linux/arch/arm/mach-ixp4xx/goramo_mlr.c
Krzysztof Hałasa 8d3fdf31dd IXP4xx: Introduce IXP4XX_GPIO_IRQ(n) macro and convert IXP4xx platform files.
Signed-off-by: Krzysztof Hałasa <khc@pm.waw.pl>
2009-12-05 16:58:41 +01:00

507 lines
12 KiB
C

/*
* Goramo MultiLink router platform code
* Copyright (C) 2006-2009 Krzysztof Halasa <khc@pm.waw.pl>
*/
#include <linux/delay.h>
#include <linux/hdlc.h>
#include <linux/i2c-gpio.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/serial_8250.h>
#include <asm/mach-types.h>
#include <asm/system.h>
#include <asm/mach/arch.h>
#include <asm/mach/flash.h>
#include <asm/mach/pci.h>
#define SLOT_ETHA 0x0B /* IDSEL = AD21 */
#define SLOT_ETHB 0x0C /* IDSEL = AD20 */
#define SLOT_MPCI 0x0D /* IDSEL = AD19 */
#define SLOT_NEC 0x0E /* IDSEL = AD18 */
/* GPIO lines */
#define GPIO_SCL 0
#define GPIO_SDA 1
#define GPIO_STR 2
#define GPIO_IRQ_NEC 3
#define GPIO_IRQ_ETHA 4
#define GPIO_IRQ_ETHB 5
#define GPIO_HSS0_DCD_N 6
#define GPIO_HSS1_DCD_N 7
#define GPIO_UART0_DCD 8
#define GPIO_UART1_DCD 9
#define GPIO_HSS0_CTS_N 10
#define GPIO_HSS1_CTS_N 11
#define GPIO_IRQ_MPCI 12
#define GPIO_HSS1_RTS_N 13
#define GPIO_HSS0_RTS_N 14
/* GPIO15 is not connected */
/* Control outputs from 74HC4094 */
#define CONTROL_HSS0_CLK_INT 0
#define CONTROL_HSS1_CLK_INT 1
#define CONTROL_HSS0_DTR_N 2
#define CONTROL_HSS1_DTR_N 3
#define CONTROL_EXT 4
#define CONTROL_AUTO_RESET 5
#define CONTROL_PCI_RESET_N 6
#define CONTROL_EEPROM_WC_N 7
/* offsets from start of flash ROM = 0x50000000 */
#define CFG_ETH0_ADDRESS 0x40 /* 6 bytes */
#define CFG_ETH1_ADDRESS 0x46 /* 6 bytes */
#define CFG_REV 0x4C /* u32 */
#define CFG_SDRAM_SIZE 0x50 /* u32 */
#define CFG_SDRAM_CONF 0x54 /* u32 */
#define CFG_SDRAM_MODE 0x58 /* u32 */
#define CFG_SDRAM_REFRESH 0x5C /* u32 */
#define CFG_HW_BITS 0x60 /* u32 */
#define CFG_HW_USB_PORTS 0x00000007 /* 0 = no NEC chip, 1-5 = ports # */
#define CFG_HW_HAS_PCI_SLOT 0x00000008
#define CFG_HW_HAS_ETH0 0x00000010
#define CFG_HW_HAS_ETH1 0x00000020
#define CFG_HW_HAS_HSS0 0x00000040
#define CFG_HW_HAS_HSS1 0x00000080
#define CFG_HW_HAS_UART0 0x00000100
#define CFG_HW_HAS_UART1 0x00000200
#define CFG_HW_HAS_EEPROM 0x00000400
#define FLASH_CMD_READ_ARRAY 0xFF
#define FLASH_CMD_READ_ID 0x90
#define FLASH_SER_OFF 0x102 /* 0x81 in 16-bit mode */
static u32 hw_bits = 0xFFFFFFFD; /* assume all hardware present */;
static u8 control_value;
static void set_scl(u8 value)
{
gpio_line_set(GPIO_SCL, !!value);
udelay(3);
}
static void set_sda(u8 value)
{
gpio_line_set(GPIO_SDA, !!value);
udelay(3);
}
static void set_str(u8 value)
{
gpio_line_set(GPIO_STR, !!value);
udelay(3);
}
static inline void set_control(int line, int value)
{
if (value)
control_value |= (1 << line);
else
control_value &= ~(1 << line);
}
static void output_control(void)
{
int i;
gpio_line_config(GPIO_SCL, IXP4XX_GPIO_OUT);
gpio_line_config(GPIO_SDA, IXP4XX_GPIO_OUT);
for (i = 0; i < 8; i++) {
set_scl(0);
set_sda(control_value & (0x80 >> i)); /* MSB first */
set_scl(1); /* active edge */
}
set_str(1);
set_str(0);
set_scl(0);
set_sda(1); /* Be ready for START */
set_scl(1);
}
static void (*set_carrier_cb_tab[2])(void *pdev, int carrier);
static int hss_set_clock(int port, unsigned int clock_type)
{
int ctrl_int = port ? CONTROL_HSS1_CLK_INT : CONTROL_HSS0_CLK_INT;
switch (clock_type) {
case CLOCK_DEFAULT:
case CLOCK_EXT:
set_control(ctrl_int, 0);
output_control();
return CLOCK_EXT;
case CLOCK_INT:
set_control(ctrl_int, 1);
output_control();
return CLOCK_INT;
default:
return -EINVAL;
}
}
static irqreturn_t hss_dcd_irq(int irq, void *pdev)
{
int i, port = (irq == IXP4XX_GPIO_IRQ(GPIO_HSS1_DCD_N));
gpio_line_get(port ? GPIO_HSS1_DCD_N : GPIO_HSS0_DCD_N, &i);
set_carrier_cb_tab[port](pdev, !i);
return IRQ_HANDLED;
}
static int hss_open(int port, void *pdev,
void (*set_carrier_cb)(void *pdev, int carrier))
{
int i, irq;
if (!port)
irq = IXP4XX_GPIO_IRQ(GPIO_HSS0_DCD_N);
else
irq = IXP4XX_GPIO_IRQ(GPIO_HSS1_DCD_N);
gpio_line_get(port ? GPIO_HSS1_DCD_N : GPIO_HSS0_DCD_N, &i);
set_carrier_cb(pdev, !i);
set_carrier_cb_tab[!!port] = set_carrier_cb;
if ((i = request_irq(irq, hss_dcd_irq, 0, "IXP4xx HSS", pdev)) != 0) {
printk(KERN_ERR "ixp4xx_hss: failed to request IRQ%i (%i)\n",
irq, i);
return i;
}
set_control(port ? CONTROL_HSS1_DTR_N : CONTROL_HSS0_DTR_N, 0);
output_control();
gpio_line_set(port ? GPIO_HSS1_RTS_N : GPIO_HSS0_RTS_N, 0);
return 0;
}
static void hss_close(int port, void *pdev)
{
free_irq(port ? IXP4XX_GPIO_IRQ(GPIO_HSS1_DCD_N) :
IXP4XX_GPIO_IRQ(GPIO_HSS0_DCD_N), pdev);
set_carrier_cb_tab[!!port] = NULL; /* catch bugs */
set_control(port ? CONTROL_HSS1_DTR_N : CONTROL_HSS0_DTR_N, 1);
output_control();
gpio_line_set(port ? GPIO_HSS1_RTS_N : GPIO_HSS0_RTS_N, 1);
}
/* Flash memory */
static struct flash_platform_data flash_data = {
.map_name = "cfi_probe",
.width = 2,
};
static struct resource flash_resource = {
.flags = IORESOURCE_MEM,
};
static struct platform_device device_flash = {
.name = "IXP4XX-Flash",
.id = 0,
.dev = { .platform_data = &flash_data },
.num_resources = 1,
.resource = &flash_resource,
};
/* I^2C interface */
static struct i2c_gpio_platform_data i2c_data = {
.sda_pin = GPIO_SDA,
.scl_pin = GPIO_SCL,
};
static struct platform_device device_i2c = {
.name = "i2c-gpio",
.id = 0,
.dev = { .platform_data = &i2c_data },
};
/* IXP425 2 UART ports */
static struct resource uart_resources[] = {
{
.start = IXP4XX_UART1_BASE_PHYS,
.end = IXP4XX_UART1_BASE_PHYS + 0x0fff,
.flags = IORESOURCE_MEM,
},
{
.start = IXP4XX_UART2_BASE_PHYS,
.end = IXP4XX_UART2_BASE_PHYS + 0x0fff,
.flags = IORESOURCE_MEM,
}
};
static struct plat_serial8250_port uart_data[] = {
{
.mapbase = IXP4XX_UART1_BASE_PHYS,
.membase = (char __iomem *)IXP4XX_UART1_BASE_VIRT +
REG_OFFSET,
.irq = IRQ_IXP4XX_UART1,
.flags = UPF_BOOT_AUTOCONF | UPF_SKIP_TEST,
.iotype = UPIO_MEM,
.regshift = 2,
.uartclk = IXP4XX_UART_XTAL,
},
{
.mapbase = IXP4XX_UART2_BASE_PHYS,
.membase = (char __iomem *)IXP4XX_UART2_BASE_VIRT +
REG_OFFSET,
.irq = IRQ_IXP4XX_UART2,
.flags = UPF_BOOT_AUTOCONF | UPF_SKIP_TEST,
.iotype = UPIO_MEM,
.regshift = 2,
.uartclk = IXP4XX_UART_XTAL,
},
{ },
};
static struct platform_device device_uarts = {
.name = "serial8250",
.id = PLAT8250_DEV_PLATFORM,
.dev.platform_data = uart_data,
.num_resources = 2,
.resource = uart_resources,
};
/* Built-in 10/100 Ethernet MAC interfaces */
static struct eth_plat_info eth_plat[] = {
{
.phy = 0,
.rxq = 3,
.txreadyq = 32,
}, {
.phy = 1,
.rxq = 4,
.txreadyq = 33,
}
};
static struct platform_device device_eth_tab[] = {
{
.name = "ixp4xx_eth",
.id = IXP4XX_ETH_NPEB,
.dev.platform_data = eth_plat,
}, {
.name = "ixp4xx_eth",
.id = IXP4XX_ETH_NPEC,
.dev.platform_data = eth_plat + 1,
}
};
/* IXP425 2 synchronous serial ports */
static struct hss_plat_info hss_plat[] = {
{
.set_clock = hss_set_clock,
.open = hss_open,
.close = hss_close,
.txreadyq = 34,
}, {
.set_clock = hss_set_clock,
.open = hss_open,
.close = hss_close,
.txreadyq = 35,
}
};
static struct platform_device device_hss_tab[] = {
{
.name = "ixp4xx_hss",
.id = 0,
.dev.platform_data = hss_plat,
}, {
.name = "ixp4xx_hss",
.id = 1,
.dev.platform_data = hss_plat + 1,
}
};
static struct platform_device *device_tab[6] __initdata = {
&device_flash, /* index 0 */
};
static inline u8 __init flash_readb(u8 __iomem *flash, u32 addr)
{
#ifdef __ARMEB__
return __raw_readb(flash + addr);
#else
return __raw_readb(flash + (addr ^ 3));
#endif
}
static inline u16 __init flash_readw(u8 __iomem *flash, u32 addr)
{
#ifdef __ARMEB__
return __raw_readw(flash + addr);
#else
return __raw_readw(flash + (addr ^ 2));
#endif
}
static void __init gmlr_init(void)
{
u8 __iomem *flash;
int i, devices = 1; /* flash */
ixp4xx_sys_init();
if ((flash = ioremap(IXP4XX_EXP_BUS_BASE_PHYS, 0x80)) == NULL)
printk(KERN_ERR "goramo-mlr: unable to access system"
" configuration data\n");
else {
system_rev = __raw_readl(flash + CFG_REV);
hw_bits = __raw_readl(flash + CFG_HW_BITS);
for (i = 0; i < ETH_ALEN; i++) {
eth_plat[0].hwaddr[i] =
flash_readb(flash, CFG_ETH0_ADDRESS + i);
eth_plat[1].hwaddr[i] =
flash_readb(flash, CFG_ETH1_ADDRESS + i);
}
__raw_writew(FLASH_CMD_READ_ID, flash);
system_serial_high = flash_readw(flash, FLASH_SER_OFF);
system_serial_high <<= 16;
system_serial_high |= flash_readw(flash, FLASH_SER_OFF + 2);
system_serial_low = flash_readw(flash, FLASH_SER_OFF + 4);
system_serial_low <<= 16;
system_serial_low |= flash_readw(flash, FLASH_SER_OFF + 6);
__raw_writew(FLASH_CMD_READ_ARRAY, flash);
iounmap(flash);
}
switch (hw_bits & (CFG_HW_HAS_UART0 | CFG_HW_HAS_UART1)) {
case CFG_HW_HAS_UART0:
memset(&uart_data[1], 0, sizeof(uart_data[1]));
device_uarts.num_resources = 1;
break;
case CFG_HW_HAS_UART1:
device_uarts.dev.platform_data = &uart_data[1];
device_uarts.resource = &uart_resources[1];
device_uarts.num_resources = 1;
break;
}
if (hw_bits & (CFG_HW_HAS_UART0 | CFG_HW_HAS_UART1))
device_tab[devices++] = &device_uarts; /* max index 1 */
if (hw_bits & CFG_HW_HAS_ETH0)
device_tab[devices++] = &device_eth_tab[0]; /* max index 2 */
if (hw_bits & CFG_HW_HAS_ETH1)
device_tab[devices++] = &device_eth_tab[1]; /* max index 3 */
if (hw_bits & CFG_HW_HAS_HSS0)
device_tab[devices++] = &device_hss_tab[0]; /* max index 4 */
if (hw_bits & CFG_HW_HAS_HSS1)
device_tab[devices++] = &device_hss_tab[1]; /* max index 5 */
if (hw_bits & CFG_HW_HAS_EEPROM)
device_tab[devices++] = &device_i2c; /* max index 6 */
gpio_line_config(GPIO_SCL, IXP4XX_GPIO_OUT);
gpio_line_config(GPIO_SDA, IXP4XX_GPIO_OUT);
gpio_line_config(GPIO_STR, IXP4XX_GPIO_OUT);
gpio_line_config(GPIO_HSS0_RTS_N, IXP4XX_GPIO_OUT);
gpio_line_config(GPIO_HSS1_RTS_N, IXP4XX_GPIO_OUT);
gpio_line_config(GPIO_HSS0_DCD_N, IXP4XX_GPIO_IN);
gpio_line_config(GPIO_HSS1_DCD_N, IXP4XX_GPIO_IN);
set_irq_type(IXP4XX_GPIO_IRQ(GPIO_HSS0_DCD_N), IRQ_TYPE_EDGE_BOTH);
set_irq_type(IXP4XX_GPIO_IRQ(GPIO_HSS1_DCD_N), IRQ_TYPE_EDGE_BOTH);
set_control(CONTROL_HSS0_DTR_N, 1);
set_control(CONTROL_HSS1_DTR_N, 1);
set_control(CONTROL_EEPROM_WC_N, 1);
set_control(CONTROL_PCI_RESET_N, 1);
output_control();
msleep(1); /* Wait for PCI devices to initialize */
flash_resource.start = IXP4XX_EXP_BUS_BASE(0);
flash_resource.end = IXP4XX_EXP_BUS_BASE(0) + ixp4xx_exp_bus_size - 1;
platform_add_devices(device_tab, devices);
}
#ifdef CONFIG_PCI
static void __init gmlr_pci_preinit(void)
{
set_irq_type(IXP4XX_GPIO_IRQ(GPIO_IRQ_ETHA), IRQ_TYPE_LEVEL_LOW);
set_irq_type(IXP4XX_GPIO_IRQ(GPIO_IRQ_ETHB), IRQ_TYPE_LEVEL_LOW);
set_irq_type(IXP4XX_GPIO_IRQ(GPIO_IRQ_NEC), IRQ_TYPE_LEVEL_LOW);
set_irq_type(IXP4XX_GPIO_IRQ(GPIO_IRQ_MPCI), IRQ_TYPE_LEVEL_LOW);
ixp4xx_pci_preinit();
}
static void __init gmlr_pci_postinit(void)
{
if ((hw_bits & CFG_HW_USB_PORTS) >= 2 &&
(hw_bits & CFG_HW_USB_PORTS) < 5) {
/* need to adjust number of USB ports on NEC chip */
u32 value, addr = BIT(32 - SLOT_NEC) | 0xE0;
if (!ixp4xx_pci_read(addr, NP_CMD_CONFIGREAD, &value)) {
value &= ~7;
value |= (hw_bits & CFG_HW_USB_PORTS);
ixp4xx_pci_write(addr, NP_CMD_CONFIGWRITE, value);
}
}
}
static int __init gmlr_map_irq(struct pci_dev *dev, u8 slot, u8 pin)
{
switch(slot) {
case SLOT_ETHA: return IXP4XX_GPIO_IRQ(GPIO_IRQ_ETHA);
case SLOT_ETHB: return IXP4XX_GPIO_IRQ(GPIO_IRQ_ETHB);
case SLOT_NEC: return IXP4XX_GPIO_IRQ(GPIO_IRQ_NEC);
default: return IXP4XX_GPIO_IRQ(GPIO_IRQ_MPCI);
}
}
static struct hw_pci gmlr_hw_pci __initdata = {
.nr_controllers = 1,
.preinit = gmlr_pci_preinit,
.postinit = gmlr_pci_postinit,
.swizzle = pci_std_swizzle,
.setup = ixp4xx_setup,
.scan = ixp4xx_scan_bus,
.map_irq = gmlr_map_irq,
};
static int __init gmlr_pci_init(void)
{
if (machine_is_goramo_mlr() &&
(hw_bits & (CFG_HW_USB_PORTS | CFG_HW_HAS_PCI_SLOT)))
pci_common_init(&gmlr_hw_pci);
return 0;
}
subsys_initcall(gmlr_pci_init);
#endif /* CONFIG_PCI */
MACHINE_START(GORAMO_MLR, "MultiLink")
/* Maintainer: Krzysztof Halasa */
.phys_io = IXP4XX_PERIPHERAL_BASE_PHYS,
.io_pg_offst = ((IXP4XX_PERIPHERAL_BASE_VIRT) >> 18) & 0xFFFC,
.map_io = ixp4xx_map_io,
.init_irq = ixp4xx_init_irq,
.timer = &ixp4xx_timer,
.boot_params = 0x0100,
.init_machine = gmlr_init,
MACHINE_END