2972 lines
75 KiB
C
2972 lines
75 KiB
C
/*
|
|
* Simple NUMA memory policy for the Linux kernel.
|
|
*
|
|
* Copyright 2003,2004 Andi Kleen, SuSE Labs.
|
|
* (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
|
|
* Subject to the GNU Public License, version 2.
|
|
*
|
|
* NUMA policy allows the user to give hints in which node(s) memory should
|
|
* be allocated.
|
|
*
|
|
* Support four policies per VMA and per process:
|
|
*
|
|
* The VMA policy has priority over the process policy for a page fault.
|
|
*
|
|
* interleave Allocate memory interleaved over a set of nodes,
|
|
* with normal fallback if it fails.
|
|
* For VMA based allocations this interleaves based on the
|
|
* offset into the backing object or offset into the mapping
|
|
* for anonymous memory. For process policy an process counter
|
|
* is used.
|
|
*
|
|
* bind Only allocate memory on a specific set of nodes,
|
|
* no fallback.
|
|
* FIXME: memory is allocated starting with the first node
|
|
* to the last. It would be better if bind would truly restrict
|
|
* the allocation to memory nodes instead
|
|
*
|
|
* preferred Try a specific node first before normal fallback.
|
|
* As a special case NUMA_NO_NODE here means do the allocation
|
|
* on the local CPU. This is normally identical to default,
|
|
* but useful to set in a VMA when you have a non default
|
|
* process policy.
|
|
*
|
|
* default Allocate on the local node first, or when on a VMA
|
|
* use the process policy. This is what Linux always did
|
|
* in a NUMA aware kernel and still does by, ahem, default.
|
|
*
|
|
* The process policy is applied for most non interrupt memory allocations
|
|
* in that process' context. Interrupts ignore the policies and always
|
|
* try to allocate on the local CPU. The VMA policy is only applied for memory
|
|
* allocations for a VMA in the VM.
|
|
*
|
|
* Currently there are a few corner cases in swapping where the policy
|
|
* is not applied, but the majority should be handled. When process policy
|
|
* is used it is not remembered over swap outs/swap ins.
|
|
*
|
|
* Only the highest zone in the zone hierarchy gets policied. Allocations
|
|
* requesting a lower zone just use default policy. This implies that
|
|
* on systems with highmem kernel lowmem allocation don't get policied.
|
|
* Same with GFP_DMA allocations.
|
|
*
|
|
* For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
|
|
* all users and remembered even when nobody has memory mapped.
|
|
*/
|
|
|
|
/* Notebook:
|
|
fix mmap readahead to honour policy and enable policy for any page cache
|
|
object
|
|
statistics for bigpages
|
|
global policy for page cache? currently it uses process policy. Requires
|
|
first item above.
|
|
handle mremap for shared memory (currently ignored for the policy)
|
|
grows down?
|
|
make bind policy root only? It can trigger oom much faster and the
|
|
kernel is not always grateful with that.
|
|
*/
|
|
|
|
#include <linux/mempolicy.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/nodemask.h>
|
|
#include <linux/cpuset.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/string.h>
|
|
#include <linux/export.h>
|
|
#include <linux/nsproxy.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/init.h>
|
|
#include <linux/compat.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/migrate.h>
|
|
#include <linux/ksm.h>
|
|
#include <linux/rmap.h>
|
|
#include <linux/security.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/mm_inline.h>
|
|
#include <linux/mmu_notifier.h>
|
|
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/uaccess.h>
|
|
#include <linux/random.h>
|
|
|
|
#include "internal.h"
|
|
|
|
/* Internal flags */
|
|
#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
|
|
#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
|
|
|
|
static struct kmem_cache *policy_cache;
|
|
static struct kmem_cache *sn_cache;
|
|
|
|
/* Highest zone. An specific allocation for a zone below that is not
|
|
policied. */
|
|
enum zone_type policy_zone = 0;
|
|
|
|
/*
|
|
* run-time system-wide default policy => local allocation
|
|
*/
|
|
static struct mempolicy default_policy = {
|
|
.refcnt = ATOMIC_INIT(1), /* never free it */
|
|
.mode = MPOL_PREFERRED,
|
|
.flags = MPOL_F_LOCAL,
|
|
};
|
|
|
|
static struct mempolicy preferred_node_policy[MAX_NUMNODES];
|
|
|
|
static struct mempolicy *get_task_policy(struct task_struct *p)
|
|
{
|
|
struct mempolicy *pol = p->mempolicy;
|
|
|
|
if (!pol) {
|
|
int node = numa_node_id();
|
|
|
|
if (node != NUMA_NO_NODE) {
|
|
pol = &preferred_node_policy[node];
|
|
/*
|
|
* preferred_node_policy is not initialised early in
|
|
* boot
|
|
*/
|
|
if (!pol->mode)
|
|
pol = NULL;
|
|
}
|
|
}
|
|
|
|
return pol;
|
|
}
|
|
|
|
static const struct mempolicy_operations {
|
|
int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
|
|
/*
|
|
* If read-side task has no lock to protect task->mempolicy, write-side
|
|
* task will rebind the task->mempolicy by two step. The first step is
|
|
* setting all the newly nodes, and the second step is cleaning all the
|
|
* disallowed nodes. In this way, we can avoid finding no node to alloc
|
|
* page.
|
|
* If we have a lock to protect task->mempolicy in read-side, we do
|
|
* rebind directly.
|
|
*
|
|
* step:
|
|
* MPOL_REBIND_ONCE - do rebind work at once
|
|
* MPOL_REBIND_STEP1 - set all the newly nodes
|
|
* MPOL_REBIND_STEP2 - clean all the disallowed nodes
|
|
*/
|
|
void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
|
|
enum mpol_rebind_step step);
|
|
} mpol_ops[MPOL_MAX];
|
|
|
|
/* Check that the nodemask contains at least one populated zone */
|
|
static int is_valid_nodemask(const nodemask_t *nodemask)
|
|
{
|
|
return nodes_intersects(*nodemask, node_states[N_MEMORY]);
|
|
}
|
|
|
|
static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
|
|
{
|
|
return pol->flags & MPOL_MODE_FLAGS;
|
|
}
|
|
|
|
static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
|
|
const nodemask_t *rel)
|
|
{
|
|
nodemask_t tmp;
|
|
nodes_fold(tmp, *orig, nodes_weight(*rel));
|
|
nodes_onto(*ret, tmp, *rel);
|
|
}
|
|
|
|
static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
|
|
{
|
|
if (nodes_empty(*nodes))
|
|
return -EINVAL;
|
|
pol->v.nodes = *nodes;
|
|
return 0;
|
|
}
|
|
|
|
static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
|
|
{
|
|
if (!nodes)
|
|
pol->flags |= MPOL_F_LOCAL; /* local allocation */
|
|
else if (nodes_empty(*nodes))
|
|
return -EINVAL; /* no allowed nodes */
|
|
else
|
|
pol->v.preferred_node = first_node(*nodes);
|
|
return 0;
|
|
}
|
|
|
|
static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
|
|
{
|
|
if (!is_valid_nodemask(nodes))
|
|
return -EINVAL;
|
|
pol->v.nodes = *nodes;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
|
|
* any, for the new policy. mpol_new() has already validated the nodes
|
|
* parameter with respect to the policy mode and flags. But, we need to
|
|
* handle an empty nodemask with MPOL_PREFERRED here.
|
|
*
|
|
* Must be called holding task's alloc_lock to protect task's mems_allowed
|
|
* and mempolicy. May also be called holding the mmap_semaphore for write.
|
|
*/
|
|
static int mpol_set_nodemask(struct mempolicy *pol,
|
|
const nodemask_t *nodes, struct nodemask_scratch *nsc)
|
|
{
|
|
int ret;
|
|
|
|
/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
|
|
if (pol == NULL)
|
|
return 0;
|
|
/* Check N_MEMORY */
|
|
nodes_and(nsc->mask1,
|
|
cpuset_current_mems_allowed, node_states[N_MEMORY]);
|
|
|
|
VM_BUG_ON(!nodes);
|
|
if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
|
|
nodes = NULL; /* explicit local allocation */
|
|
else {
|
|
if (pol->flags & MPOL_F_RELATIVE_NODES)
|
|
mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
|
|
else
|
|
nodes_and(nsc->mask2, *nodes, nsc->mask1);
|
|
|
|
if (mpol_store_user_nodemask(pol))
|
|
pol->w.user_nodemask = *nodes;
|
|
else
|
|
pol->w.cpuset_mems_allowed =
|
|
cpuset_current_mems_allowed;
|
|
}
|
|
|
|
if (nodes)
|
|
ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
|
|
else
|
|
ret = mpol_ops[pol->mode].create(pol, NULL);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This function just creates a new policy, does some check and simple
|
|
* initialization. You must invoke mpol_set_nodemask() to set nodes.
|
|
*/
|
|
static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
|
|
nodemask_t *nodes)
|
|
{
|
|
struct mempolicy *policy;
|
|
|
|
pr_debug("setting mode %d flags %d nodes[0] %lx\n",
|
|
mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
|
|
|
|
if (mode == MPOL_DEFAULT) {
|
|
if (nodes && !nodes_empty(*nodes))
|
|
return ERR_PTR(-EINVAL);
|
|
return NULL;
|
|
}
|
|
VM_BUG_ON(!nodes);
|
|
|
|
/*
|
|
* MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
|
|
* MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
|
|
* All other modes require a valid pointer to a non-empty nodemask.
|
|
*/
|
|
if (mode == MPOL_PREFERRED) {
|
|
if (nodes_empty(*nodes)) {
|
|
if (((flags & MPOL_F_STATIC_NODES) ||
|
|
(flags & MPOL_F_RELATIVE_NODES)))
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
} else if (mode == MPOL_LOCAL) {
|
|
if (!nodes_empty(*nodes))
|
|
return ERR_PTR(-EINVAL);
|
|
mode = MPOL_PREFERRED;
|
|
} else if (nodes_empty(*nodes))
|
|
return ERR_PTR(-EINVAL);
|
|
policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
|
|
if (!policy)
|
|
return ERR_PTR(-ENOMEM);
|
|
atomic_set(&policy->refcnt, 1);
|
|
policy->mode = mode;
|
|
policy->flags = flags;
|
|
|
|
return policy;
|
|
}
|
|
|
|
/* Slow path of a mpol destructor. */
|
|
void __mpol_put(struct mempolicy *p)
|
|
{
|
|
if (!atomic_dec_and_test(&p->refcnt))
|
|
return;
|
|
kmem_cache_free(policy_cache, p);
|
|
}
|
|
|
|
static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
|
|
enum mpol_rebind_step step)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* step:
|
|
* MPOL_REBIND_ONCE - do rebind work at once
|
|
* MPOL_REBIND_STEP1 - set all the newly nodes
|
|
* MPOL_REBIND_STEP2 - clean all the disallowed nodes
|
|
*/
|
|
static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
|
|
enum mpol_rebind_step step)
|
|
{
|
|
nodemask_t tmp;
|
|
|
|
if (pol->flags & MPOL_F_STATIC_NODES)
|
|
nodes_and(tmp, pol->w.user_nodemask, *nodes);
|
|
else if (pol->flags & MPOL_F_RELATIVE_NODES)
|
|
mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
|
|
else {
|
|
/*
|
|
* if step == 1, we use ->w.cpuset_mems_allowed to cache the
|
|
* result
|
|
*/
|
|
if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
|
|
nodes_remap(tmp, pol->v.nodes,
|
|
pol->w.cpuset_mems_allowed, *nodes);
|
|
pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
|
|
} else if (step == MPOL_REBIND_STEP2) {
|
|
tmp = pol->w.cpuset_mems_allowed;
|
|
pol->w.cpuset_mems_allowed = *nodes;
|
|
} else
|
|
BUG();
|
|
}
|
|
|
|
if (nodes_empty(tmp))
|
|
tmp = *nodes;
|
|
|
|
if (step == MPOL_REBIND_STEP1)
|
|
nodes_or(pol->v.nodes, pol->v.nodes, tmp);
|
|
else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
|
|
pol->v.nodes = tmp;
|
|
else
|
|
BUG();
|
|
|
|
if (!node_isset(current->il_next, tmp)) {
|
|
current->il_next = next_node(current->il_next, tmp);
|
|
if (current->il_next >= MAX_NUMNODES)
|
|
current->il_next = first_node(tmp);
|
|
if (current->il_next >= MAX_NUMNODES)
|
|
current->il_next = numa_node_id();
|
|
}
|
|
}
|
|
|
|
static void mpol_rebind_preferred(struct mempolicy *pol,
|
|
const nodemask_t *nodes,
|
|
enum mpol_rebind_step step)
|
|
{
|
|
nodemask_t tmp;
|
|
|
|
if (pol->flags & MPOL_F_STATIC_NODES) {
|
|
int node = first_node(pol->w.user_nodemask);
|
|
|
|
if (node_isset(node, *nodes)) {
|
|
pol->v.preferred_node = node;
|
|
pol->flags &= ~MPOL_F_LOCAL;
|
|
} else
|
|
pol->flags |= MPOL_F_LOCAL;
|
|
} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
|
|
mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
|
|
pol->v.preferred_node = first_node(tmp);
|
|
} else if (!(pol->flags & MPOL_F_LOCAL)) {
|
|
pol->v.preferred_node = node_remap(pol->v.preferred_node,
|
|
pol->w.cpuset_mems_allowed,
|
|
*nodes);
|
|
pol->w.cpuset_mems_allowed = *nodes;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* mpol_rebind_policy - Migrate a policy to a different set of nodes
|
|
*
|
|
* If read-side task has no lock to protect task->mempolicy, write-side
|
|
* task will rebind the task->mempolicy by two step. The first step is
|
|
* setting all the newly nodes, and the second step is cleaning all the
|
|
* disallowed nodes. In this way, we can avoid finding no node to alloc
|
|
* page.
|
|
* If we have a lock to protect task->mempolicy in read-side, we do
|
|
* rebind directly.
|
|
*
|
|
* step:
|
|
* MPOL_REBIND_ONCE - do rebind work at once
|
|
* MPOL_REBIND_STEP1 - set all the newly nodes
|
|
* MPOL_REBIND_STEP2 - clean all the disallowed nodes
|
|
*/
|
|
static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
|
|
enum mpol_rebind_step step)
|
|
{
|
|
if (!pol)
|
|
return;
|
|
if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
|
|
nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
|
|
return;
|
|
|
|
if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
|
|
return;
|
|
|
|
if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
|
|
BUG();
|
|
|
|
if (step == MPOL_REBIND_STEP1)
|
|
pol->flags |= MPOL_F_REBINDING;
|
|
else if (step == MPOL_REBIND_STEP2)
|
|
pol->flags &= ~MPOL_F_REBINDING;
|
|
else if (step >= MPOL_REBIND_NSTEP)
|
|
BUG();
|
|
|
|
mpol_ops[pol->mode].rebind(pol, newmask, step);
|
|
}
|
|
|
|
/*
|
|
* Wrapper for mpol_rebind_policy() that just requires task
|
|
* pointer, and updates task mempolicy.
|
|
*
|
|
* Called with task's alloc_lock held.
|
|
*/
|
|
|
|
void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
|
|
enum mpol_rebind_step step)
|
|
{
|
|
mpol_rebind_policy(tsk->mempolicy, new, step);
|
|
}
|
|
|
|
/*
|
|
* Rebind each vma in mm to new nodemask.
|
|
*
|
|
* Call holding a reference to mm. Takes mm->mmap_sem during call.
|
|
*/
|
|
|
|
void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
|
|
down_write(&mm->mmap_sem);
|
|
for (vma = mm->mmap; vma; vma = vma->vm_next)
|
|
mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
|
|
up_write(&mm->mmap_sem);
|
|
}
|
|
|
|
static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
|
|
[MPOL_DEFAULT] = {
|
|
.rebind = mpol_rebind_default,
|
|
},
|
|
[MPOL_INTERLEAVE] = {
|
|
.create = mpol_new_interleave,
|
|
.rebind = mpol_rebind_nodemask,
|
|
},
|
|
[MPOL_PREFERRED] = {
|
|
.create = mpol_new_preferred,
|
|
.rebind = mpol_rebind_preferred,
|
|
},
|
|
[MPOL_BIND] = {
|
|
.create = mpol_new_bind,
|
|
.rebind = mpol_rebind_nodemask,
|
|
},
|
|
};
|
|
|
|
static void migrate_page_add(struct page *page, struct list_head *pagelist,
|
|
unsigned long flags);
|
|
|
|
/*
|
|
* Scan through pages checking if pages follow certain conditions,
|
|
* and move them to the pagelist if they do.
|
|
*/
|
|
static int queue_pages_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
|
|
unsigned long addr, unsigned long end,
|
|
const nodemask_t *nodes, unsigned long flags,
|
|
void *private)
|
|
{
|
|
pte_t *orig_pte;
|
|
pte_t *pte;
|
|
spinlock_t *ptl;
|
|
|
|
orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
|
|
do {
|
|
struct page *page;
|
|
int nid;
|
|
|
|
if (!pte_present(*pte))
|
|
continue;
|
|
page = vm_normal_page(vma, addr, *pte);
|
|
if (!page)
|
|
continue;
|
|
/*
|
|
* vm_normal_page() filters out zero pages, but there might
|
|
* still be PageReserved pages to skip, perhaps in a VDSO.
|
|
*/
|
|
if (PageReserved(page))
|
|
continue;
|
|
nid = page_to_nid(page);
|
|
if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
|
|
continue;
|
|
|
|
if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
|
|
migrate_page_add(page, private, flags);
|
|
else
|
|
break;
|
|
} while (pte++, addr += PAGE_SIZE, addr != end);
|
|
pte_unmap_unlock(orig_pte, ptl);
|
|
return addr != end;
|
|
}
|
|
|
|
static void queue_pages_hugetlb_pmd_range(struct vm_area_struct *vma,
|
|
pmd_t *pmd, const nodemask_t *nodes, unsigned long flags,
|
|
void *private)
|
|
{
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
int nid;
|
|
struct page *page;
|
|
spinlock_t *ptl;
|
|
|
|
ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, (pte_t *)pmd);
|
|
page = pte_page(huge_ptep_get((pte_t *)pmd));
|
|
nid = page_to_nid(page);
|
|
if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
|
|
goto unlock;
|
|
/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
|
|
if (flags & (MPOL_MF_MOVE_ALL) ||
|
|
(flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
|
|
isolate_huge_page(page, private);
|
|
unlock:
|
|
spin_unlock(ptl);
|
|
#else
|
|
BUG();
|
|
#endif
|
|
}
|
|
|
|
static inline int queue_pages_pmd_range(struct vm_area_struct *vma, pud_t *pud,
|
|
unsigned long addr, unsigned long end,
|
|
const nodemask_t *nodes, unsigned long flags,
|
|
void *private)
|
|
{
|
|
pmd_t *pmd;
|
|
unsigned long next;
|
|
|
|
pmd = pmd_offset(pud, addr);
|
|
do {
|
|
next = pmd_addr_end(addr, end);
|
|
if (!pmd_present(*pmd))
|
|
continue;
|
|
if (pmd_huge(*pmd) && is_vm_hugetlb_page(vma)) {
|
|
queue_pages_hugetlb_pmd_range(vma, pmd, nodes,
|
|
flags, private);
|
|
continue;
|
|
}
|
|
split_huge_page_pmd(vma, addr, pmd);
|
|
if (pmd_none_or_trans_huge_or_clear_bad(pmd))
|
|
continue;
|
|
if (queue_pages_pte_range(vma, pmd, addr, next, nodes,
|
|
flags, private))
|
|
return -EIO;
|
|
} while (pmd++, addr = next, addr != end);
|
|
return 0;
|
|
}
|
|
|
|
static inline int queue_pages_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
|
|
unsigned long addr, unsigned long end,
|
|
const nodemask_t *nodes, unsigned long flags,
|
|
void *private)
|
|
{
|
|
pud_t *pud;
|
|
unsigned long next;
|
|
|
|
pud = pud_offset(pgd, addr);
|
|
do {
|
|
next = pud_addr_end(addr, end);
|
|
if (pud_huge(*pud) && is_vm_hugetlb_page(vma))
|
|
continue;
|
|
if (pud_none_or_clear_bad(pud))
|
|
continue;
|
|
if (queue_pages_pmd_range(vma, pud, addr, next, nodes,
|
|
flags, private))
|
|
return -EIO;
|
|
} while (pud++, addr = next, addr != end);
|
|
return 0;
|
|
}
|
|
|
|
static inline int queue_pages_pgd_range(struct vm_area_struct *vma,
|
|
unsigned long addr, unsigned long end,
|
|
const nodemask_t *nodes, unsigned long flags,
|
|
void *private)
|
|
{
|
|
pgd_t *pgd;
|
|
unsigned long next;
|
|
|
|
pgd = pgd_offset(vma->vm_mm, addr);
|
|
do {
|
|
next = pgd_addr_end(addr, end);
|
|
if (pgd_none_or_clear_bad(pgd))
|
|
continue;
|
|
if (queue_pages_pud_range(vma, pgd, addr, next, nodes,
|
|
flags, private))
|
|
return -EIO;
|
|
} while (pgd++, addr = next, addr != end);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
|
|
/*
|
|
* This is used to mark a range of virtual addresses to be inaccessible.
|
|
* These are later cleared by a NUMA hinting fault. Depending on these
|
|
* faults, pages may be migrated for better NUMA placement.
|
|
*
|
|
* This is assuming that NUMA faults are handled using PROT_NONE. If
|
|
* an architecture makes a different choice, it will need further
|
|
* changes to the core.
|
|
*/
|
|
unsigned long change_prot_numa(struct vm_area_struct *vma,
|
|
unsigned long addr, unsigned long end)
|
|
{
|
|
int nr_updated;
|
|
BUILD_BUG_ON(_PAGE_NUMA != _PAGE_PROTNONE);
|
|
|
|
nr_updated = change_protection(vma, addr, end, vma->vm_page_prot, 0, 1);
|
|
if (nr_updated)
|
|
count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
|
|
|
|
return nr_updated;
|
|
}
|
|
#else
|
|
static unsigned long change_prot_numa(struct vm_area_struct *vma,
|
|
unsigned long addr, unsigned long end)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_ARCH_USES_NUMA_PROT_NONE */
|
|
|
|
/*
|
|
* Walk through page tables and collect pages to be migrated.
|
|
*
|
|
* If pages found in a given range are on a set of nodes (determined by
|
|
* @nodes and @flags,) it's isolated and queued to the pagelist which is
|
|
* passed via @private.)
|
|
*/
|
|
static struct vm_area_struct *
|
|
queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
|
|
const nodemask_t *nodes, unsigned long flags, void *private)
|
|
{
|
|
int err;
|
|
struct vm_area_struct *first, *vma, *prev;
|
|
|
|
|
|
first = find_vma(mm, start);
|
|
if (!first)
|
|
return ERR_PTR(-EFAULT);
|
|
prev = NULL;
|
|
for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
|
|
unsigned long endvma = vma->vm_end;
|
|
|
|
if (endvma > end)
|
|
endvma = end;
|
|
if (vma->vm_start > start)
|
|
start = vma->vm_start;
|
|
|
|
if (!(flags & MPOL_MF_DISCONTIG_OK)) {
|
|
if (!vma->vm_next && vma->vm_end < end)
|
|
return ERR_PTR(-EFAULT);
|
|
if (prev && prev->vm_end < vma->vm_start)
|
|
return ERR_PTR(-EFAULT);
|
|
}
|
|
|
|
if (flags & MPOL_MF_LAZY) {
|
|
change_prot_numa(vma, start, endvma);
|
|
goto next;
|
|
}
|
|
|
|
if ((flags & MPOL_MF_STRICT) ||
|
|
((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
|
|
vma_migratable(vma))) {
|
|
|
|
err = queue_pages_pgd_range(vma, start, endvma, nodes,
|
|
flags, private);
|
|
if (err) {
|
|
first = ERR_PTR(err);
|
|
break;
|
|
}
|
|
}
|
|
next:
|
|
prev = vma;
|
|
}
|
|
return first;
|
|
}
|
|
|
|
/*
|
|
* Apply policy to a single VMA
|
|
* This must be called with the mmap_sem held for writing.
|
|
*/
|
|
static int vma_replace_policy(struct vm_area_struct *vma,
|
|
struct mempolicy *pol)
|
|
{
|
|
int err;
|
|
struct mempolicy *old;
|
|
struct mempolicy *new;
|
|
|
|
pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
|
|
vma->vm_start, vma->vm_end, vma->vm_pgoff,
|
|
vma->vm_ops, vma->vm_file,
|
|
vma->vm_ops ? vma->vm_ops->set_policy : NULL);
|
|
|
|
new = mpol_dup(pol);
|
|
if (IS_ERR(new))
|
|
return PTR_ERR(new);
|
|
|
|
if (vma->vm_ops && vma->vm_ops->set_policy) {
|
|
err = vma->vm_ops->set_policy(vma, new);
|
|
if (err)
|
|
goto err_out;
|
|
}
|
|
|
|
old = vma->vm_policy;
|
|
vma->vm_policy = new; /* protected by mmap_sem */
|
|
mpol_put(old);
|
|
|
|
return 0;
|
|
err_out:
|
|
mpol_put(new);
|
|
return err;
|
|
}
|
|
|
|
/* Step 2: apply policy to a range and do splits. */
|
|
static int mbind_range(struct mm_struct *mm, unsigned long start,
|
|
unsigned long end, struct mempolicy *new_pol)
|
|
{
|
|
struct vm_area_struct *next;
|
|
struct vm_area_struct *prev;
|
|
struct vm_area_struct *vma;
|
|
int err = 0;
|
|
pgoff_t pgoff;
|
|
unsigned long vmstart;
|
|
unsigned long vmend;
|
|
|
|
vma = find_vma(mm, start);
|
|
if (!vma || vma->vm_start > start)
|
|
return -EFAULT;
|
|
|
|
prev = vma->vm_prev;
|
|
if (start > vma->vm_start)
|
|
prev = vma;
|
|
|
|
for (; vma && vma->vm_start < end; prev = vma, vma = next) {
|
|
next = vma->vm_next;
|
|
vmstart = max(start, vma->vm_start);
|
|
vmend = min(end, vma->vm_end);
|
|
|
|
if (mpol_equal(vma_policy(vma), new_pol))
|
|
continue;
|
|
|
|
pgoff = vma->vm_pgoff +
|
|
((vmstart - vma->vm_start) >> PAGE_SHIFT);
|
|
prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
|
|
vma->anon_vma, vma->vm_file, pgoff,
|
|
new_pol);
|
|
if (prev) {
|
|
vma = prev;
|
|
next = vma->vm_next;
|
|
if (mpol_equal(vma_policy(vma), new_pol))
|
|
continue;
|
|
/* vma_merge() joined vma && vma->next, case 8 */
|
|
goto replace;
|
|
}
|
|
if (vma->vm_start != vmstart) {
|
|
err = split_vma(vma->vm_mm, vma, vmstart, 1);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
if (vma->vm_end != vmend) {
|
|
err = split_vma(vma->vm_mm, vma, vmend, 0);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
replace:
|
|
err = vma_replace_policy(vma, new_pol);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Update task->flags PF_MEMPOLICY bit: set iff non-default
|
|
* mempolicy. Allows more rapid checking of this (combined perhaps
|
|
* with other PF_* flag bits) on memory allocation hot code paths.
|
|
*
|
|
* If called from outside this file, the task 'p' should -only- be
|
|
* a newly forked child not yet visible on the task list, because
|
|
* manipulating the task flags of a visible task is not safe.
|
|
*
|
|
* The above limitation is why this routine has the funny name
|
|
* mpol_fix_fork_child_flag().
|
|
*
|
|
* It is also safe to call this with a task pointer of current,
|
|
* which the static wrapper mpol_set_task_struct_flag() does,
|
|
* for use within this file.
|
|
*/
|
|
|
|
void mpol_fix_fork_child_flag(struct task_struct *p)
|
|
{
|
|
if (p->mempolicy)
|
|
p->flags |= PF_MEMPOLICY;
|
|
else
|
|
p->flags &= ~PF_MEMPOLICY;
|
|
}
|
|
|
|
static void mpol_set_task_struct_flag(void)
|
|
{
|
|
mpol_fix_fork_child_flag(current);
|
|
}
|
|
|
|
/* Set the process memory policy */
|
|
static long do_set_mempolicy(unsigned short mode, unsigned short flags,
|
|
nodemask_t *nodes)
|
|
{
|
|
struct mempolicy *new, *old;
|
|
struct mm_struct *mm = current->mm;
|
|
NODEMASK_SCRATCH(scratch);
|
|
int ret;
|
|
|
|
if (!scratch)
|
|
return -ENOMEM;
|
|
|
|
new = mpol_new(mode, flags, nodes);
|
|
if (IS_ERR(new)) {
|
|
ret = PTR_ERR(new);
|
|
goto out;
|
|
}
|
|
/*
|
|
* prevent changing our mempolicy while show_numa_maps()
|
|
* is using it.
|
|
* Note: do_set_mempolicy() can be called at init time
|
|
* with no 'mm'.
|
|
*/
|
|
if (mm)
|
|
down_write(&mm->mmap_sem);
|
|
task_lock(current);
|
|
ret = mpol_set_nodemask(new, nodes, scratch);
|
|
if (ret) {
|
|
task_unlock(current);
|
|
if (mm)
|
|
up_write(&mm->mmap_sem);
|
|
mpol_put(new);
|
|
goto out;
|
|
}
|
|
old = current->mempolicy;
|
|
current->mempolicy = new;
|
|
mpol_set_task_struct_flag();
|
|
if (new && new->mode == MPOL_INTERLEAVE &&
|
|
nodes_weight(new->v.nodes))
|
|
current->il_next = first_node(new->v.nodes);
|
|
task_unlock(current);
|
|
if (mm)
|
|
up_write(&mm->mmap_sem);
|
|
|
|
mpol_put(old);
|
|
ret = 0;
|
|
out:
|
|
NODEMASK_SCRATCH_FREE(scratch);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Return nodemask for policy for get_mempolicy() query
|
|
*
|
|
* Called with task's alloc_lock held
|
|
*/
|
|
static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
|
|
{
|
|
nodes_clear(*nodes);
|
|
if (p == &default_policy)
|
|
return;
|
|
|
|
switch (p->mode) {
|
|
case MPOL_BIND:
|
|
/* Fall through */
|
|
case MPOL_INTERLEAVE:
|
|
*nodes = p->v.nodes;
|
|
break;
|
|
case MPOL_PREFERRED:
|
|
if (!(p->flags & MPOL_F_LOCAL))
|
|
node_set(p->v.preferred_node, *nodes);
|
|
/* else return empty node mask for local allocation */
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
static int lookup_node(struct mm_struct *mm, unsigned long addr)
|
|
{
|
|
struct page *p;
|
|
int err;
|
|
|
|
err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
|
|
if (err >= 0) {
|
|
err = page_to_nid(p);
|
|
put_page(p);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
/* Retrieve NUMA policy */
|
|
static long do_get_mempolicy(int *policy, nodemask_t *nmask,
|
|
unsigned long addr, unsigned long flags)
|
|
{
|
|
int err;
|
|
struct mm_struct *mm = current->mm;
|
|
struct vm_area_struct *vma = NULL;
|
|
struct mempolicy *pol = current->mempolicy;
|
|
|
|
if (flags &
|
|
~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
|
|
return -EINVAL;
|
|
|
|
if (flags & MPOL_F_MEMS_ALLOWED) {
|
|
if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
|
|
return -EINVAL;
|
|
*policy = 0; /* just so it's initialized */
|
|
task_lock(current);
|
|
*nmask = cpuset_current_mems_allowed;
|
|
task_unlock(current);
|
|
return 0;
|
|
}
|
|
|
|
if (flags & MPOL_F_ADDR) {
|
|
/*
|
|
* Do NOT fall back to task policy if the
|
|
* vma/shared policy at addr is NULL. We
|
|
* want to return MPOL_DEFAULT in this case.
|
|
*/
|
|
down_read(&mm->mmap_sem);
|
|
vma = find_vma_intersection(mm, addr, addr+1);
|
|
if (!vma) {
|
|
up_read(&mm->mmap_sem);
|
|
return -EFAULT;
|
|
}
|
|
if (vma->vm_ops && vma->vm_ops->get_policy)
|
|
pol = vma->vm_ops->get_policy(vma, addr);
|
|
else
|
|
pol = vma->vm_policy;
|
|
} else if (addr)
|
|
return -EINVAL;
|
|
|
|
if (!pol)
|
|
pol = &default_policy; /* indicates default behavior */
|
|
|
|
if (flags & MPOL_F_NODE) {
|
|
if (flags & MPOL_F_ADDR) {
|
|
err = lookup_node(mm, addr);
|
|
if (err < 0)
|
|
goto out;
|
|
*policy = err;
|
|
} else if (pol == current->mempolicy &&
|
|
pol->mode == MPOL_INTERLEAVE) {
|
|
*policy = current->il_next;
|
|
} else {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
} else {
|
|
*policy = pol == &default_policy ? MPOL_DEFAULT :
|
|
pol->mode;
|
|
/*
|
|
* Internal mempolicy flags must be masked off before exposing
|
|
* the policy to userspace.
|
|
*/
|
|
*policy |= (pol->flags & MPOL_MODE_FLAGS);
|
|
}
|
|
|
|
if (vma) {
|
|
up_read(¤t->mm->mmap_sem);
|
|
vma = NULL;
|
|
}
|
|
|
|
err = 0;
|
|
if (nmask) {
|
|
if (mpol_store_user_nodemask(pol)) {
|
|
*nmask = pol->w.user_nodemask;
|
|
} else {
|
|
task_lock(current);
|
|
get_policy_nodemask(pol, nmask);
|
|
task_unlock(current);
|
|
}
|
|
}
|
|
|
|
out:
|
|
mpol_cond_put(pol);
|
|
if (vma)
|
|
up_read(¤t->mm->mmap_sem);
|
|
return err;
|
|
}
|
|
|
|
#ifdef CONFIG_MIGRATION
|
|
/*
|
|
* page migration
|
|
*/
|
|
static void migrate_page_add(struct page *page, struct list_head *pagelist,
|
|
unsigned long flags)
|
|
{
|
|
/*
|
|
* Avoid migrating a page that is shared with others.
|
|
*/
|
|
if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
|
|
if (!isolate_lru_page(page)) {
|
|
list_add_tail(&page->lru, pagelist);
|
|
inc_zone_page_state(page, NR_ISOLATED_ANON +
|
|
page_is_file_cache(page));
|
|
}
|
|
}
|
|
}
|
|
|
|
static struct page *new_node_page(struct page *page, unsigned long node, int **x)
|
|
{
|
|
if (PageHuge(page))
|
|
return alloc_huge_page_node(page_hstate(compound_head(page)),
|
|
node);
|
|
else
|
|
return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
|
|
}
|
|
|
|
/*
|
|
* Migrate pages from one node to a target node.
|
|
* Returns error or the number of pages not migrated.
|
|
*/
|
|
static int migrate_to_node(struct mm_struct *mm, int source, int dest,
|
|
int flags)
|
|
{
|
|
nodemask_t nmask;
|
|
LIST_HEAD(pagelist);
|
|
int err = 0;
|
|
|
|
nodes_clear(nmask);
|
|
node_set(source, nmask);
|
|
|
|
/*
|
|
* This does not "check" the range but isolates all pages that
|
|
* need migration. Between passing in the full user address
|
|
* space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
|
|
*/
|
|
VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
|
|
queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
|
|
flags | MPOL_MF_DISCONTIG_OK, &pagelist);
|
|
|
|
if (!list_empty(&pagelist)) {
|
|
err = migrate_pages(&pagelist, new_node_page, dest,
|
|
MIGRATE_SYNC, MR_SYSCALL);
|
|
if (err)
|
|
putback_movable_pages(&pagelist);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Move pages between the two nodesets so as to preserve the physical
|
|
* layout as much as possible.
|
|
*
|
|
* Returns the number of page that could not be moved.
|
|
*/
|
|
int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
|
|
const nodemask_t *to, int flags)
|
|
{
|
|
int busy = 0;
|
|
int err;
|
|
nodemask_t tmp;
|
|
|
|
err = migrate_prep();
|
|
if (err)
|
|
return err;
|
|
|
|
down_read(&mm->mmap_sem);
|
|
|
|
err = migrate_vmas(mm, from, to, flags);
|
|
if (err)
|
|
goto out;
|
|
|
|
/*
|
|
* Find a 'source' bit set in 'tmp' whose corresponding 'dest'
|
|
* bit in 'to' is not also set in 'tmp'. Clear the found 'source'
|
|
* bit in 'tmp', and return that <source, dest> pair for migration.
|
|
* The pair of nodemasks 'to' and 'from' define the map.
|
|
*
|
|
* If no pair of bits is found that way, fallback to picking some
|
|
* pair of 'source' and 'dest' bits that are not the same. If the
|
|
* 'source' and 'dest' bits are the same, this represents a node
|
|
* that will be migrating to itself, so no pages need move.
|
|
*
|
|
* If no bits are left in 'tmp', or if all remaining bits left
|
|
* in 'tmp' correspond to the same bit in 'to', return false
|
|
* (nothing left to migrate).
|
|
*
|
|
* This lets us pick a pair of nodes to migrate between, such that
|
|
* if possible the dest node is not already occupied by some other
|
|
* source node, minimizing the risk of overloading the memory on a
|
|
* node that would happen if we migrated incoming memory to a node
|
|
* before migrating outgoing memory source that same node.
|
|
*
|
|
* A single scan of tmp is sufficient. As we go, we remember the
|
|
* most recent <s, d> pair that moved (s != d). If we find a pair
|
|
* that not only moved, but what's better, moved to an empty slot
|
|
* (d is not set in tmp), then we break out then, with that pair.
|
|
* Otherwise when we finish scanning from_tmp, we at least have the
|
|
* most recent <s, d> pair that moved. If we get all the way through
|
|
* the scan of tmp without finding any node that moved, much less
|
|
* moved to an empty node, then there is nothing left worth migrating.
|
|
*/
|
|
|
|
tmp = *from;
|
|
while (!nodes_empty(tmp)) {
|
|
int s,d;
|
|
int source = NUMA_NO_NODE;
|
|
int dest = 0;
|
|
|
|
for_each_node_mask(s, tmp) {
|
|
|
|
/*
|
|
* do_migrate_pages() tries to maintain the relative
|
|
* node relationship of the pages established between
|
|
* threads and memory areas.
|
|
*
|
|
* However if the number of source nodes is not equal to
|
|
* the number of destination nodes we can not preserve
|
|
* this node relative relationship. In that case, skip
|
|
* copying memory from a node that is in the destination
|
|
* mask.
|
|
*
|
|
* Example: [2,3,4] -> [3,4,5] moves everything.
|
|
* [0-7] - > [3,4,5] moves only 0,1,2,6,7.
|
|
*/
|
|
|
|
if ((nodes_weight(*from) != nodes_weight(*to)) &&
|
|
(node_isset(s, *to)))
|
|
continue;
|
|
|
|
d = node_remap(s, *from, *to);
|
|
if (s == d)
|
|
continue;
|
|
|
|
source = s; /* Node moved. Memorize */
|
|
dest = d;
|
|
|
|
/* dest not in remaining from nodes? */
|
|
if (!node_isset(dest, tmp))
|
|
break;
|
|
}
|
|
if (source == NUMA_NO_NODE)
|
|
break;
|
|
|
|
node_clear(source, tmp);
|
|
err = migrate_to_node(mm, source, dest, flags);
|
|
if (err > 0)
|
|
busy += err;
|
|
if (err < 0)
|
|
break;
|
|
}
|
|
out:
|
|
up_read(&mm->mmap_sem);
|
|
if (err < 0)
|
|
return err;
|
|
return busy;
|
|
|
|
}
|
|
|
|
/*
|
|
* Allocate a new page for page migration based on vma policy.
|
|
* Start assuming that page is mapped by vma pointed to by @private.
|
|
* Search forward from there, if not. N.B., this assumes that the
|
|
* list of pages handed to migrate_pages()--which is how we get here--
|
|
* is in virtual address order.
|
|
*/
|
|
static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
|
|
{
|
|
struct vm_area_struct *vma = (struct vm_area_struct *)private;
|
|
unsigned long uninitialized_var(address);
|
|
|
|
while (vma) {
|
|
address = page_address_in_vma(page, vma);
|
|
if (address != -EFAULT)
|
|
break;
|
|
vma = vma->vm_next;
|
|
}
|
|
/*
|
|
* queue_pages_range() confirms that @page belongs to some vma,
|
|
* so vma shouldn't be NULL.
|
|
*/
|
|
BUG_ON(!vma);
|
|
|
|
if (PageHuge(page))
|
|
return alloc_huge_page_noerr(vma, address, 1);
|
|
return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
|
|
}
|
|
#else
|
|
|
|
static void migrate_page_add(struct page *page, struct list_head *pagelist,
|
|
unsigned long flags)
|
|
{
|
|
}
|
|
|
|
int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
|
|
const nodemask_t *to, int flags)
|
|
{
|
|
return -ENOSYS;
|
|
}
|
|
|
|
static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
|
|
{
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
static long do_mbind(unsigned long start, unsigned long len,
|
|
unsigned short mode, unsigned short mode_flags,
|
|
nodemask_t *nmask, unsigned long flags)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
struct mm_struct *mm = current->mm;
|
|
struct mempolicy *new;
|
|
unsigned long end;
|
|
int err;
|
|
LIST_HEAD(pagelist);
|
|
|
|
if (flags & ~(unsigned long)MPOL_MF_VALID)
|
|
return -EINVAL;
|
|
if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
|
|
return -EPERM;
|
|
|
|
if (start & ~PAGE_MASK)
|
|
return -EINVAL;
|
|
|
|
if (mode == MPOL_DEFAULT)
|
|
flags &= ~MPOL_MF_STRICT;
|
|
|
|
len = (len + PAGE_SIZE - 1) & PAGE_MASK;
|
|
end = start + len;
|
|
|
|
if (end < start)
|
|
return -EINVAL;
|
|
if (end == start)
|
|
return 0;
|
|
|
|
new = mpol_new(mode, mode_flags, nmask);
|
|
if (IS_ERR(new))
|
|
return PTR_ERR(new);
|
|
|
|
if (flags & MPOL_MF_LAZY)
|
|
new->flags |= MPOL_F_MOF;
|
|
|
|
/*
|
|
* If we are using the default policy then operation
|
|
* on discontinuous address spaces is okay after all
|
|
*/
|
|
if (!new)
|
|
flags |= MPOL_MF_DISCONTIG_OK;
|
|
|
|
pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
|
|
start, start + len, mode, mode_flags,
|
|
nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
|
|
|
|
if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
|
|
|
|
err = migrate_prep();
|
|
if (err)
|
|
goto mpol_out;
|
|
}
|
|
{
|
|
NODEMASK_SCRATCH(scratch);
|
|
if (scratch) {
|
|
down_write(&mm->mmap_sem);
|
|
task_lock(current);
|
|
err = mpol_set_nodemask(new, nmask, scratch);
|
|
task_unlock(current);
|
|
if (err)
|
|
up_write(&mm->mmap_sem);
|
|
} else
|
|
err = -ENOMEM;
|
|
NODEMASK_SCRATCH_FREE(scratch);
|
|
}
|
|
if (err)
|
|
goto mpol_out;
|
|
|
|
vma = queue_pages_range(mm, start, end, nmask,
|
|
flags | MPOL_MF_INVERT, &pagelist);
|
|
|
|
err = PTR_ERR(vma); /* maybe ... */
|
|
if (!IS_ERR(vma))
|
|
err = mbind_range(mm, start, end, new);
|
|
|
|
if (!err) {
|
|
int nr_failed = 0;
|
|
|
|
if (!list_empty(&pagelist)) {
|
|
WARN_ON_ONCE(flags & MPOL_MF_LAZY);
|
|
nr_failed = migrate_pages(&pagelist, new_vma_page,
|
|
(unsigned long)vma,
|
|
MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
|
|
if (nr_failed)
|
|
putback_movable_pages(&pagelist);
|
|
}
|
|
|
|
if (nr_failed && (flags & MPOL_MF_STRICT))
|
|
err = -EIO;
|
|
} else
|
|
putback_lru_pages(&pagelist);
|
|
|
|
up_write(&mm->mmap_sem);
|
|
mpol_out:
|
|
mpol_put(new);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* User space interface with variable sized bitmaps for nodelists.
|
|
*/
|
|
|
|
/* Copy a node mask from user space. */
|
|
static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
|
|
unsigned long maxnode)
|
|
{
|
|
unsigned long k;
|
|
unsigned long nlongs;
|
|
unsigned long endmask;
|
|
|
|
--maxnode;
|
|
nodes_clear(*nodes);
|
|
if (maxnode == 0 || !nmask)
|
|
return 0;
|
|
if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
|
|
return -EINVAL;
|
|
|
|
nlongs = BITS_TO_LONGS(maxnode);
|
|
if ((maxnode % BITS_PER_LONG) == 0)
|
|
endmask = ~0UL;
|
|
else
|
|
endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
|
|
|
|
/* When the user specified more nodes than supported just check
|
|
if the non supported part is all zero. */
|
|
if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
|
|
if (nlongs > PAGE_SIZE/sizeof(long))
|
|
return -EINVAL;
|
|
for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
|
|
unsigned long t;
|
|
if (get_user(t, nmask + k))
|
|
return -EFAULT;
|
|
if (k == nlongs - 1) {
|
|
if (t & endmask)
|
|
return -EINVAL;
|
|
} else if (t)
|
|
return -EINVAL;
|
|
}
|
|
nlongs = BITS_TO_LONGS(MAX_NUMNODES);
|
|
endmask = ~0UL;
|
|
}
|
|
|
|
if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
|
|
return -EFAULT;
|
|
nodes_addr(*nodes)[nlongs-1] &= endmask;
|
|
return 0;
|
|
}
|
|
|
|
/* Copy a kernel node mask to user space */
|
|
static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
|
|
nodemask_t *nodes)
|
|
{
|
|
unsigned long copy = ALIGN(maxnode-1, 64) / 8;
|
|
const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
|
|
|
|
if (copy > nbytes) {
|
|
if (copy > PAGE_SIZE)
|
|
return -EINVAL;
|
|
if (clear_user((char __user *)mask + nbytes, copy - nbytes))
|
|
return -EFAULT;
|
|
copy = nbytes;
|
|
}
|
|
return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
|
|
}
|
|
|
|
SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
|
|
unsigned long, mode, unsigned long __user *, nmask,
|
|
unsigned long, maxnode, unsigned, flags)
|
|
{
|
|
nodemask_t nodes;
|
|
int err;
|
|
unsigned short mode_flags;
|
|
|
|
mode_flags = mode & MPOL_MODE_FLAGS;
|
|
mode &= ~MPOL_MODE_FLAGS;
|
|
if (mode >= MPOL_MAX)
|
|
return -EINVAL;
|
|
if ((mode_flags & MPOL_F_STATIC_NODES) &&
|
|
(mode_flags & MPOL_F_RELATIVE_NODES))
|
|
return -EINVAL;
|
|
err = get_nodes(&nodes, nmask, maxnode);
|
|
if (err)
|
|
return err;
|
|
return do_mbind(start, len, mode, mode_flags, &nodes, flags);
|
|
}
|
|
|
|
/* Set the process memory policy */
|
|
SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
|
|
unsigned long, maxnode)
|
|
{
|
|
int err;
|
|
nodemask_t nodes;
|
|
unsigned short flags;
|
|
|
|
flags = mode & MPOL_MODE_FLAGS;
|
|
mode &= ~MPOL_MODE_FLAGS;
|
|
if ((unsigned int)mode >= MPOL_MAX)
|
|
return -EINVAL;
|
|
if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
|
|
return -EINVAL;
|
|
err = get_nodes(&nodes, nmask, maxnode);
|
|
if (err)
|
|
return err;
|
|
return do_set_mempolicy(mode, flags, &nodes);
|
|
}
|
|
|
|
SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
|
|
const unsigned long __user *, old_nodes,
|
|
const unsigned long __user *, new_nodes)
|
|
{
|
|
const struct cred *cred = current_cred(), *tcred;
|
|
struct mm_struct *mm = NULL;
|
|
struct task_struct *task;
|
|
nodemask_t task_nodes;
|
|
int err;
|
|
nodemask_t *old;
|
|
nodemask_t *new;
|
|
NODEMASK_SCRATCH(scratch);
|
|
|
|
if (!scratch)
|
|
return -ENOMEM;
|
|
|
|
old = &scratch->mask1;
|
|
new = &scratch->mask2;
|
|
|
|
err = get_nodes(old, old_nodes, maxnode);
|
|
if (err)
|
|
goto out;
|
|
|
|
err = get_nodes(new, new_nodes, maxnode);
|
|
if (err)
|
|
goto out;
|
|
|
|
/* Find the mm_struct */
|
|
rcu_read_lock();
|
|
task = pid ? find_task_by_vpid(pid) : current;
|
|
if (!task) {
|
|
rcu_read_unlock();
|
|
err = -ESRCH;
|
|
goto out;
|
|
}
|
|
get_task_struct(task);
|
|
|
|
err = -EINVAL;
|
|
|
|
/*
|
|
* Check if this process has the right to modify the specified
|
|
* process. The right exists if the process has administrative
|
|
* capabilities, superuser privileges or the same
|
|
* userid as the target process.
|
|
*/
|
|
tcred = __task_cred(task);
|
|
if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
|
|
!uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
|
|
!capable(CAP_SYS_NICE)) {
|
|
rcu_read_unlock();
|
|
err = -EPERM;
|
|
goto out_put;
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
task_nodes = cpuset_mems_allowed(task);
|
|
/* Is the user allowed to access the target nodes? */
|
|
if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
|
|
err = -EPERM;
|
|
goto out_put;
|
|
}
|
|
|
|
if (!nodes_subset(*new, node_states[N_MEMORY])) {
|
|
err = -EINVAL;
|
|
goto out_put;
|
|
}
|
|
|
|
err = security_task_movememory(task);
|
|
if (err)
|
|
goto out_put;
|
|
|
|
mm = get_task_mm(task);
|
|
put_task_struct(task);
|
|
|
|
if (!mm) {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
err = do_migrate_pages(mm, old, new,
|
|
capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
|
|
|
|
mmput(mm);
|
|
out:
|
|
NODEMASK_SCRATCH_FREE(scratch);
|
|
|
|
return err;
|
|
|
|
out_put:
|
|
put_task_struct(task);
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
/* Retrieve NUMA policy */
|
|
SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
|
|
unsigned long __user *, nmask, unsigned long, maxnode,
|
|
unsigned long, addr, unsigned long, flags)
|
|
{
|
|
int err;
|
|
int uninitialized_var(pval);
|
|
nodemask_t nodes;
|
|
|
|
if (nmask != NULL && maxnode < MAX_NUMNODES)
|
|
return -EINVAL;
|
|
|
|
err = do_get_mempolicy(&pval, &nodes, addr, flags);
|
|
|
|
if (err)
|
|
return err;
|
|
|
|
if (policy && put_user(pval, policy))
|
|
return -EFAULT;
|
|
|
|
if (nmask)
|
|
err = copy_nodes_to_user(nmask, maxnode, &nodes);
|
|
|
|
return err;
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
|
|
asmlinkage long compat_sys_get_mempolicy(int __user *policy,
|
|
compat_ulong_t __user *nmask,
|
|
compat_ulong_t maxnode,
|
|
compat_ulong_t addr, compat_ulong_t flags)
|
|
{
|
|
long err;
|
|
unsigned long __user *nm = NULL;
|
|
unsigned long nr_bits, alloc_size;
|
|
DECLARE_BITMAP(bm, MAX_NUMNODES);
|
|
|
|
nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
|
|
alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
|
|
|
|
if (nmask)
|
|
nm = compat_alloc_user_space(alloc_size);
|
|
|
|
err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
|
|
|
|
if (!err && nmask) {
|
|
unsigned long copy_size;
|
|
copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
|
|
err = copy_from_user(bm, nm, copy_size);
|
|
/* ensure entire bitmap is zeroed */
|
|
err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
|
|
err |= compat_put_bitmap(nmask, bm, nr_bits);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
|
|
compat_ulong_t maxnode)
|
|
{
|
|
long err = 0;
|
|
unsigned long __user *nm = NULL;
|
|
unsigned long nr_bits, alloc_size;
|
|
DECLARE_BITMAP(bm, MAX_NUMNODES);
|
|
|
|
nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
|
|
alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
|
|
|
|
if (nmask) {
|
|
err = compat_get_bitmap(bm, nmask, nr_bits);
|
|
nm = compat_alloc_user_space(alloc_size);
|
|
err |= copy_to_user(nm, bm, alloc_size);
|
|
}
|
|
|
|
if (err)
|
|
return -EFAULT;
|
|
|
|
return sys_set_mempolicy(mode, nm, nr_bits+1);
|
|
}
|
|
|
|
asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
|
|
compat_ulong_t mode, compat_ulong_t __user *nmask,
|
|
compat_ulong_t maxnode, compat_ulong_t flags)
|
|
{
|
|
long err = 0;
|
|
unsigned long __user *nm = NULL;
|
|
unsigned long nr_bits, alloc_size;
|
|
nodemask_t bm;
|
|
|
|
nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
|
|
alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
|
|
|
|
if (nmask) {
|
|
err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
|
|
nm = compat_alloc_user_space(alloc_size);
|
|
err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
|
|
}
|
|
|
|
if (err)
|
|
return -EFAULT;
|
|
|
|
return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
|
|
}
|
|
|
|
#endif
|
|
|
|
/*
|
|
* get_vma_policy(@task, @vma, @addr)
|
|
* @task - task for fallback if vma policy == default
|
|
* @vma - virtual memory area whose policy is sought
|
|
* @addr - address in @vma for shared policy lookup
|
|
*
|
|
* Returns effective policy for a VMA at specified address.
|
|
* Falls back to @task or system default policy, as necessary.
|
|
* Current or other task's task mempolicy and non-shared vma policies must be
|
|
* protected by task_lock(task) by the caller.
|
|
* Shared policies [those marked as MPOL_F_SHARED] require an extra reference
|
|
* count--added by the get_policy() vm_op, as appropriate--to protect against
|
|
* freeing by another task. It is the caller's responsibility to free the
|
|
* extra reference for shared policies.
|
|
*/
|
|
struct mempolicy *get_vma_policy(struct task_struct *task,
|
|
struct vm_area_struct *vma, unsigned long addr)
|
|
{
|
|
struct mempolicy *pol = get_task_policy(task);
|
|
|
|
if (vma) {
|
|
if (vma->vm_ops && vma->vm_ops->get_policy) {
|
|
struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
|
|
addr);
|
|
if (vpol)
|
|
pol = vpol;
|
|
} else if (vma->vm_policy) {
|
|
pol = vma->vm_policy;
|
|
|
|
/*
|
|
* shmem_alloc_page() passes MPOL_F_SHARED policy with
|
|
* a pseudo vma whose vma->vm_ops=NULL. Take a reference
|
|
* count on these policies which will be dropped by
|
|
* mpol_cond_put() later
|
|
*/
|
|
if (mpol_needs_cond_ref(pol))
|
|
mpol_get(pol);
|
|
}
|
|
}
|
|
if (!pol)
|
|
pol = &default_policy;
|
|
return pol;
|
|
}
|
|
|
|
bool vma_policy_mof(struct task_struct *task, struct vm_area_struct *vma)
|
|
{
|
|
struct mempolicy *pol = get_task_policy(task);
|
|
if (vma) {
|
|
if (vma->vm_ops && vma->vm_ops->get_policy) {
|
|
bool ret = false;
|
|
|
|
pol = vma->vm_ops->get_policy(vma, vma->vm_start);
|
|
if (pol && (pol->flags & MPOL_F_MOF))
|
|
ret = true;
|
|
mpol_cond_put(pol);
|
|
|
|
return ret;
|
|
} else if (vma->vm_policy) {
|
|
pol = vma->vm_policy;
|
|
}
|
|
}
|
|
|
|
if (!pol)
|
|
return default_policy.flags & MPOL_F_MOF;
|
|
|
|
return pol->flags & MPOL_F_MOF;
|
|
}
|
|
|
|
static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
|
|
{
|
|
enum zone_type dynamic_policy_zone = policy_zone;
|
|
|
|
BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
|
|
|
|
/*
|
|
* if policy->v.nodes has movable memory only,
|
|
* we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
|
|
*
|
|
* policy->v.nodes is intersect with node_states[N_MEMORY].
|
|
* so if the following test faile, it implies
|
|
* policy->v.nodes has movable memory only.
|
|
*/
|
|
if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
|
|
dynamic_policy_zone = ZONE_MOVABLE;
|
|
|
|
return zone >= dynamic_policy_zone;
|
|
}
|
|
|
|
/*
|
|
* Return a nodemask representing a mempolicy for filtering nodes for
|
|
* page allocation
|
|
*/
|
|
static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
|
|
{
|
|
/* Lower zones don't get a nodemask applied for MPOL_BIND */
|
|
if (unlikely(policy->mode == MPOL_BIND) &&
|
|
apply_policy_zone(policy, gfp_zone(gfp)) &&
|
|
cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
|
|
return &policy->v.nodes;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Return a zonelist indicated by gfp for node representing a mempolicy */
|
|
static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
|
|
int nd)
|
|
{
|
|
switch (policy->mode) {
|
|
case MPOL_PREFERRED:
|
|
if (!(policy->flags & MPOL_F_LOCAL))
|
|
nd = policy->v.preferred_node;
|
|
break;
|
|
case MPOL_BIND:
|
|
/*
|
|
* Normally, MPOL_BIND allocations are node-local within the
|
|
* allowed nodemask. However, if __GFP_THISNODE is set and the
|
|
* current node isn't part of the mask, we use the zonelist for
|
|
* the first node in the mask instead.
|
|
*/
|
|
if (unlikely(gfp & __GFP_THISNODE) &&
|
|
unlikely(!node_isset(nd, policy->v.nodes)))
|
|
nd = first_node(policy->v.nodes);
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
return node_zonelist(nd, gfp);
|
|
}
|
|
|
|
/* Do dynamic interleaving for a process */
|
|
static unsigned interleave_nodes(struct mempolicy *policy)
|
|
{
|
|
unsigned nid, next;
|
|
struct task_struct *me = current;
|
|
|
|
nid = me->il_next;
|
|
next = next_node(nid, policy->v.nodes);
|
|
if (next >= MAX_NUMNODES)
|
|
next = first_node(policy->v.nodes);
|
|
if (next < MAX_NUMNODES)
|
|
me->il_next = next;
|
|
return nid;
|
|
}
|
|
|
|
/*
|
|
* Depending on the memory policy provide a node from which to allocate the
|
|
* next slab entry.
|
|
* @policy must be protected by freeing by the caller. If @policy is
|
|
* the current task's mempolicy, this protection is implicit, as only the
|
|
* task can change it's policy. The system default policy requires no
|
|
* such protection.
|
|
*/
|
|
unsigned slab_node(void)
|
|
{
|
|
struct mempolicy *policy;
|
|
|
|
if (in_interrupt())
|
|
return numa_node_id();
|
|
|
|
policy = current->mempolicy;
|
|
if (!policy || policy->flags & MPOL_F_LOCAL)
|
|
return numa_node_id();
|
|
|
|
switch (policy->mode) {
|
|
case MPOL_PREFERRED:
|
|
/*
|
|
* handled MPOL_F_LOCAL above
|
|
*/
|
|
return policy->v.preferred_node;
|
|
|
|
case MPOL_INTERLEAVE:
|
|
return interleave_nodes(policy);
|
|
|
|
case MPOL_BIND: {
|
|
/*
|
|
* Follow bind policy behavior and start allocation at the
|
|
* first node.
|
|
*/
|
|
struct zonelist *zonelist;
|
|
struct zone *zone;
|
|
enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
|
|
zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
|
|
(void)first_zones_zonelist(zonelist, highest_zoneidx,
|
|
&policy->v.nodes,
|
|
&zone);
|
|
return zone ? zone->node : numa_node_id();
|
|
}
|
|
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
/* Do static interleaving for a VMA with known offset. */
|
|
static unsigned offset_il_node(struct mempolicy *pol,
|
|
struct vm_area_struct *vma, unsigned long off)
|
|
{
|
|
unsigned nnodes = nodes_weight(pol->v.nodes);
|
|
unsigned target;
|
|
int c;
|
|
int nid = NUMA_NO_NODE;
|
|
|
|
if (!nnodes)
|
|
return numa_node_id();
|
|
target = (unsigned int)off % nnodes;
|
|
c = 0;
|
|
do {
|
|
nid = next_node(nid, pol->v.nodes);
|
|
c++;
|
|
} while (c <= target);
|
|
return nid;
|
|
}
|
|
|
|
/* Determine a node number for interleave */
|
|
static inline unsigned interleave_nid(struct mempolicy *pol,
|
|
struct vm_area_struct *vma, unsigned long addr, int shift)
|
|
{
|
|
if (vma) {
|
|
unsigned long off;
|
|
|
|
/*
|
|
* for small pages, there is no difference between
|
|
* shift and PAGE_SHIFT, so the bit-shift is safe.
|
|
* for huge pages, since vm_pgoff is in units of small
|
|
* pages, we need to shift off the always 0 bits to get
|
|
* a useful offset.
|
|
*/
|
|
BUG_ON(shift < PAGE_SHIFT);
|
|
off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
|
|
off += (addr - vma->vm_start) >> shift;
|
|
return offset_il_node(pol, vma, off);
|
|
} else
|
|
return interleave_nodes(pol);
|
|
}
|
|
|
|
/*
|
|
* Return the bit number of a random bit set in the nodemask.
|
|
* (returns NUMA_NO_NODE if nodemask is empty)
|
|
*/
|
|
int node_random(const nodemask_t *maskp)
|
|
{
|
|
int w, bit = NUMA_NO_NODE;
|
|
|
|
w = nodes_weight(*maskp);
|
|
if (w)
|
|
bit = bitmap_ord_to_pos(maskp->bits,
|
|
get_random_int() % w, MAX_NUMNODES);
|
|
return bit;
|
|
}
|
|
|
|
#ifdef CONFIG_HUGETLBFS
|
|
/*
|
|
* huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
|
|
* @vma = virtual memory area whose policy is sought
|
|
* @addr = address in @vma for shared policy lookup and interleave policy
|
|
* @gfp_flags = for requested zone
|
|
* @mpol = pointer to mempolicy pointer for reference counted mempolicy
|
|
* @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
|
|
*
|
|
* Returns a zonelist suitable for a huge page allocation and a pointer
|
|
* to the struct mempolicy for conditional unref after allocation.
|
|
* If the effective policy is 'BIND, returns a pointer to the mempolicy's
|
|
* @nodemask for filtering the zonelist.
|
|
*
|
|
* Must be protected by get_mems_allowed()
|
|
*/
|
|
struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
|
|
gfp_t gfp_flags, struct mempolicy **mpol,
|
|
nodemask_t **nodemask)
|
|
{
|
|
struct zonelist *zl;
|
|
|
|
*mpol = get_vma_policy(current, vma, addr);
|
|
*nodemask = NULL; /* assume !MPOL_BIND */
|
|
|
|
if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
|
|
zl = node_zonelist(interleave_nid(*mpol, vma, addr,
|
|
huge_page_shift(hstate_vma(vma))), gfp_flags);
|
|
} else {
|
|
zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
|
|
if ((*mpol)->mode == MPOL_BIND)
|
|
*nodemask = &(*mpol)->v.nodes;
|
|
}
|
|
return zl;
|
|
}
|
|
|
|
/*
|
|
* init_nodemask_of_mempolicy
|
|
*
|
|
* If the current task's mempolicy is "default" [NULL], return 'false'
|
|
* to indicate default policy. Otherwise, extract the policy nodemask
|
|
* for 'bind' or 'interleave' policy into the argument nodemask, or
|
|
* initialize the argument nodemask to contain the single node for
|
|
* 'preferred' or 'local' policy and return 'true' to indicate presence
|
|
* of non-default mempolicy.
|
|
*
|
|
* We don't bother with reference counting the mempolicy [mpol_get/put]
|
|
* because the current task is examining it's own mempolicy and a task's
|
|
* mempolicy is only ever changed by the task itself.
|
|
*
|
|
* N.B., it is the caller's responsibility to free a returned nodemask.
|
|
*/
|
|
bool init_nodemask_of_mempolicy(nodemask_t *mask)
|
|
{
|
|
struct mempolicy *mempolicy;
|
|
int nid;
|
|
|
|
if (!(mask && current->mempolicy))
|
|
return false;
|
|
|
|
task_lock(current);
|
|
mempolicy = current->mempolicy;
|
|
switch (mempolicy->mode) {
|
|
case MPOL_PREFERRED:
|
|
if (mempolicy->flags & MPOL_F_LOCAL)
|
|
nid = numa_node_id();
|
|
else
|
|
nid = mempolicy->v.preferred_node;
|
|
init_nodemask_of_node(mask, nid);
|
|
break;
|
|
|
|
case MPOL_BIND:
|
|
/* Fall through */
|
|
case MPOL_INTERLEAVE:
|
|
*mask = mempolicy->v.nodes;
|
|
break;
|
|
|
|
default:
|
|
BUG();
|
|
}
|
|
task_unlock(current);
|
|
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* mempolicy_nodemask_intersects
|
|
*
|
|
* If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
|
|
* policy. Otherwise, check for intersection between mask and the policy
|
|
* nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
|
|
* policy, always return true since it may allocate elsewhere on fallback.
|
|
*
|
|
* Takes task_lock(tsk) to prevent freeing of its mempolicy.
|
|
*/
|
|
bool mempolicy_nodemask_intersects(struct task_struct *tsk,
|
|
const nodemask_t *mask)
|
|
{
|
|
struct mempolicy *mempolicy;
|
|
bool ret = true;
|
|
|
|
if (!mask)
|
|
return ret;
|
|
task_lock(tsk);
|
|
mempolicy = tsk->mempolicy;
|
|
if (!mempolicy)
|
|
goto out;
|
|
|
|
switch (mempolicy->mode) {
|
|
case MPOL_PREFERRED:
|
|
/*
|
|
* MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
|
|
* allocate from, they may fallback to other nodes when oom.
|
|
* Thus, it's possible for tsk to have allocated memory from
|
|
* nodes in mask.
|
|
*/
|
|
break;
|
|
case MPOL_BIND:
|
|
case MPOL_INTERLEAVE:
|
|
ret = nodes_intersects(mempolicy->v.nodes, *mask);
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
out:
|
|
task_unlock(tsk);
|
|
return ret;
|
|
}
|
|
|
|
/* Allocate a page in interleaved policy.
|
|
Own path because it needs to do special accounting. */
|
|
static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
|
|
unsigned nid)
|
|
{
|
|
struct zonelist *zl;
|
|
struct page *page;
|
|
|
|
zl = node_zonelist(nid, gfp);
|
|
page = __alloc_pages(gfp, order, zl);
|
|
if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
|
|
inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
|
|
return page;
|
|
}
|
|
|
|
/**
|
|
* alloc_pages_vma - Allocate a page for a VMA.
|
|
*
|
|
* @gfp:
|
|
* %GFP_USER user allocation.
|
|
* %GFP_KERNEL kernel allocations,
|
|
* %GFP_HIGHMEM highmem/user allocations,
|
|
* %GFP_FS allocation should not call back into a file system.
|
|
* %GFP_ATOMIC don't sleep.
|
|
*
|
|
* @order:Order of the GFP allocation.
|
|
* @vma: Pointer to VMA or NULL if not available.
|
|
* @addr: Virtual Address of the allocation. Must be inside the VMA.
|
|
*
|
|
* This function allocates a page from the kernel page pool and applies
|
|
* a NUMA policy associated with the VMA or the current process.
|
|
* When VMA is not NULL caller must hold down_read on the mmap_sem of the
|
|
* mm_struct of the VMA to prevent it from going away. Should be used for
|
|
* all allocations for pages that will be mapped into
|
|
* user space. Returns NULL when no page can be allocated.
|
|
*
|
|
* Should be called with the mm_sem of the vma hold.
|
|
*/
|
|
struct page *
|
|
alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
|
|
unsigned long addr, int node)
|
|
{
|
|
struct mempolicy *pol;
|
|
struct page *page;
|
|
unsigned int cpuset_mems_cookie;
|
|
|
|
retry_cpuset:
|
|
pol = get_vma_policy(current, vma, addr);
|
|
cpuset_mems_cookie = get_mems_allowed();
|
|
|
|
if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
|
|
unsigned nid;
|
|
|
|
nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
|
|
mpol_cond_put(pol);
|
|
page = alloc_page_interleave(gfp, order, nid);
|
|
if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
|
|
goto retry_cpuset;
|
|
|
|
return page;
|
|
}
|
|
page = __alloc_pages_nodemask(gfp, order,
|
|
policy_zonelist(gfp, pol, node),
|
|
policy_nodemask(gfp, pol));
|
|
if (unlikely(mpol_needs_cond_ref(pol)))
|
|
__mpol_put(pol);
|
|
if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
|
|
goto retry_cpuset;
|
|
return page;
|
|
}
|
|
|
|
/**
|
|
* alloc_pages_current - Allocate pages.
|
|
*
|
|
* @gfp:
|
|
* %GFP_USER user allocation,
|
|
* %GFP_KERNEL kernel allocation,
|
|
* %GFP_HIGHMEM highmem allocation,
|
|
* %GFP_FS don't call back into a file system.
|
|
* %GFP_ATOMIC don't sleep.
|
|
* @order: Power of two of allocation size in pages. 0 is a single page.
|
|
*
|
|
* Allocate a page from the kernel page pool. When not in
|
|
* interrupt context and apply the current process NUMA policy.
|
|
* Returns NULL when no page can be allocated.
|
|
*
|
|
* Don't call cpuset_update_task_memory_state() unless
|
|
* 1) it's ok to take cpuset_sem (can WAIT), and
|
|
* 2) allocating for current task (not interrupt).
|
|
*/
|
|
struct page *alloc_pages_current(gfp_t gfp, unsigned order)
|
|
{
|
|
struct mempolicy *pol = get_task_policy(current);
|
|
struct page *page;
|
|
unsigned int cpuset_mems_cookie;
|
|
|
|
if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
|
|
pol = &default_policy;
|
|
|
|
retry_cpuset:
|
|
cpuset_mems_cookie = get_mems_allowed();
|
|
|
|
/*
|
|
* No reference counting needed for current->mempolicy
|
|
* nor system default_policy
|
|
*/
|
|
if (pol->mode == MPOL_INTERLEAVE)
|
|
page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
|
|
else
|
|
page = __alloc_pages_nodemask(gfp, order,
|
|
policy_zonelist(gfp, pol, numa_node_id()),
|
|
policy_nodemask(gfp, pol));
|
|
|
|
if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
|
|
goto retry_cpuset;
|
|
|
|
return page;
|
|
}
|
|
EXPORT_SYMBOL(alloc_pages_current);
|
|
|
|
int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
|
|
{
|
|
struct mempolicy *pol = mpol_dup(vma_policy(src));
|
|
|
|
if (IS_ERR(pol))
|
|
return PTR_ERR(pol);
|
|
dst->vm_policy = pol;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
|
|
* rebinds the mempolicy its copying by calling mpol_rebind_policy()
|
|
* with the mems_allowed returned by cpuset_mems_allowed(). This
|
|
* keeps mempolicies cpuset relative after its cpuset moves. See
|
|
* further kernel/cpuset.c update_nodemask().
|
|
*
|
|
* current's mempolicy may be rebinded by the other task(the task that changes
|
|
* cpuset's mems), so we needn't do rebind work for current task.
|
|
*/
|
|
|
|
/* Slow path of a mempolicy duplicate */
|
|
struct mempolicy *__mpol_dup(struct mempolicy *old)
|
|
{
|
|
struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
|
|
|
|
if (!new)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
/* task's mempolicy is protected by alloc_lock */
|
|
if (old == current->mempolicy) {
|
|
task_lock(current);
|
|
*new = *old;
|
|
task_unlock(current);
|
|
} else
|
|
*new = *old;
|
|
|
|
rcu_read_lock();
|
|
if (current_cpuset_is_being_rebound()) {
|
|
nodemask_t mems = cpuset_mems_allowed(current);
|
|
if (new->flags & MPOL_F_REBINDING)
|
|
mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
|
|
else
|
|
mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
|
|
}
|
|
rcu_read_unlock();
|
|
atomic_set(&new->refcnt, 1);
|
|
return new;
|
|
}
|
|
|
|
/* Slow path of a mempolicy comparison */
|
|
bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
|
|
{
|
|
if (!a || !b)
|
|
return false;
|
|
if (a->mode != b->mode)
|
|
return false;
|
|
if (a->flags != b->flags)
|
|
return false;
|
|
if (mpol_store_user_nodemask(a))
|
|
if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
|
|
return false;
|
|
|
|
switch (a->mode) {
|
|
case MPOL_BIND:
|
|
/* Fall through */
|
|
case MPOL_INTERLEAVE:
|
|
return !!nodes_equal(a->v.nodes, b->v.nodes);
|
|
case MPOL_PREFERRED:
|
|
return a->v.preferred_node == b->v.preferred_node;
|
|
default:
|
|
BUG();
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Shared memory backing store policy support.
|
|
*
|
|
* Remember policies even when nobody has shared memory mapped.
|
|
* The policies are kept in Red-Black tree linked from the inode.
|
|
* They are protected by the sp->lock spinlock, which should be held
|
|
* for any accesses to the tree.
|
|
*/
|
|
|
|
/* lookup first element intersecting start-end */
|
|
/* Caller holds sp->lock */
|
|
static struct sp_node *
|
|
sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
|
|
{
|
|
struct rb_node *n = sp->root.rb_node;
|
|
|
|
while (n) {
|
|
struct sp_node *p = rb_entry(n, struct sp_node, nd);
|
|
|
|
if (start >= p->end)
|
|
n = n->rb_right;
|
|
else if (end <= p->start)
|
|
n = n->rb_left;
|
|
else
|
|
break;
|
|
}
|
|
if (!n)
|
|
return NULL;
|
|
for (;;) {
|
|
struct sp_node *w = NULL;
|
|
struct rb_node *prev = rb_prev(n);
|
|
if (!prev)
|
|
break;
|
|
w = rb_entry(prev, struct sp_node, nd);
|
|
if (w->end <= start)
|
|
break;
|
|
n = prev;
|
|
}
|
|
return rb_entry(n, struct sp_node, nd);
|
|
}
|
|
|
|
/* Insert a new shared policy into the list. */
|
|
/* Caller holds sp->lock */
|
|
static void sp_insert(struct shared_policy *sp, struct sp_node *new)
|
|
{
|
|
struct rb_node **p = &sp->root.rb_node;
|
|
struct rb_node *parent = NULL;
|
|
struct sp_node *nd;
|
|
|
|
while (*p) {
|
|
parent = *p;
|
|
nd = rb_entry(parent, struct sp_node, nd);
|
|
if (new->start < nd->start)
|
|
p = &(*p)->rb_left;
|
|
else if (new->end > nd->end)
|
|
p = &(*p)->rb_right;
|
|
else
|
|
BUG();
|
|
}
|
|
rb_link_node(&new->nd, parent, p);
|
|
rb_insert_color(&new->nd, &sp->root);
|
|
pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
|
|
new->policy ? new->policy->mode : 0);
|
|
}
|
|
|
|
/* Find shared policy intersecting idx */
|
|
struct mempolicy *
|
|
mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
|
|
{
|
|
struct mempolicy *pol = NULL;
|
|
struct sp_node *sn;
|
|
|
|
if (!sp->root.rb_node)
|
|
return NULL;
|
|
spin_lock(&sp->lock);
|
|
sn = sp_lookup(sp, idx, idx+1);
|
|
if (sn) {
|
|
mpol_get(sn->policy);
|
|
pol = sn->policy;
|
|
}
|
|
spin_unlock(&sp->lock);
|
|
return pol;
|
|
}
|
|
|
|
static void sp_free(struct sp_node *n)
|
|
{
|
|
mpol_put(n->policy);
|
|
kmem_cache_free(sn_cache, n);
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA_BALANCING
|
|
static bool numa_migrate_deferred(struct task_struct *p, int last_cpupid)
|
|
{
|
|
/* Never defer a private fault */
|
|
if (cpupid_match_pid(p, last_cpupid))
|
|
return false;
|
|
|
|
if (p->numa_migrate_deferred) {
|
|
p->numa_migrate_deferred--;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static inline void defer_numa_migrate(struct task_struct *p)
|
|
{
|
|
p->numa_migrate_deferred = sysctl_numa_balancing_migrate_deferred;
|
|
}
|
|
#else
|
|
static inline bool numa_migrate_deferred(struct task_struct *p, int last_cpupid)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static inline void defer_numa_migrate(struct task_struct *p)
|
|
{
|
|
}
|
|
#endif /* CONFIG_NUMA_BALANCING */
|
|
|
|
/**
|
|
* mpol_misplaced - check whether current page node is valid in policy
|
|
*
|
|
* @page - page to be checked
|
|
* @vma - vm area where page mapped
|
|
* @addr - virtual address where page mapped
|
|
*
|
|
* Lookup current policy node id for vma,addr and "compare to" page's
|
|
* node id.
|
|
*
|
|
* Returns:
|
|
* -1 - not misplaced, page is in the right node
|
|
* node - node id where the page should be
|
|
*
|
|
* Policy determination "mimics" alloc_page_vma().
|
|
* Called from fault path where we know the vma and faulting address.
|
|
*/
|
|
int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
|
|
{
|
|
struct mempolicy *pol;
|
|
struct zone *zone;
|
|
int curnid = page_to_nid(page);
|
|
unsigned long pgoff;
|
|
int thiscpu = raw_smp_processor_id();
|
|
int thisnid = cpu_to_node(thiscpu);
|
|
int polnid = -1;
|
|
int ret = -1;
|
|
|
|
BUG_ON(!vma);
|
|
|
|
pol = get_vma_policy(current, vma, addr);
|
|
if (!(pol->flags & MPOL_F_MOF))
|
|
goto out;
|
|
|
|
switch (pol->mode) {
|
|
case MPOL_INTERLEAVE:
|
|
BUG_ON(addr >= vma->vm_end);
|
|
BUG_ON(addr < vma->vm_start);
|
|
|
|
pgoff = vma->vm_pgoff;
|
|
pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
|
|
polnid = offset_il_node(pol, vma, pgoff);
|
|
break;
|
|
|
|
case MPOL_PREFERRED:
|
|
if (pol->flags & MPOL_F_LOCAL)
|
|
polnid = numa_node_id();
|
|
else
|
|
polnid = pol->v.preferred_node;
|
|
break;
|
|
|
|
case MPOL_BIND:
|
|
/*
|
|
* allows binding to multiple nodes.
|
|
* use current page if in policy nodemask,
|
|
* else select nearest allowed node, if any.
|
|
* If no allowed nodes, use current [!misplaced].
|
|
*/
|
|
if (node_isset(curnid, pol->v.nodes))
|
|
goto out;
|
|
(void)first_zones_zonelist(
|
|
node_zonelist(numa_node_id(), GFP_HIGHUSER),
|
|
gfp_zone(GFP_HIGHUSER),
|
|
&pol->v.nodes, &zone);
|
|
polnid = zone->node;
|
|
break;
|
|
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
/* Migrate the page towards the node whose CPU is referencing it */
|
|
if (pol->flags & MPOL_F_MORON) {
|
|
int last_cpupid;
|
|
int this_cpupid;
|
|
|
|
polnid = thisnid;
|
|
this_cpupid = cpu_pid_to_cpupid(thiscpu, current->pid);
|
|
|
|
/*
|
|
* Multi-stage node selection is used in conjunction
|
|
* with a periodic migration fault to build a temporal
|
|
* task<->page relation. By using a two-stage filter we
|
|
* remove short/unlikely relations.
|
|
*
|
|
* Using P(p) ~ n_p / n_t as per frequentist
|
|
* probability, we can equate a task's usage of a
|
|
* particular page (n_p) per total usage of this
|
|
* page (n_t) (in a given time-span) to a probability.
|
|
*
|
|
* Our periodic faults will sample this probability and
|
|
* getting the same result twice in a row, given these
|
|
* samples are fully independent, is then given by
|
|
* P(n)^2, provided our sample period is sufficiently
|
|
* short compared to the usage pattern.
|
|
*
|
|
* This quadric squishes small probabilities, making
|
|
* it less likely we act on an unlikely task<->page
|
|
* relation.
|
|
*/
|
|
last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
|
|
if (!cpupid_pid_unset(last_cpupid) && cpupid_to_nid(last_cpupid) != thisnid) {
|
|
|
|
/* See sysctl_numa_balancing_migrate_deferred comment */
|
|
if (!cpupid_match_pid(current, last_cpupid))
|
|
defer_numa_migrate(current);
|
|
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* The quadratic filter above reduces extraneous migration
|
|
* of shared pages somewhat. This code reduces it even more,
|
|
* reducing the overhead of page migrations of shared pages.
|
|
* This makes workloads with shared pages rely more on
|
|
* "move task near its memory", and less on "move memory
|
|
* towards its task", which is exactly what we want.
|
|
*/
|
|
if (numa_migrate_deferred(current, last_cpupid))
|
|
goto out;
|
|
}
|
|
|
|
if (curnid != polnid)
|
|
ret = polnid;
|
|
out:
|
|
mpol_cond_put(pol);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void sp_delete(struct shared_policy *sp, struct sp_node *n)
|
|
{
|
|
pr_debug("deleting %lx-l%lx\n", n->start, n->end);
|
|
rb_erase(&n->nd, &sp->root);
|
|
sp_free(n);
|
|
}
|
|
|
|
static void sp_node_init(struct sp_node *node, unsigned long start,
|
|
unsigned long end, struct mempolicy *pol)
|
|
{
|
|
node->start = start;
|
|
node->end = end;
|
|
node->policy = pol;
|
|
}
|
|
|
|
static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
|
|
struct mempolicy *pol)
|
|
{
|
|
struct sp_node *n;
|
|
struct mempolicy *newpol;
|
|
|
|
n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
|
|
if (!n)
|
|
return NULL;
|
|
|
|
newpol = mpol_dup(pol);
|
|
if (IS_ERR(newpol)) {
|
|
kmem_cache_free(sn_cache, n);
|
|
return NULL;
|
|
}
|
|
newpol->flags |= MPOL_F_SHARED;
|
|
sp_node_init(n, start, end, newpol);
|
|
|
|
return n;
|
|
}
|
|
|
|
/* Replace a policy range. */
|
|
static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
|
|
unsigned long end, struct sp_node *new)
|
|
{
|
|
struct sp_node *n;
|
|
struct sp_node *n_new = NULL;
|
|
struct mempolicy *mpol_new = NULL;
|
|
int ret = 0;
|
|
|
|
restart:
|
|
spin_lock(&sp->lock);
|
|
n = sp_lookup(sp, start, end);
|
|
/* Take care of old policies in the same range. */
|
|
while (n && n->start < end) {
|
|
struct rb_node *next = rb_next(&n->nd);
|
|
if (n->start >= start) {
|
|
if (n->end <= end)
|
|
sp_delete(sp, n);
|
|
else
|
|
n->start = end;
|
|
} else {
|
|
/* Old policy spanning whole new range. */
|
|
if (n->end > end) {
|
|
if (!n_new)
|
|
goto alloc_new;
|
|
|
|
*mpol_new = *n->policy;
|
|
atomic_set(&mpol_new->refcnt, 1);
|
|
sp_node_init(n_new, end, n->end, mpol_new);
|
|
n->end = start;
|
|
sp_insert(sp, n_new);
|
|
n_new = NULL;
|
|
mpol_new = NULL;
|
|
break;
|
|
} else
|
|
n->end = start;
|
|
}
|
|
if (!next)
|
|
break;
|
|
n = rb_entry(next, struct sp_node, nd);
|
|
}
|
|
if (new)
|
|
sp_insert(sp, new);
|
|
spin_unlock(&sp->lock);
|
|
ret = 0;
|
|
|
|
err_out:
|
|
if (mpol_new)
|
|
mpol_put(mpol_new);
|
|
if (n_new)
|
|
kmem_cache_free(sn_cache, n_new);
|
|
|
|
return ret;
|
|
|
|
alloc_new:
|
|
spin_unlock(&sp->lock);
|
|
ret = -ENOMEM;
|
|
n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
|
|
if (!n_new)
|
|
goto err_out;
|
|
mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
|
|
if (!mpol_new)
|
|
goto err_out;
|
|
goto restart;
|
|
}
|
|
|
|
/**
|
|
* mpol_shared_policy_init - initialize shared policy for inode
|
|
* @sp: pointer to inode shared policy
|
|
* @mpol: struct mempolicy to install
|
|
*
|
|
* Install non-NULL @mpol in inode's shared policy rb-tree.
|
|
* On entry, the current task has a reference on a non-NULL @mpol.
|
|
* This must be released on exit.
|
|
* This is called at get_inode() calls and we can use GFP_KERNEL.
|
|
*/
|
|
void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
|
|
{
|
|
int ret;
|
|
|
|
sp->root = RB_ROOT; /* empty tree == default mempolicy */
|
|
spin_lock_init(&sp->lock);
|
|
|
|
if (mpol) {
|
|
struct vm_area_struct pvma;
|
|
struct mempolicy *new;
|
|
NODEMASK_SCRATCH(scratch);
|
|
|
|
if (!scratch)
|
|
goto put_mpol;
|
|
/* contextualize the tmpfs mount point mempolicy */
|
|
new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
|
|
if (IS_ERR(new))
|
|
goto free_scratch; /* no valid nodemask intersection */
|
|
|
|
task_lock(current);
|
|
ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
|
|
task_unlock(current);
|
|
if (ret)
|
|
goto put_new;
|
|
|
|
/* Create pseudo-vma that contains just the policy */
|
|
memset(&pvma, 0, sizeof(struct vm_area_struct));
|
|
pvma.vm_end = TASK_SIZE; /* policy covers entire file */
|
|
mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
|
|
|
|
put_new:
|
|
mpol_put(new); /* drop initial ref */
|
|
free_scratch:
|
|
NODEMASK_SCRATCH_FREE(scratch);
|
|
put_mpol:
|
|
mpol_put(mpol); /* drop our incoming ref on sb mpol */
|
|
}
|
|
}
|
|
|
|
int mpol_set_shared_policy(struct shared_policy *info,
|
|
struct vm_area_struct *vma, struct mempolicy *npol)
|
|
{
|
|
int err;
|
|
struct sp_node *new = NULL;
|
|
unsigned long sz = vma_pages(vma);
|
|
|
|
pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
|
|
vma->vm_pgoff,
|
|
sz, npol ? npol->mode : -1,
|
|
npol ? npol->flags : -1,
|
|
npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
|
|
|
|
if (npol) {
|
|
new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
|
|
if (!new)
|
|
return -ENOMEM;
|
|
}
|
|
err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
|
|
if (err && new)
|
|
sp_free(new);
|
|
return err;
|
|
}
|
|
|
|
/* Free a backing policy store on inode delete. */
|
|
void mpol_free_shared_policy(struct shared_policy *p)
|
|
{
|
|
struct sp_node *n;
|
|
struct rb_node *next;
|
|
|
|
if (!p->root.rb_node)
|
|
return;
|
|
spin_lock(&p->lock);
|
|
next = rb_first(&p->root);
|
|
while (next) {
|
|
n = rb_entry(next, struct sp_node, nd);
|
|
next = rb_next(&n->nd);
|
|
sp_delete(p, n);
|
|
}
|
|
spin_unlock(&p->lock);
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA_BALANCING
|
|
static bool __initdata numabalancing_override;
|
|
|
|
static void __init check_numabalancing_enable(void)
|
|
{
|
|
bool numabalancing_default = false;
|
|
|
|
if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
|
|
numabalancing_default = true;
|
|
|
|
if (nr_node_ids > 1 && !numabalancing_override) {
|
|
printk(KERN_INFO "Enabling automatic NUMA balancing. "
|
|
"Configure with numa_balancing= or sysctl");
|
|
set_numabalancing_state(numabalancing_default);
|
|
}
|
|
}
|
|
|
|
static int __init setup_numabalancing(char *str)
|
|
{
|
|
int ret = 0;
|
|
if (!str)
|
|
goto out;
|
|
numabalancing_override = true;
|
|
|
|
if (!strcmp(str, "enable")) {
|
|
set_numabalancing_state(true);
|
|
ret = 1;
|
|
} else if (!strcmp(str, "disable")) {
|
|
set_numabalancing_state(false);
|
|
ret = 1;
|
|
}
|
|
out:
|
|
if (!ret)
|
|
printk(KERN_WARNING "Unable to parse numa_balancing=\n");
|
|
|
|
return ret;
|
|
}
|
|
__setup("numa_balancing=", setup_numabalancing);
|
|
#else
|
|
static inline void __init check_numabalancing_enable(void)
|
|
{
|
|
}
|
|
#endif /* CONFIG_NUMA_BALANCING */
|
|
|
|
/* assumes fs == KERNEL_DS */
|
|
void __init numa_policy_init(void)
|
|
{
|
|
nodemask_t interleave_nodes;
|
|
unsigned long largest = 0;
|
|
int nid, prefer = 0;
|
|
|
|
policy_cache = kmem_cache_create("numa_policy",
|
|
sizeof(struct mempolicy),
|
|
0, SLAB_PANIC, NULL);
|
|
|
|
sn_cache = kmem_cache_create("shared_policy_node",
|
|
sizeof(struct sp_node),
|
|
0, SLAB_PANIC, NULL);
|
|
|
|
for_each_node(nid) {
|
|
preferred_node_policy[nid] = (struct mempolicy) {
|
|
.refcnt = ATOMIC_INIT(1),
|
|
.mode = MPOL_PREFERRED,
|
|
.flags = MPOL_F_MOF | MPOL_F_MORON,
|
|
.v = { .preferred_node = nid, },
|
|
};
|
|
}
|
|
|
|
/*
|
|
* Set interleaving policy for system init. Interleaving is only
|
|
* enabled across suitably sized nodes (default is >= 16MB), or
|
|
* fall back to the largest node if they're all smaller.
|
|
*/
|
|
nodes_clear(interleave_nodes);
|
|
for_each_node_state(nid, N_MEMORY) {
|
|
unsigned long total_pages = node_present_pages(nid);
|
|
|
|
/* Preserve the largest node */
|
|
if (largest < total_pages) {
|
|
largest = total_pages;
|
|
prefer = nid;
|
|
}
|
|
|
|
/* Interleave this node? */
|
|
if ((total_pages << PAGE_SHIFT) >= (16 << 20))
|
|
node_set(nid, interleave_nodes);
|
|
}
|
|
|
|
/* All too small, use the largest */
|
|
if (unlikely(nodes_empty(interleave_nodes)))
|
|
node_set(prefer, interleave_nodes);
|
|
|
|
if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
|
|
printk("numa_policy_init: interleaving failed\n");
|
|
|
|
check_numabalancing_enable();
|
|
}
|
|
|
|
/* Reset policy of current process to default */
|
|
void numa_default_policy(void)
|
|
{
|
|
do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
|
|
}
|
|
|
|
/*
|
|
* Parse and format mempolicy from/to strings
|
|
*/
|
|
|
|
/*
|
|
* "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
|
|
*/
|
|
static const char * const policy_modes[] =
|
|
{
|
|
[MPOL_DEFAULT] = "default",
|
|
[MPOL_PREFERRED] = "prefer",
|
|
[MPOL_BIND] = "bind",
|
|
[MPOL_INTERLEAVE] = "interleave",
|
|
[MPOL_LOCAL] = "local",
|
|
};
|
|
|
|
|
|
#ifdef CONFIG_TMPFS
|
|
/**
|
|
* mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
|
|
* @str: string containing mempolicy to parse
|
|
* @mpol: pointer to struct mempolicy pointer, returned on success.
|
|
*
|
|
* Format of input:
|
|
* <mode>[=<flags>][:<nodelist>]
|
|
*
|
|
* On success, returns 0, else 1
|
|
*/
|
|
int mpol_parse_str(char *str, struct mempolicy **mpol)
|
|
{
|
|
struct mempolicy *new = NULL;
|
|
unsigned short mode;
|
|
unsigned short mode_flags;
|
|
nodemask_t nodes;
|
|
char *nodelist = strchr(str, ':');
|
|
char *flags = strchr(str, '=');
|
|
int err = 1;
|
|
|
|
if (nodelist) {
|
|
/* NUL-terminate mode or flags string */
|
|
*nodelist++ = '\0';
|
|
if (nodelist_parse(nodelist, nodes))
|
|
goto out;
|
|
if (!nodes_subset(nodes, node_states[N_MEMORY]))
|
|
goto out;
|
|
} else
|
|
nodes_clear(nodes);
|
|
|
|
if (flags)
|
|
*flags++ = '\0'; /* terminate mode string */
|
|
|
|
for (mode = 0; mode < MPOL_MAX; mode++) {
|
|
if (!strcmp(str, policy_modes[mode])) {
|
|
break;
|
|
}
|
|
}
|
|
if (mode >= MPOL_MAX)
|
|
goto out;
|
|
|
|
switch (mode) {
|
|
case MPOL_PREFERRED:
|
|
/*
|
|
* Insist on a nodelist of one node only
|
|
*/
|
|
if (nodelist) {
|
|
char *rest = nodelist;
|
|
while (isdigit(*rest))
|
|
rest++;
|
|
if (*rest)
|
|
goto out;
|
|
}
|
|
break;
|
|
case MPOL_INTERLEAVE:
|
|
/*
|
|
* Default to online nodes with memory if no nodelist
|
|
*/
|
|
if (!nodelist)
|
|
nodes = node_states[N_MEMORY];
|
|
break;
|
|
case MPOL_LOCAL:
|
|
/*
|
|
* Don't allow a nodelist; mpol_new() checks flags
|
|
*/
|
|
if (nodelist)
|
|
goto out;
|
|
mode = MPOL_PREFERRED;
|
|
break;
|
|
case MPOL_DEFAULT:
|
|
/*
|
|
* Insist on a empty nodelist
|
|
*/
|
|
if (!nodelist)
|
|
err = 0;
|
|
goto out;
|
|
case MPOL_BIND:
|
|
/*
|
|
* Insist on a nodelist
|
|
*/
|
|
if (!nodelist)
|
|
goto out;
|
|
}
|
|
|
|
mode_flags = 0;
|
|
if (flags) {
|
|
/*
|
|
* Currently, we only support two mutually exclusive
|
|
* mode flags.
|
|
*/
|
|
if (!strcmp(flags, "static"))
|
|
mode_flags |= MPOL_F_STATIC_NODES;
|
|
else if (!strcmp(flags, "relative"))
|
|
mode_flags |= MPOL_F_RELATIVE_NODES;
|
|
else
|
|
goto out;
|
|
}
|
|
|
|
new = mpol_new(mode, mode_flags, &nodes);
|
|
if (IS_ERR(new))
|
|
goto out;
|
|
|
|
/*
|
|
* Save nodes for mpol_to_str() to show the tmpfs mount options
|
|
* for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
|
|
*/
|
|
if (mode != MPOL_PREFERRED)
|
|
new->v.nodes = nodes;
|
|
else if (nodelist)
|
|
new->v.preferred_node = first_node(nodes);
|
|
else
|
|
new->flags |= MPOL_F_LOCAL;
|
|
|
|
/*
|
|
* Save nodes for contextualization: this will be used to "clone"
|
|
* the mempolicy in a specific context [cpuset] at a later time.
|
|
*/
|
|
new->w.user_nodemask = nodes;
|
|
|
|
err = 0;
|
|
|
|
out:
|
|
/* Restore string for error message */
|
|
if (nodelist)
|
|
*--nodelist = ':';
|
|
if (flags)
|
|
*--flags = '=';
|
|
if (!err)
|
|
*mpol = new;
|
|
return err;
|
|
}
|
|
#endif /* CONFIG_TMPFS */
|
|
|
|
/**
|
|
* mpol_to_str - format a mempolicy structure for printing
|
|
* @buffer: to contain formatted mempolicy string
|
|
* @maxlen: length of @buffer
|
|
* @pol: pointer to mempolicy to be formatted
|
|
*
|
|
* Convert @pol into a string. If @buffer is too short, truncate the string.
|
|
* Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
|
|
* longest flag, "relative", and to display at least a few node ids.
|
|
*/
|
|
void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
|
|
{
|
|
char *p = buffer;
|
|
nodemask_t nodes = NODE_MASK_NONE;
|
|
unsigned short mode = MPOL_DEFAULT;
|
|
unsigned short flags = 0;
|
|
|
|
if (pol && pol != &default_policy) {
|
|
mode = pol->mode;
|
|
flags = pol->flags;
|
|
}
|
|
|
|
switch (mode) {
|
|
case MPOL_DEFAULT:
|
|
break;
|
|
case MPOL_PREFERRED:
|
|
if (flags & MPOL_F_LOCAL)
|
|
mode = MPOL_LOCAL;
|
|
else
|
|
node_set(pol->v.preferred_node, nodes);
|
|
break;
|
|
case MPOL_BIND:
|
|
case MPOL_INTERLEAVE:
|
|
nodes = pol->v.nodes;
|
|
break;
|
|
default:
|
|
WARN_ON_ONCE(1);
|
|
snprintf(p, maxlen, "unknown");
|
|
return;
|
|
}
|
|
|
|
p += snprintf(p, maxlen, "%s", policy_modes[mode]);
|
|
|
|
if (flags & MPOL_MODE_FLAGS) {
|
|
p += snprintf(p, buffer + maxlen - p, "=");
|
|
|
|
/*
|
|
* Currently, the only defined flags are mutually exclusive
|
|
*/
|
|
if (flags & MPOL_F_STATIC_NODES)
|
|
p += snprintf(p, buffer + maxlen - p, "static");
|
|
else if (flags & MPOL_F_RELATIVE_NODES)
|
|
p += snprintf(p, buffer + maxlen - p, "relative");
|
|
}
|
|
|
|
if (!nodes_empty(nodes)) {
|
|
p += snprintf(p, buffer + maxlen - p, ":");
|
|
p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
|
|
}
|
|
}
|