linux/drivers/usb/host/fhci-hcd.c
Németh Márton c4386ad07c USB host: make Open Firmware device id constant
The match_table field of the struct of_device_id is constant in <linux/of_platform.h>
so it is worth to make the initialization data also constant.

The semantic match that finds this kind of pattern is as follows:
(http://coccinelle.lip6.fr/)

// <smpl>
@r@
disable decl_init,const_decl_init;
identifier I1, I2, x;
@@
	struct I1 {
	  ...
	  const struct I2 *x;
	  ...
	};
@s@
identifier r.I1, y;
identifier r.x, E;
@@
	struct I1 y = {
	  .x = E,
	};
@c@
identifier r.I2;
identifier s.E;
@@
	const struct I2 E[] = ... ;
@depends on !c@
identifier r.I2;
identifier s.E;
@@
+	const
	struct I2 E[] = ...;
// </smpl>

Signed-off-by: Németh Márton <nm127@freemail.hu>
Cc: Julia Lawall <julia@diku.dk>
Cc: cocci@diku.dk
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-03-02 14:54:18 -08:00

838 lines
19 KiB
C

/*
* Freescale QUICC Engine USB Host Controller Driver
*
* Copyright (c) Freescale Semicondutor, Inc. 2006.
* Shlomi Gridish <gridish@freescale.com>
* Jerry Huang <Chang-Ming.Huang@freescale.com>
* Copyright (c) Logic Product Development, Inc. 2007
* Peter Barada <peterb@logicpd.com>
* Copyright (c) MontaVista Software, Inc. 2008.
* Anton Vorontsov <avorontsov@ru.mvista.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/spinlock.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/list.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/usb.h>
#include <linux/of_platform.h>
#include <linux/of_gpio.h>
#include <asm/qe.h>
#include <asm/fsl_gtm.h>
#include "../core/hcd.h"
#include "fhci.h"
void fhci_start_sof_timer(struct fhci_hcd *fhci)
{
fhci_dbg(fhci, "-> %s\n", __func__);
/* clear frame_n */
out_be16(&fhci->pram->frame_num, 0);
out_be16(&fhci->regs->usb_sof_tmr, 0);
setbits8(&fhci->regs->usb_mod, USB_MODE_SFTE);
fhci_dbg(fhci, "<- %s\n", __func__);
}
void fhci_stop_sof_timer(struct fhci_hcd *fhci)
{
fhci_dbg(fhci, "-> %s\n", __func__);
clrbits8(&fhci->regs->usb_mod, USB_MODE_SFTE);
gtm_stop_timer16(fhci->timer);
fhci_dbg(fhci, "<- %s\n", __func__);
}
u16 fhci_get_sof_timer_count(struct fhci_usb *usb)
{
return be16_to_cpu(in_be16(&usb->fhci->regs->usb_sof_tmr) / 12);
}
/* initialize the endpoint zero */
static u32 endpoint_zero_init(struct fhci_usb *usb,
enum fhci_mem_alloc data_mem,
u32 ring_len)
{
u32 rc;
rc = fhci_create_ep(usb, data_mem, ring_len);
if (rc)
return rc;
/* inilialize endpoint registers */
fhci_init_ep_registers(usb, usb->ep0, data_mem);
return 0;
}
/* enable the USB interrupts */
void fhci_usb_enable_interrupt(struct fhci_usb *usb)
{
struct fhci_hcd *fhci = usb->fhci;
if (usb->intr_nesting_cnt == 1) {
/* initialize the USB interrupt */
enable_irq(fhci_to_hcd(fhci)->irq);
/* initialize the event register and mask register */
out_be16(&usb->fhci->regs->usb_event, 0xffff);
out_be16(&usb->fhci->regs->usb_mask, usb->saved_msk);
/* enable the timer interrupts */
enable_irq(fhci->timer->irq);
} else if (usb->intr_nesting_cnt > 1)
fhci_info(fhci, "unbalanced USB interrupts nesting\n");
usb->intr_nesting_cnt--;
}
/* diable the usb interrupt */
void fhci_usb_disable_interrupt(struct fhci_usb *usb)
{
struct fhci_hcd *fhci = usb->fhci;
if (usb->intr_nesting_cnt == 0) {
/* diable the timer interrupt */
disable_irq_nosync(fhci->timer->irq);
/* disable the usb interrupt */
disable_irq_nosync(fhci_to_hcd(fhci)->irq);
out_be16(&usb->fhci->regs->usb_mask, 0);
}
usb->intr_nesting_cnt++;
}
/* enable the USB controller */
static u32 fhci_usb_enable(struct fhci_hcd *fhci)
{
struct fhci_usb *usb = fhci->usb_lld;
out_be16(&usb->fhci->regs->usb_event, 0xffff);
out_be16(&usb->fhci->regs->usb_mask, usb->saved_msk);
setbits8(&usb->fhci->regs->usb_mod, USB_MODE_EN);
mdelay(100);
return 0;
}
/* disable the USB controller */
static u32 fhci_usb_disable(struct fhci_hcd *fhci)
{
struct fhci_usb *usb = fhci->usb_lld;
fhci_usb_disable_interrupt(usb);
fhci_port_disable(fhci);
/* disable the usb controller */
if (usb->port_status == FHCI_PORT_FULL ||
usb->port_status == FHCI_PORT_LOW)
fhci_device_disconnected_interrupt(fhci);
clrbits8(&usb->fhci->regs->usb_mod, USB_MODE_EN);
return 0;
}
/* check the bus state by polling the QE bit on the IO ports */
int fhci_ioports_check_bus_state(struct fhci_hcd *fhci)
{
u8 bits = 0;
/* check USBOE,if transmitting,exit */
if (!gpio_get_value(fhci->gpios[GPIO_USBOE]))
return -1;
/* check USBRP */
if (gpio_get_value(fhci->gpios[GPIO_USBRP]))
bits |= 0x2;
/* check USBRN */
if (gpio_get_value(fhci->gpios[GPIO_USBRN]))
bits |= 0x1;
return bits;
}
static void fhci_mem_free(struct fhci_hcd *fhci)
{
struct ed *ed;
struct ed *next_ed;
struct td *td;
struct td *next_td;
list_for_each_entry_safe(ed, next_ed, &fhci->empty_eds, node) {
list_del(&ed->node);
kfree(ed);
}
list_for_each_entry_safe(td, next_td, &fhci->empty_tds, node) {
list_del(&td->node);
kfree(td);
}
kfree(fhci->vroot_hub);
fhci->vroot_hub = NULL;
kfree(fhci->hc_list);
fhci->hc_list = NULL;
}
static int fhci_mem_init(struct fhci_hcd *fhci)
{
int i;
fhci->hc_list = kzalloc(sizeof(*fhci->hc_list), GFP_KERNEL);
if (!fhci->hc_list)
goto err;
INIT_LIST_HEAD(&fhci->hc_list->ctrl_list);
INIT_LIST_HEAD(&fhci->hc_list->bulk_list);
INIT_LIST_HEAD(&fhci->hc_list->iso_list);
INIT_LIST_HEAD(&fhci->hc_list->intr_list);
INIT_LIST_HEAD(&fhci->hc_list->done_list);
fhci->vroot_hub = kzalloc(sizeof(*fhci->vroot_hub), GFP_KERNEL);
if (!fhci->vroot_hub)
goto err;
INIT_LIST_HEAD(&fhci->empty_eds);
INIT_LIST_HEAD(&fhci->empty_tds);
/* initialize work queue to handle done list */
fhci_tasklet.data = (unsigned long)fhci;
fhci->process_done_task = &fhci_tasklet;
for (i = 0; i < MAX_TDS; i++) {
struct td *td;
td = kmalloc(sizeof(*td), GFP_KERNEL);
if (!td)
goto err;
fhci_recycle_empty_td(fhci, td);
}
for (i = 0; i < MAX_EDS; i++) {
struct ed *ed;
ed = kmalloc(sizeof(*ed), GFP_KERNEL);
if (!ed)
goto err;
fhci_recycle_empty_ed(fhci, ed);
}
fhci->active_urbs = 0;
return 0;
err:
fhci_mem_free(fhci);
return -ENOMEM;
}
/* destroy the fhci_usb structure */
static void fhci_usb_free(void *lld)
{
struct fhci_usb *usb = lld;
struct fhci_hcd *fhci;
if (usb) {
fhci = usb->fhci;
fhci_config_transceiver(fhci, FHCI_PORT_POWER_OFF);
fhci_ep0_free(usb);
kfree(usb->actual_frame);
kfree(usb);
}
}
/* initialize the USB */
static int fhci_usb_init(struct fhci_hcd *fhci)
{
struct fhci_usb *usb = fhci->usb_lld;
memset_io(usb->fhci->pram, 0, FHCI_PRAM_SIZE);
usb->port_status = FHCI_PORT_DISABLED;
usb->max_frame_usage = FRAME_TIME_USAGE;
usb->sw_transaction_time = SW_FIX_TIME_BETWEEN_TRANSACTION;
usb->actual_frame = kzalloc(sizeof(*usb->actual_frame), GFP_KERNEL);
if (!usb->actual_frame) {
fhci_usb_free(usb);
return -ENOMEM;
}
INIT_LIST_HEAD(&usb->actual_frame->tds_list);
/* initializing registers on chip, clear frame number */
out_be16(&fhci->pram->frame_num, 0);
/* clear rx state */
out_be32(&fhci->pram->rx_state, 0);
/* set mask register */
usb->saved_msk = (USB_E_TXB_MASK |
USB_E_TXE1_MASK |
USB_E_IDLE_MASK |
USB_E_RESET_MASK | USB_E_SFT_MASK | USB_E_MSF_MASK);
out_8(&usb->fhci->regs->usb_mod, USB_MODE_HOST | USB_MODE_EN);
/* clearing the mask register */
out_be16(&usb->fhci->regs->usb_mask, 0);
/* initialing the event register */
out_be16(&usb->fhci->regs->usb_event, 0xffff);
if (endpoint_zero_init(usb, DEFAULT_DATA_MEM, DEFAULT_RING_LEN) != 0) {
fhci_usb_free(usb);
return -EINVAL;
}
return 0;
}
/* initialize the fhci_usb struct and the corresponding data staruct */
static struct fhci_usb *fhci_create_lld(struct fhci_hcd *fhci)
{
struct fhci_usb *usb;
/* allocate memory for SCC data structure */
usb = kzalloc(sizeof(*usb), GFP_KERNEL);
if (!usb) {
fhci_err(fhci, "no memory for SCC data struct\n");
return NULL;
}
usb->fhci = fhci;
usb->hc_list = fhci->hc_list;
usb->vroot_hub = fhci->vroot_hub;
usb->transfer_confirm = fhci_transfer_confirm_callback;
return usb;
}
static int fhci_start(struct usb_hcd *hcd)
{
int ret;
struct fhci_hcd *fhci = hcd_to_fhci(hcd);
ret = fhci_mem_init(fhci);
if (ret) {
fhci_err(fhci, "failed to allocate memory\n");
goto err;
}
fhci->usb_lld = fhci_create_lld(fhci);
if (!fhci->usb_lld) {
fhci_err(fhci, "low level driver config failed\n");
ret = -ENOMEM;
goto err;
}
ret = fhci_usb_init(fhci);
if (ret) {
fhci_err(fhci, "low level driver initialize failed\n");
goto err;
}
spin_lock_init(&fhci->lock);
/* connect the virtual root hub */
fhci->vroot_hub->dev_num = 1; /* this field may be needed to fix */
fhci->vroot_hub->hub.wHubStatus = 0;
fhci->vroot_hub->hub.wHubChange = 0;
fhci->vroot_hub->port.wPortStatus = 0;
fhci->vroot_hub->port.wPortChange = 0;
hcd->state = HC_STATE_RUNNING;
/*
* From here on, khubd concurrently accesses the root
* hub; drivers will be talking to enumerated devices.
* (On restart paths, khubd already knows about the root
* hub and could find work as soon as we wrote FLAG_CF.)
*
* Before this point the HC was idle/ready. After, khubd
* and device drivers may start it running.
*/
fhci_usb_enable(fhci);
return 0;
err:
fhci_mem_free(fhci);
return ret;
}
static void fhci_stop(struct usb_hcd *hcd)
{
struct fhci_hcd *fhci = hcd_to_fhci(hcd);
fhci_usb_disable_interrupt(fhci->usb_lld);
fhci_usb_disable(fhci);
fhci_usb_free(fhci->usb_lld);
fhci->usb_lld = NULL;
fhci_mem_free(fhci);
}
static int fhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
gfp_t mem_flags)
{
struct fhci_hcd *fhci = hcd_to_fhci(hcd);
u32 pipe = urb->pipe;
int ret;
int i;
int size = 0;
struct urb_priv *urb_priv;
unsigned long flags;
switch (usb_pipetype(pipe)) {
case PIPE_CONTROL:
/* 1 td fro setup,1 for ack */
size = 2;
case PIPE_BULK:
/* one td for every 4096 bytes(can be upto 8k) */
size += urb->transfer_buffer_length / 4096;
/* ...add for any remaining bytes... */
if ((urb->transfer_buffer_length % 4096) != 0)
size++;
/* ..and maybe a zero length packet to wrap it up */
if (size == 0)
size++;
else if ((urb->transfer_flags & URB_ZERO_PACKET) != 0
&& (urb->transfer_buffer_length
% usb_maxpacket(urb->dev, pipe,
usb_pipeout(pipe))) != 0)
size++;
break;
case PIPE_ISOCHRONOUS:
size = urb->number_of_packets;
if (size <= 0)
return -EINVAL;
for (i = 0; i < urb->number_of_packets; i++) {
urb->iso_frame_desc[i].actual_length = 0;
urb->iso_frame_desc[i].status = (u32) (-EXDEV);
}
break;
case PIPE_INTERRUPT:
size = 1;
}
/* allocate the private part of the URB */
urb_priv = kzalloc(sizeof(*urb_priv), mem_flags);
if (!urb_priv)
return -ENOMEM;
/* allocate the private part of the URB */
urb_priv->tds = kcalloc(size, sizeof(*urb_priv->tds), mem_flags);
if (!urb_priv->tds) {
kfree(urb_priv);
return -ENOMEM;
}
spin_lock_irqsave(&fhci->lock, flags);
ret = usb_hcd_link_urb_to_ep(hcd, urb);
if (ret)
goto err;
/* fill the private part of the URB */
urb_priv->num_of_tds = size;
urb->status = -EINPROGRESS;
urb->actual_length = 0;
urb->error_count = 0;
urb->hcpriv = urb_priv;
fhci_queue_urb(fhci, urb);
err:
if (ret) {
kfree(urb_priv->tds);
kfree(urb_priv);
}
spin_unlock_irqrestore(&fhci->lock, flags);
return ret;
}
/* dequeue FHCI URB */
static int fhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
{
struct fhci_hcd *fhci = hcd_to_fhci(hcd);
struct fhci_usb *usb = fhci->usb_lld;
int ret = -EINVAL;
unsigned long flags;
if (!urb || !urb->dev || !urb->dev->bus)
goto out;
spin_lock_irqsave(&fhci->lock, flags);
ret = usb_hcd_check_unlink_urb(hcd, urb, status);
if (ret)
goto out2;
if (usb->port_status != FHCI_PORT_DISABLED) {
struct urb_priv *urb_priv;
/*
* flag the urb's data for deletion in some upcoming
* SF interrupt's delete list processing
*/
urb_priv = urb->hcpriv;
if (!urb_priv || (urb_priv->state == URB_DEL))
goto out2;
urb_priv->state = URB_DEL;
/* already pending? */
urb_priv->ed->state = FHCI_ED_URB_DEL;
} else {
fhci_urb_complete_free(fhci, urb);
}
out2:
spin_unlock_irqrestore(&fhci->lock, flags);
out:
return ret;
}
static void fhci_endpoint_disable(struct usb_hcd *hcd,
struct usb_host_endpoint *ep)
{
struct fhci_hcd *fhci;
struct ed *ed;
unsigned long flags;
fhci = hcd_to_fhci(hcd);
spin_lock_irqsave(&fhci->lock, flags);
ed = ep->hcpriv;
if (ed) {
while (ed->td_head != NULL) {
struct td *td = fhci_remove_td_from_ed(ed);
fhci_urb_complete_free(fhci, td->urb);
}
fhci_recycle_empty_ed(fhci, ed);
ep->hcpriv = NULL;
}
spin_unlock_irqrestore(&fhci->lock, flags);
}
static int fhci_get_frame_number(struct usb_hcd *hcd)
{
struct fhci_hcd *fhci = hcd_to_fhci(hcd);
return get_frame_num(fhci);
}
static const struct hc_driver fhci_driver = {
.description = "fsl,usb-fhci",
.product_desc = "FHCI HOST Controller",
.hcd_priv_size = sizeof(struct fhci_hcd),
/* generic hardware linkage */
.irq = fhci_irq,
.flags = HCD_USB11 | HCD_MEMORY,
/* basic lifecycle operation */
.start = fhci_start,
.stop = fhci_stop,
/* managing i/o requests and associated device resources */
.urb_enqueue = fhci_urb_enqueue,
.urb_dequeue = fhci_urb_dequeue,
.endpoint_disable = fhci_endpoint_disable,
/* scheduling support */
.get_frame_number = fhci_get_frame_number,
/* root hub support */
.hub_status_data = fhci_hub_status_data,
.hub_control = fhci_hub_control,
};
static int __devinit of_fhci_probe(struct of_device *ofdev,
const struct of_device_id *ofid)
{
struct device *dev = &ofdev->dev;
struct device_node *node = ofdev->node;
struct usb_hcd *hcd;
struct fhci_hcd *fhci;
struct resource usb_regs;
unsigned long pram_addr;
unsigned int usb_irq;
const char *sprop;
const u32 *iprop;
int size;
int ret;
int i;
int j;
if (usb_disabled())
return -ENODEV;
sprop = of_get_property(node, "mode", NULL);
if (sprop && strcmp(sprop, "host"))
return -ENODEV;
hcd = usb_create_hcd(&fhci_driver, dev, dev_name(dev));
if (!hcd) {
dev_err(dev, "could not create hcd\n");
return -ENOMEM;
}
fhci = hcd_to_fhci(hcd);
hcd->self.controller = dev;
dev_set_drvdata(dev, hcd);
iprop = of_get_property(node, "hub-power-budget", &size);
if (iprop && size == sizeof(*iprop))
hcd->power_budget = *iprop;
/* FHCI registers. */
ret = of_address_to_resource(node, 0, &usb_regs);
if (ret) {
dev_err(dev, "could not get regs\n");
goto err_regs;
}
hcd->regs = ioremap(usb_regs.start, usb_regs.end - usb_regs.start + 1);
if (!hcd->regs) {
dev_err(dev, "could not ioremap regs\n");
ret = -ENOMEM;
goto err_regs;
}
fhci->regs = hcd->regs;
/* Parameter RAM. */
iprop = of_get_property(node, "reg", &size);
if (!iprop || size < sizeof(*iprop) * 4) {
dev_err(dev, "can't get pram offset\n");
ret = -EINVAL;
goto err_pram;
}
pram_addr = cpm_muram_alloc_fixed(iprop[2], FHCI_PRAM_SIZE);
if (IS_ERR_VALUE(pram_addr)) {
dev_err(dev, "failed to allocate usb pram\n");
ret = -ENOMEM;
goto err_pram;
}
fhci->pram = cpm_muram_addr(pram_addr);
/* GPIOs and pins */
for (i = 0; i < NUM_GPIOS; i++) {
int gpio;
enum of_gpio_flags flags;
gpio = of_get_gpio_flags(node, i, &flags);
fhci->gpios[i] = gpio;
fhci->alow_gpios[i] = flags & OF_GPIO_ACTIVE_LOW;
if (!gpio_is_valid(gpio)) {
if (i < GPIO_SPEED) {
dev_err(dev, "incorrect GPIO%d: %d\n",
i, gpio);
goto err_gpios;
} else {
dev_info(dev, "assuming board doesn't have "
"%s gpio\n", i == GPIO_SPEED ?
"speed" : "power");
continue;
}
}
ret = gpio_request(gpio, dev_name(dev));
if (ret) {
dev_err(dev, "failed to request gpio %d", i);
goto err_gpios;
}
if (i >= GPIO_SPEED) {
ret = gpio_direction_output(gpio, 0);
if (ret) {
dev_err(dev, "failed to set gpio %d as "
"an output\n", i);
i++;
goto err_gpios;
}
}
}
for (j = 0; j < NUM_PINS; j++) {
fhci->pins[j] = qe_pin_request(ofdev->node, j);
if (IS_ERR(fhci->pins[j])) {
ret = PTR_ERR(fhci->pins[j]);
dev_err(dev, "can't get pin %d: %d\n", j, ret);
goto err_pins;
}
}
/* Frame limit timer and its interrupt. */
fhci->timer = gtm_get_timer16();
if (IS_ERR(fhci->timer)) {
ret = PTR_ERR(fhci->timer);
dev_err(dev, "failed to request qe timer: %i", ret);
goto err_get_timer;
}
ret = request_irq(fhci->timer->irq, fhci_frame_limit_timer_irq,
IRQF_DISABLED, "qe timer (usb)", hcd);
if (ret) {
dev_err(dev, "failed to request timer irq");
goto err_timer_irq;
}
/* USB Host interrupt. */
usb_irq = irq_of_parse_and_map(node, 0);
if (usb_irq == NO_IRQ) {
dev_err(dev, "could not get usb irq\n");
ret = -EINVAL;
goto err_usb_irq;
}
/* Clocks. */
sprop = of_get_property(node, "fsl,fullspeed-clock", NULL);
if (sprop) {
fhci->fullspeed_clk = qe_clock_source(sprop);
if (fhci->fullspeed_clk == QE_CLK_DUMMY) {
dev_err(dev, "wrong fullspeed-clock\n");
ret = -EINVAL;
goto err_clocks;
}
}
sprop = of_get_property(node, "fsl,lowspeed-clock", NULL);
if (sprop) {
fhci->lowspeed_clk = qe_clock_source(sprop);
if (fhci->lowspeed_clk == QE_CLK_DUMMY) {
dev_err(dev, "wrong lowspeed-clock\n");
ret = -EINVAL;
goto err_clocks;
}
}
if (fhci->fullspeed_clk == QE_CLK_NONE &&
fhci->lowspeed_clk == QE_CLK_NONE) {
dev_err(dev, "no clocks specified\n");
ret = -EINVAL;
goto err_clocks;
}
dev_info(dev, "at 0x%p, irq %d\n", hcd->regs, usb_irq);
fhci_config_transceiver(fhci, FHCI_PORT_POWER_OFF);
/* Start with full-speed, if possible. */
if (fhci->fullspeed_clk != QE_CLK_NONE) {
fhci_config_transceiver(fhci, FHCI_PORT_FULL);
qe_usb_clock_set(fhci->fullspeed_clk, USB_CLOCK);
} else {
fhci_config_transceiver(fhci, FHCI_PORT_LOW);
qe_usb_clock_set(fhci->lowspeed_clk, USB_CLOCK >> 3);
}
/* Clear and disable any pending interrupts. */
out_be16(&fhci->regs->usb_event, 0xffff);
out_be16(&fhci->regs->usb_mask, 0);
ret = usb_add_hcd(hcd, usb_irq, IRQF_DISABLED);
if (ret < 0)
goto err_add_hcd;
fhci_dfs_create(fhci);
return 0;
err_add_hcd:
err_clocks:
irq_dispose_mapping(usb_irq);
err_usb_irq:
free_irq(fhci->timer->irq, hcd);
err_timer_irq:
gtm_put_timer16(fhci->timer);
err_get_timer:
err_pins:
while (--j >= 0)
qe_pin_free(fhci->pins[j]);
err_gpios:
while (--i >= 0) {
if (gpio_is_valid(fhci->gpios[i]))
gpio_free(fhci->gpios[i]);
}
cpm_muram_free(pram_addr);
err_pram:
iounmap(hcd->regs);
err_regs:
usb_put_hcd(hcd);
return ret;
}
static int __devexit fhci_remove(struct device *dev)
{
struct usb_hcd *hcd = dev_get_drvdata(dev);
struct fhci_hcd *fhci = hcd_to_fhci(hcd);
int i;
int j;
usb_remove_hcd(hcd);
free_irq(fhci->timer->irq, hcd);
gtm_put_timer16(fhci->timer);
cpm_muram_free(cpm_muram_offset(fhci->pram));
for (i = 0; i < NUM_GPIOS; i++) {
if (!gpio_is_valid(fhci->gpios[i]))
continue;
gpio_free(fhci->gpios[i]);
}
for (j = 0; j < NUM_PINS; j++)
qe_pin_free(fhci->pins[j]);
fhci_dfs_destroy(fhci);
usb_put_hcd(hcd);
return 0;
}
static int __devexit of_fhci_remove(struct of_device *ofdev)
{
return fhci_remove(&ofdev->dev);
}
static const struct of_device_id of_fhci_match[] = {
{ .compatible = "fsl,mpc8323-qe-usb", },
{},
};
MODULE_DEVICE_TABLE(of, of_fhci_match);
static struct of_platform_driver of_fhci_driver = {
.name = "fsl,usb-fhci",
.match_table = of_fhci_match,
.probe = of_fhci_probe,
.remove = __devexit_p(of_fhci_remove),
};
static int __init fhci_module_init(void)
{
return of_register_platform_driver(&of_fhci_driver);
}
module_init(fhci_module_init);
static void __exit fhci_module_exit(void)
{
of_unregister_platform_driver(&of_fhci_driver);
}
module_exit(fhci_module_exit);
MODULE_DESCRIPTION("USB Freescale Host Controller Interface Driver");
MODULE_AUTHOR("Shlomi Gridish <gridish@freescale.com>, "
"Jerry Huang <Chang-Ming.Huang@freescale.com>, "
"Anton Vorontsov <avorontsov@ru.mvista.com>");
MODULE_LICENSE("GPL");