linux/arch/x86/crypto/twofish-x86_64-asm_64-3way.S
Jussi Kivilinna d3f5188dfe crypto: x86/twofish - assembler clean-ups: use ENTRY/ENDPROC, localize jump labels
Signed-off-by: Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2013-01-20 10:16:51 +11:00

313 lines
6.9 KiB
ArmAsm

/*
* Twofish Cipher 3-way parallel algorithm (x86_64)
*
* Copyright (C) 2011 Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
* USA
*
*/
#include <linux/linkage.h>
.file "twofish-x86_64-asm-3way.S"
.text
/* structure of crypto context */
#define s0 0
#define s1 1024
#define s2 2048
#define s3 3072
#define w 4096
#define k 4128
/**********************************************************************
3-way twofish
**********************************************************************/
#define CTX %rdi
#define RIO %rdx
#define RAB0 %rax
#define RAB1 %rbx
#define RAB2 %rcx
#define RAB0d %eax
#define RAB1d %ebx
#define RAB2d %ecx
#define RAB0bh %ah
#define RAB1bh %bh
#define RAB2bh %ch
#define RAB0bl %al
#define RAB1bl %bl
#define RAB2bl %cl
#define RCD0 %r8
#define RCD1 %r9
#define RCD2 %r10
#define RCD0d %r8d
#define RCD1d %r9d
#define RCD2d %r10d
#define RX0 %rbp
#define RX1 %r11
#define RX2 %r12
#define RX0d %ebp
#define RX1d %r11d
#define RX2d %r12d
#define RY0 %r13
#define RY1 %r14
#define RY2 %r15
#define RY0d %r13d
#define RY1d %r14d
#define RY2d %r15d
#define RT0 %rdx
#define RT1 %rsi
#define RT0d %edx
#define RT1d %esi
#define do16bit_ror(rot, op1, op2, T0, T1, tmp1, tmp2, ab, dst) \
movzbl ab ## bl, tmp2 ## d; \
movzbl ab ## bh, tmp1 ## d; \
rorq $(rot), ab; \
op1##l T0(CTX, tmp2, 4), dst ## d; \
op2##l T1(CTX, tmp1, 4), dst ## d;
/*
* Combined G1 & G2 function. Reordered with help of rotates to have moves
* at begining.
*/
#define g1g2_3(ab, cd, Tx0, Tx1, Tx2, Tx3, Ty0, Ty1, Ty2, Ty3, x, y) \
/* G1,1 && G2,1 */ \
do16bit_ror(32, mov, xor, Tx0, Tx1, RT0, x ## 0, ab ## 0, x ## 0); \
do16bit_ror(48, mov, xor, Ty1, Ty2, RT0, y ## 0, ab ## 0, y ## 0); \
\
do16bit_ror(32, mov, xor, Tx0, Tx1, RT0, x ## 1, ab ## 1, x ## 1); \
do16bit_ror(48, mov, xor, Ty1, Ty2, RT0, y ## 1, ab ## 1, y ## 1); \
\
do16bit_ror(32, mov, xor, Tx0, Tx1, RT0, x ## 2, ab ## 2, x ## 2); \
do16bit_ror(48, mov, xor, Ty1, Ty2, RT0, y ## 2, ab ## 2, y ## 2); \
\
/* G1,2 && G2,2 */ \
do16bit_ror(32, xor, xor, Tx2, Tx3, RT0, RT1, ab ## 0, x ## 0); \
do16bit_ror(16, xor, xor, Ty3, Ty0, RT0, RT1, ab ## 0, y ## 0); \
xchgq cd ## 0, ab ## 0; \
\
do16bit_ror(32, xor, xor, Tx2, Tx3, RT0, RT1, ab ## 1, x ## 1); \
do16bit_ror(16, xor, xor, Ty3, Ty0, RT0, RT1, ab ## 1, y ## 1); \
xchgq cd ## 1, ab ## 1; \
\
do16bit_ror(32, xor, xor, Tx2, Tx3, RT0, RT1, ab ## 2, x ## 2); \
do16bit_ror(16, xor, xor, Ty3, Ty0, RT0, RT1, ab ## 2, y ## 2); \
xchgq cd ## 2, ab ## 2;
#define enc_round_end(ab, x, y, n) \
addl y ## d, x ## d; \
addl x ## d, y ## d; \
addl k+4*(2*(n))(CTX), x ## d; \
xorl ab ## d, x ## d; \
addl k+4*(2*(n)+1)(CTX), y ## d; \
shrq $32, ab; \
roll $1, ab ## d; \
xorl y ## d, ab ## d; \
shlq $32, ab; \
rorl $1, x ## d; \
orq x, ab;
#define dec_round_end(ba, x, y, n) \
addl y ## d, x ## d; \
addl x ## d, y ## d; \
addl k+4*(2*(n))(CTX), x ## d; \
addl k+4*(2*(n)+1)(CTX), y ## d; \
xorl ba ## d, y ## d; \
shrq $32, ba; \
roll $1, ba ## d; \
xorl x ## d, ba ## d; \
shlq $32, ba; \
rorl $1, y ## d; \
orq y, ba;
#define encrypt_round3(ab, cd, n) \
g1g2_3(ab, cd, s0, s1, s2, s3, s0, s1, s2, s3, RX, RY); \
\
enc_round_end(ab ## 0, RX0, RY0, n); \
enc_round_end(ab ## 1, RX1, RY1, n); \
enc_round_end(ab ## 2, RX2, RY2, n);
#define decrypt_round3(ba, dc, n) \
g1g2_3(ba, dc, s1, s2, s3, s0, s3, s0, s1, s2, RY, RX); \
\
dec_round_end(ba ## 0, RX0, RY0, n); \
dec_round_end(ba ## 1, RX1, RY1, n); \
dec_round_end(ba ## 2, RX2, RY2, n);
#define encrypt_cycle3(ab, cd, n) \
encrypt_round3(ab, cd, n*2); \
encrypt_round3(ab, cd, (n*2)+1);
#define decrypt_cycle3(ba, dc, n) \
decrypt_round3(ba, dc, (n*2)+1); \
decrypt_round3(ba, dc, (n*2));
#define inpack3(in, n, xy, m) \
movq 4*(n)(in), xy ## 0; \
xorq w+4*m(CTX), xy ## 0; \
\
movq 4*(4+(n))(in), xy ## 1; \
xorq w+4*m(CTX), xy ## 1; \
\
movq 4*(8+(n))(in), xy ## 2; \
xorq w+4*m(CTX), xy ## 2;
#define outunpack3(op, out, n, xy, m) \
xorq w+4*m(CTX), xy ## 0; \
op ## q xy ## 0, 4*(n)(out); \
\
xorq w+4*m(CTX), xy ## 1; \
op ## q xy ## 1, 4*(4+(n))(out); \
\
xorq w+4*m(CTX), xy ## 2; \
op ## q xy ## 2, 4*(8+(n))(out);
#define inpack_enc3() \
inpack3(RIO, 0, RAB, 0); \
inpack3(RIO, 2, RCD, 2);
#define outunpack_enc3(op) \
outunpack3(op, RIO, 2, RAB, 6); \
outunpack3(op, RIO, 0, RCD, 4);
#define inpack_dec3() \
inpack3(RIO, 0, RAB, 4); \
rorq $32, RAB0; \
rorq $32, RAB1; \
rorq $32, RAB2; \
inpack3(RIO, 2, RCD, 6); \
rorq $32, RCD0; \
rorq $32, RCD1; \
rorq $32, RCD2;
#define outunpack_dec3() \
rorq $32, RCD0; \
rorq $32, RCD1; \
rorq $32, RCD2; \
outunpack3(mov, RIO, 0, RCD, 0); \
rorq $32, RAB0; \
rorq $32, RAB1; \
rorq $32, RAB2; \
outunpack3(mov, RIO, 2, RAB, 2);
ENTRY(__twofish_enc_blk_3way)
/* input:
* %rdi: ctx, CTX
* %rsi: dst
* %rdx: src, RIO
* %rcx: bool, if true: xor output
*/
pushq %r15;
pushq %r14;
pushq %r13;
pushq %r12;
pushq %rbp;
pushq %rbx;
pushq %rcx; /* bool xor */
pushq %rsi; /* dst */
inpack_enc3();
encrypt_cycle3(RAB, RCD, 0);
encrypt_cycle3(RAB, RCD, 1);
encrypt_cycle3(RAB, RCD, 2);
encrypt_cycle3(RAB, RCD, 3);
encrypt_cycle3(RAB, RCD, 4);
encrypt_cycle3(RAB, RCD, 5);
encrypt_cycle3(RAB, RCD, 6);
encrypt_cycle3(RAB, RCD, 7);
popq RIO; /* dst */
popq %rbp; /* bool xor */
testb %bpl, %bpl;
jnz .L__enc_xor3;
outunpack_enc3(mov);
popq %rbx;
popq %rbp;
popq %r12;
popq %r13;
popq %r14;
popq %r15;
ret;
.L__enc_xor3:
outunpack_enc3(xor);
popq %rbx;
popq %rbp;
popq %r12;
popq %r13;
popq %r14;
popq %r15;
ret;
ENDPROC(__twofish_enc_blk_3way)
ENTRY(twofish_dec_blk_3way)
/* input:
* %rdi: ctx, CTX
* %rsi: dst
* %rdx: src, RIO
*/
pushq %r15;
pushq %r14;
pushq %r13;
pushq %r12;
pushq %rbp;
pushq %rbx;
pushq %rsi; /* dst */
inpack_dec3();
decrypt_cycle3(RAB, RCD, 7);
decrypt_cycle3(RAB, RCD, 6);
decrypt_cycle3(RAB, RCD, 5);
decrypt_cycle3(RAB, RCD, 4);
decrypt_cycle3(RAB, RCD, 3);
decrypt_cycle3(RAB, RCD, 2);
decrypt_cycle3(RAB, RCD, 1);
decrypt_cycle3(RAB, RCD, 0);
popq RIO; /* dst */
outunpack_dec3();
popq %rbx;
popq %rbp;
popq %r12;
popq %r13;
popq %r14;
popq %r15;
ret;
ENDPROC(twofish_dec_blk_3way)