->iftype) {
case NL80211_IFTYPE_ADHOC:
return cfg80211_ibss_wext_giwessid(dev, info, data, ssid);
case NL80211_IFTYPE_STATION:
return cfg80211_mgd_wext_giwessid(dev, info, data, ssid);
default:
return -EOPNOTSUPP;
}
}
static int cfg80211_wext_siwpmksa(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *data, char *extra)
{
struct wireless_dev *wdev = dev->ieee80211_ptr;
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
struct cfg80211_pmksa cfg_pmksa;
struct iw_pmksa *pmksa = (struct iw_pmksa *)extra;
memset(&cfg_pmksa, 0, sizeof(struct cfg80211_pmksa));
if (wdev->iftype != NL80211_IFTYPE_STATION)
return -EINVAL;
cfg_pmksa.bssid = pmksa->bssid.sa_data;
cfg_pmksa.pmkid = pmksa->pmkid;
switch (pmksa->cmd) {
case IW_PMKSA_ADD:
if (!rdev->ops->set_pmksa)
return -EOPNOTSUPP;
return rdev_set_pmksa(rdev, dev, &cfg_pmksa);
case IW_PMKSA_REMOVE:
if (!rdev->ops->del_pmksa)
return -EOPNOTSUPP;
return rdev_del_pmksa(rdev, dev, &cfg_pmksa);
case IW_PMKSA_FLUSH:
if (!rdev->ops->flush_pmksa)
return -EOPNOTSUPP;
return rdev_flush_pmksa(rdev, dev);
default:
return -EOPNOTSUPP;
}
}
static const iw_handler cfg80211_handlers[] = {
[IW_IOCTL_IDX(SIOCGIWNAME)] = (iw_handler) cfg80211_wext_giwname,
[IW_IOCTL_IDX(SIOCSIWFREQ)] = (iw_handler) cfg80211_wext_siwfreq,
[IW_IOCTL_IDX(SIOCGIWFREQ)] = (iw_handler) cfg80211_wext_giwfreq,
[IW_IOCTL_IDX(SIOCSIWMODE)] = (iw_handler) cfg80211_wext_siwmode,
[IW_IOCTL_IDX(SIOCGIWMODE)] = (iw_handler) cfg80211_wext_giwmode,
[IW_IOCTL_IDX(SIOCGIWRANGE)] = (iw_handler) cfg80211_wext_giwrange,
[IW_IOCTL_IDX(SIOCSIWAP)] = (iw_handler) cfg80211_wext_siwap,
[IW_IOCTL_IDX(SIOCGIWAP)] = (iw_handler) cfg80211_wext_giwap,
[IW_IOCTL_IDX(SIOCSIWMLME)] = (iw_handler) cfg80211_wext_siwmlme,
[IW_IOCTL_IDX(SIOCSIWSCAN)] = (iw_handler) cfg80211_wext_siwscan,
[IW_IOCTL_IDX(SIOCGIWSCAN)] = (iw_handler) cfg80211_wext_giwscan,
[IW_IOCTL_IDX(SIOCSIWESSID)] = (iw_handler) cfg80211_wext_siwessid,
[IW_IOCTL_IDX(SIOCGIWESSID)] = (iw_handler) cfg80211_wext_giwessid,
[IW_IOCTL_IDX(SIOCSIWRATE)] = (iw_handler) cfg80211_wext_siwrate,
[IW_IOCTL_IDX(SIOCGIWRATE)] = (iw_handler) cfg80211_wext_giwrate,
[IW_IOCTL_IDX(SIOCSIWRTS)] = (iw_handler) cfg80211_wext_siwrts,
[IW_IOCTL_IDX(SIOCGIWRTS)] = (iw_handler) cfg80211_wext_giwrts,
[IW_IOCTL_IDX(SIOCSIWFRAG)] = (iw_handler) cfg80211_wext_siwfrag,
[IW_IOCTL_IDX(SIOCGIWFRAG)] = (iw_handler) cfg80211_wext_giwfrag,
[IW_IOCTL_IDX(SIOCSIWTXPOW)] = (iw_handler) cfg80211_wext_siwtxpower,
[IW_IOCTL_IDX(SIOCGIWTXPOW)] = (iw_handler) cfg80211_wext_giwtxpower,
[IW_IOCTL_IDX(SIOCSIWRETRY)] = (iw_handler) cfg80211_wext_siwretry,
[IW_IOCTL_IDX(SIOCGIWRETRY)] = (iw_handler) cfg80211_wext_giwretry,
[IW_IOCTL_IDX(SIOCSIWENCODE)] = (iw_handler) cfg80211_wext_siwencode,
[IW_IOCTL_IDX(SIOCGIWENCODE)] = (iw_handler) cfg80211_wext_giwencode,
[IW_IOCTL_IDX(SIOCSIWPOWER)] = (iw_handler) cfg80211_wext_siwpower,
[IW_IOCTL_IDX(SIOCGIWPOWER)] = (iw_handler) cfg80211_wext_giwpower,
[IW_IOCTL_IDX(SIOCSIWGENIE)] = (iw_handler) cfg80211_wext_siwgenie,
[IW_IOCTL_IDX(SIOCSIWAUTH)] = (iw_handler) cfg80211_wext_siwauth,
[IW_IOCTL_IDX(SIOCGIWAUTH)] = (iw_handler) cfg80211_wext_giwauth,
[IW_IOCTL_IDX(SIOCSIWENCODEEXT)]= (iw_handler) cfg80211_wext_siwencodeext,
[IW_IOCTL_IDX(SIOCSIWPMKSA)] = (iw_handler) cfg80211_wext_siwpmksa,
};
const struct iw_handler_def cfg80211_wext_handler = {
.num_standard = ARRAY_SIZE(cfg80211_handlers),
.standard = cfg80211_handlers,
.get_wireless_stats = cfg80211_wireless_stats,
};