linux/drivers/dma/ioat/dma_v2.c
Dan Williams 128f2d567f ioat2+: add fence support
In preparation for adding more operation types to the ioat3 path the
driver needs to honor the DMA_PREP_FENCE flag.  For example the async_tx api
will hand xor->memcpy->xor chains to the driver with the 'fence' flag set on
the first xor and the memcpy operation.  This flag in turn sets the 'fence'
flag in the descriptor control field telling the hardware that future
descriptors in the chain depend on the result of the current descriptor, so
wait for all writes to complete before starting the next operation.

Note that ioat1 does not prefetch the descriptor chain, so does not
require/support fenced operations.

Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-09-08 17:42:53 -07:00

883 lines
24 KiB
C

/*
* Intel I/OAT DMA Linux driver
* Copyright(c) 2004 - 2009 Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
*
* The full GNU General Public License is included in this distribution in
* the file called "COPYING".
*
*/
/*
* This driver supports an Intel I/OAT DMA engine (versions >= 2), which
* does asynchronous data movement and checksumming operations.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/dmaengine.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/workqueue.h>
#include <linux/i7300_idle.h>
#include "dma.h"
#include "dma_v2.h"
#include "registers.h"
#include "hw.h"
static int ioat_ring_alloc_order = 8;
module_param(ioat_ring_alloc_order, int, 0644);
MODULE_PARM_DESC(ioat_ring_alloc_order,
"ioat2+: allocate 2^n descriptors per channel (default: n=8)");
static int ioat_ring_max_alloc_order = IOAT_MAX_ORDER;
module_param(ioat_ring_max_alloc_order, int, 0644);
MODULE_PARM_DESC(ioat_ring_max_alloc_order,
"ioat2+: upper limit for dynamic ring resizing (default: n=16)");
static void __ioat2_issue_pending(struct ioat2_dma_chan *ioat)
{
void * __iomem reg_base = ioat->base.reg_base;
ioat->pending = 0;
ioat->dmacount += ioat2_ring_pending(ioat);;
ioat->issued = ioat->head;
/* make descriptor updates globally visible before notifying channel */
wmb();
writew(ioat->dmacount, reg_base + IOAT_CHAN_DMACOUNT_OFFSET);
dev_dbg(to_dev(&ioat->base),
"%s: head: %#x tail: %#x issued: %#x count: %#x\n",
__func__, ioat->head, ioat->tail, ioat->issued, ioat->dmacount);
}
static void ioat2_issue_pending(struct dma_chan *chan)
{
struct ioat2_dma_chan *ioat = to_ioat2_chan(chan);
spin_lock_bh(&ioat->ring_lock);
if (ioat->pending == 1)
__ioat2_issue_pending(ioat);
spin_unlock_bh(&ioat->ring_lock);
}
/**
* ioat2_update_pending - log pending descriptors
* @ioat: ioat2+ channel
*
* set pending to '1' unless pending is already set to '2', pending == 2
* indicates that submission is temporarily blocked due to an in-flight
* reset. If we are already above the ioat_pending_level threshold then
* just issue pending.
*
* called with ring_lock held
*/
static void ioat2_update_pending(struct ioat2_dma_chan *ioat)
{
if (unlikely(ioat->pending == 2))
return;
else if (ioat2_ring_pending(ioat) > ioat_pending_level)
__ioat2_issue_pending(ioat);
else
ioat->pending = 1;
}
static void __ioat2_start_null_desc(struct ioat2_dma_chan *ioat)
{
struct ioat_ring_ent *desc;
struct ioat_dma_descriptor *hw;
int idx;
if (ioat2_ring_space(ioat) < 1) {
dev_err(to_dev(&ioat->base),
"Unable to start null desc - ring full\n");
return;
}
dev_dbg(to_dev(&ioat->base), "%s: head: %#x tail: %#x issued: %#x\n",
__func__, ioat->head, ioat->tail, ioat->issued);
idx = ioat2_desc_alloc(ioat, 1);
desc = ioat2_get_ring_ent(ioat, idx);
hw = desc->hw;
hw->ctl = 0;
hw->ctl_f.null = 1;
hw->ctl_f.int_en = 1;
hw->ctl_f.compl_write = 1;
/* set size to non-zero value (channel returns error when size is 0) */
hw->size = NULL_DESC_BUFFER_SIZE;
hw->src_addr = 0;
hw->dst_addr = 0;
async_tx_ack(&desc->txd);
ioat2_set_chainaddr(ioat, desc->txd.phys);
dump_desc_dbg(ioat, desc);
__ioat2_issue_pending(ioat);
}
static void ioat2_start_null_desc(struct ioat2_dma_chan *ioat)
{
spin_lock_bh(&ioat->ring_lock);
__ioat2_start_null_desc(ioat);
spin_unlock_bh(&ioat->ring_lock);
}
static void __cleanup(struct ioat2_dma_chan *ioat, unsigned long phys_complete)
{
struct ioat_chan_common *chan = &ioat->base;
struct dma_async_tx_descriptor *tx;
struct ioat_ring_ent *desc;
bool seen_current = false;
u16 active;
int i;
dev_dbg(to_dev(chan), "%s: head: %#x tail: %#x issued: %#x\n",
__func__, ioat->head, ioat->tail, ioat->issued);
active = ioat2_ring_active(ioat);
for (i = 0; i < active && !seen_current; i++) {
prefetch(ioat2_get_ring_ent(ioat, ioat->tail + i + 1));
desc = ioat2_get_ring_ent(ioat, ioat->tail + i);
tx = &desc->txd;
dump_desc_dbg(ioat, desc);
if (tx->cookie) {
ioat_dma_unmap(chan, tx->flags, desc->len, desc->hw);
chan->completed_cookie = tx->cookie;
tx->cookie = 0;
if (tx->callback) {
tx->callback(tx->callback_param);
tx->callback = NULL;
}
}
if (tx->phys == phys_complete)
seen_current = true;
}
ioat->tail += i;
BUG_ON(!seen_current); /* no active descs have written a completion? */
chan->last_completion = phys_complete;
if (ioat->head == ioat->tail) {
dev_dbg(to_dev(chan), "%s: cancel completion timeout\n",
__func__);
clear_bit(IOAT_COMPLETION_PENDING, &chan->state);
mod_timer(&chan->timer, jiffies + IDLE_TIMEOUT);
}
}
/**
* ioat2_cleanup - clean finished descriptors (advance tail pointer)
* @chan: ioat channel to be cleaned up
*/
static void ioat2_cleanup(struct ioat2_dma_chan *ioat)
{
struct ioat_chan_common *chan = &ioat->base;
unsigned long phys_complete;
prefetch(chan->completion);
if (!spin_trylock_bh(&chan->cleanup_lock))
return;
if (!ioat_cleanup_preamble(chan, &phys_complete)) {
spin_unlock_bh(&chan->cleanup_lock);
return;
}
if (!spin_trylock_bh(&ioat->ring_lock)) {
spin_unlock_bh(&chan->cleanup_lock);
return;
}
__cleanup(ioat, phys_complete);
spin_unlock_bh(&ioat->ring_lock);
spin_unlock_bh(&chan->cleanup_lock);
}
static void ioat2_cleanup_tasklet(unsigned long data)
{
struct ioat2_dma_chan *ioat = (void *) data;
ioat2_cleanup(ioat);
writew(IOAT_CHANCTRL_RUN, ioat->base.reg_base + IOAT_CHANCTRL_OFFSET);
}
static void __restart_chan(struct ioat2_dma_chan *ioat)
{
struct ioat_chan_common *chan = &ioat->base;
/* set the tail to be re-issued */
ioat->issued = ioat->tail;
ioat->dmacount = 0;
set_bit(IOAT_COMPLETION_PENDING, &chan->state);
mod_timer(&chan->timer, jiffies + COMPLETION_TIMEOUT);
dev_dbg(to_dev(chan),
"%s: head: %#x tail: %#x issued: %#x count: %#x\n",
__func__, ioat->head, ioat->tail, ioat->issued, ioat->dmacount);
if (ioat2_ring_pending(ioat)) {
struct ioat_ring_ent *desc;
desc = ioat2_get_ring_ent(ioat, ioat->tail);
ioat2_set_chainaddr(ioat, desc->txd.phys);
__ioat2_issue_pending(ioat);
} else
__ioat2_start_null_desc(ioat);
}
static void ioat2_restart_channel(struct ioat2_dma_chan *ioat)
{
struct ioat_chan_common *chan = &ioat->base;
unsigned long phys_complete;
u32 status;
status = ioat_chansts(chan);
if (is_ioat_active(status) || is_ioat_idle(status))
ioat_suspend(chan);
while (is_ioat_active(status) || is_ioat_idle(status)) {
status = ioat_chansts(chan);
cpu_relax();
}
if (ioat_cleanup_preamble(chan, &phys_complete))
__cleanup(ioat, phys_complete);
__restart_chan(ioat);
}
static bool reshape_ring(struct ioat2_dma_chan *ioat, int order);
static void ioat2_timer_event(unsigned long data)
{
struct ioat2_dma_chan *ioat = (void *) data;
struct ioat_chan_common *chan = &ioat->base;
spin_lock_bh(&chan->cleanup_lock);
if (test_bit(IOAT_COMPLETION_PENDING, &chan->state)) {
unsigned long phys_complete;
u64 status;
spin_lock_bh(&ioat->ring_lock);
status = ioat_chansts(chan);
/* when halted due to errors check for channel
* programming errors before advancing the completion state
*/
if (is_ioat_halted(status)) {
u32 chanerr;
chanerr = readl(chan->reg_base + IOAT_CHANERR_OFFSET);
BUG_ON(is_ioat_bug(chanerr));
}
/* if we haven't made progress and we have already
* acknowledged a pending completion once, then be more
* forceful with a restart
*/
if (ioat_cleanup_preamble(chan, &phys_complete))
__cleanup(ioat, phys_complete);
else if (test_bit(IOAT_COMPLETION_ACK, &chan->state))
ioat2_restart_channel(ioat);
else {
set_bit(IOAT_COMPLETION_ACK, &chan->state);
mod_timer(&chan->timer, jiffies + COMPLETION_TIMEOUT);
}
spin_unlock_bh(&ioat->ring_lock);
} else {
u16 active;
/* if the ring is idle, empty, and oversized try to step
* down the size
*/
spin_lock_bh(&ioat->ring_lock);
active = ioat2_ring_active(ioat);
if (active == 0 && ioat->alloc_order > ioat_get_alloc_order())
reshape_ring(ioat, ioat->alloc_order-1);
spin_unlock_bh(&ioat->ring_lock);
/* keep shrinking until we get back to our minimum
* default size
*/
if (ioat->alloc_order > ioat_get_alloc_order())
mod_timer(&chan->timer, jiffies + IDLE_TIMEOUT);
}
spin_unlock_bh(&chan->cleanup_lock);
}
/**
* ioat2_enumerate_channels - find and initialize the device's channels
* @device: the device to be enumerated
*/
static int ioat2_enumerate_channels(struct ioatdma_device *device)
{
struct ioat2_dma_chan *ioat;
struct device *dev = &device->pdev->dev;
struct dma_device *dma = &device->common;
u8 xfercap_log;
int i;
INIT_LIST_HEAD(&dma->channels);
dma->chancnt = readb(device->reg_base + IOAT_CHANCNT_OFFSET);
dma->chancnt &= 0x1f; /* bits [4:0] valid */
if (dma->chancnt > ARRAY_SIZE(device->idx)) {
dev_warn(dev, "(%d) exceeds max supported channels (%zu)\n",
dma->chancnt, ARRAY_SIZE(device->idx));
dma->chancnt = ARRAY_SIZE(device->idx);
}
xfercap_log = readb(device->reg_base + IOAT_XFERCAP_OFFSET);
xfercap_log &= 0x1f; /* bits [4:0] valid */
if (xfercap_log == 0)
return 0;
dev_dbg(dev, "%s: xfercap = %d\n", __func__, 1 << xfercap_log);
/* FIXME which i/oat version is i7300? */
#ifdef CONFIG_I7300_IDLE_IOAT_CHANNEL
if (i7300_idle_platform_probe(NULL, NULL, 1) == 0)
dma->chancnt--;
#endif
for (i = 0; i < dma->chancnt; i++) {
ioat = devm_kzalloc(dev, sizeof(*ioat), GFP_KERNEL);
if (!ioat)
break;
ioat_init_channel(device, &ioat->base, i,
ioat2_timer_event,
ioat2_cleanup_tasklet,
(unsigned long) ioat);
ioat->xfercap_log = xfercap_log;
spin_lock_init(&ioat->ring_lock);
}
dma->chancnt = i;
return i;
}
static dma_cookie_t ioat2_tx_submit_unlock(struct dma_async_tx_descriptor *tx)
{
struct dma_chan *c = tx->chan;
struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
struct ioat_chan_common *chan = &ioat->base;
dma_cookie_t cookie = c->cookie;
cookie++;
if (cookie < 0)
cookie = 1;
tx->cookie = cookie;
c->cookie = cookie;
dev_dbg(to_dev(&ioat->base), "%s: cookie: %d\n", __func__, cookie);
if (!test_and_set_bit(IOAT_COMPLETION_PENDING, &chan->state))
mod_timer(&chan->timer, jiffies + COMPLETION_TIMEOUT);
ioat2_update_pending(ioat);
spin_unlock_bh(&ioat->ring_lock);
return cookie;
}
static struct ioat_ring_ent *ioat2_alloc_ring_ent(struct dma_chan *chan, gfp_t flags)
{
struct ioat_dma_descriptor *hw;
struct ioat_ring_ent *desc;
struct ioatdma_device *dma;
dma_addr_t phys;
dma = to_ioatdma_device(chan->device);
hw = pci_pool_alloc(dma->dma_pool, flags, &phys);
if (!hw)
return NULL;
memset(hw, 0, sizeof(*hw));
desc = kzalloc(sizeof(*desc), flags);
if (!desc) {
pci_pool_free(dma->dma_pool, hw, phys);
return NULL;
}
dma_async_tx_descriptor_init(&desc->txd, chan);
desc->txd.tx_submit = ioat2_tx_submit_unlock;
desc->hw = hw;
desc->txd.phys = phys;
return desc;
}
static void ioat2_free_ring_ent(struct ioat_ring_ent *desc, struct dma_chan *chan)
{
struct ioatdma_device *dma;
dma = to_ioatdma_device(chan->device);
pci_pool_free(dma->dma_pool, desc->hw, desc->txd.phys);
kfree(desc);
}
static struct ioat_ring_ent **ioat2_alloc_ring(struct dma_chan *c, int order, gfp_t flags)
{
struct ioat_ring_ent **ring;
int descs = 1 << order;
int i;
if (order > ioat_get_max_alloc_order())
return NULL;
/* allocate the array to hold the software ring */
ring = kcalloc(descs, sizeof(*ring), flags);
if (!ring)
return NULL;
for (i = 0; i < descs; i++) {
ring[i] = ioat2_alloc_ring_ent(c, flags);
if (!ring[i]) {
while (i--)
ioat2_free_ring_ent(ring[i], c);
kfree(ring);
return NULL;
}
set_desc_id(ring[i], i);
}
/* link descs */
for (i = 0; i < descs-1; i++) {
struct ioat_ring_ent *next = ring[i+1];
struct ioat_dma_descriptor *hw = ring[i]->hw;
hw->next = next->txd.phys;
}
ring[i]->hw->next = ring[0]->txd.phys;
return ring;
}
/* ioat2_alloc_chan_resources - allocate/initialize ioat2 descriptor ring
* @chan: channel to be initialized
*/
static int ioat2_alloc_chan_resources(struct dma_chan *c)
{
struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
struct ioat_chan_common *chan = &ioat->base;
struct ioat_ring_ent **ring;
u32 chanerr;
int order;
/* have we already been set up? */
if (ioat->ring)
return 1 << ioat->alloc_order;
/* Setup register to interrupt and write completion status on error */
writew(IOAT_CHANCTRL_RUN, chan->reg_base + IOAT_CHANCTRL_OFFSET);
chanerr = readl(chan->reg_base + IOAT_CHANERR_OFFSET);
if (chanerr) {
dev_err(to_dev(chan), "CHANERR = %x, clearing\n", chanerr);
writel(chanerr, chan->reg_base + IOAT_CHANERR_OFFSET);
}
/* allocate a completion writeback area */
/* doing 2 32bit writes to mmio since 1 64b write doesn't work */
chan->completion = pci_pool_alloc(chan->device->completion_pool,
GFP_KERNEL, &chan->completion_dma);
if (!chan->completion)
return -ENOMEM;
memset(chan->completion, 0, sizeof(*chan->completion));
writel(((u64) chan->completion_dma) & 0x00000000FFFFFFFF,
chan->reg_base + IOAT_CHANCMP_OFFSET_LOW);
writel(((u64) chan->completion_dma) >> 32,
chan->reg_base + IOAT_CHANCMP_OFFSET_HIGH);
order = ioat_get_alloc_order();
ring = ioat2_alloc_ring(c, order, GFP_KERNEL);
if (!ring)
return -ENOMEM;
spin_lock_bh(&ioat->ring_lock);
ioat->ring = ring;
ioat->head = 0;
ioat->issued = 0;
ioat->tail = 0;
ioat->pending = 0;
ioat->alloc_order = order;
spin_unlock_bh(&ioat->ring_lock);
tasklet_enable(&chan->cleanup_task);
ioat2_start_null_desc(ioat);
return 1 << ioat->alloc_order;
}
static bool reshape_ring(struct ioat2_dma_chan *ioat, int order)
{
/* reshape differs from normal ring allocation in that we want
* to allocate a new software ring while only
* extending/truncating the hardware ring
*/
struct ioat_chan_common *chan = &ioat->base;
struct dma_chan *c = &chan->common;
const u16 curr_size = ioat2_ring_mask(ioat) + 1;
const u16 active = ioat2_ring_active(ioat);
const u16 new_size = 1 << order;
struct ioat_ring_ent **ring;
u16 i;
if (order > ioat_get_max_alloc_order())
return false;
/* double check that we have at least 1 free descriptor */
if (active == curr_size)
return false;
/* when shrinking, verify that we can hold the current active
* set in the new ring
*/
if (active >= new_size)
return false;
/* allocate the array to hold the software ring */
ring = kcalloc(new_size, sizeof(*ring), GFP_NOWAIT);
if (!ring)
return false;
/* allocate/trim descriptors as needed */
if (new_size > curr_size) {
/* copy current descriptors to the new ring */
for (i = 0; i < curr_size; i++) {
u16 curr_idx = (ioat->tail+i) & (curr_size-1);
u16 new_idx = (ioat->tail+i) & (new_size-1);
ring[new_idx] = ioat->ring[curr_idx];
set_desc_id(ring[new_idx], new_idx);
}
/* add new descriptors to the ring */
for (i = curr_size; i < new_size; i++) {
u16 new_idx = (ioat->tail+i) & (new_size-1);
ring[new_idx] = ioat2_alloc_ring_ent(c, GFP_NOWAIT);
if (!ring[new_idx]) {
while (i--) {
u16 new_idx = (ioat->tail+i) & (new_size-1);
ioat2_free_ring_ent(ring[new_idx], c);
}
kfree(ring);
return false;
}
set_desc_id(ring[new_idx], new_idx);
}
/* hw link new descriptors */
for (i = curr_size-1; i < new_size; i++) {
u16 new_idx = (ioat->tail+i) & (new_size-1);
struct ioat_ring_ent *next = ring[(new_idx+1) & (new_size-1)];
struct ioat_dma_descriptor *hw = ring[new_idx]->hw;
hw->next = next->txd.phys;
}
} else {
struct ioat_dma_descriptor *hw;
struct ioat_ring_ent *next;
/* copy current descriptors to the new ring, dropping the
* removed descriptors
*/
for (i = 0; i < new_size; i++) {
u16 curr_idx = (ioat->tail+i) & (curr_size-1);
u16 new_idx = (ioat->tail+i) & (new_size-1);
ring[new_idx] = ioat->ring[curr_idx];
set_desc_id(ring[new_idx], new_idx);
}
/* free deleted descriptors */
for (i = new_size; i < curr_size; i++) {
struct ioat_ring_ent *ent;
ent = ioat2_get_ring_ent(ioat, ioat->tail+i);
ioat2_free_ring_ent(ent, c);
}
/* fix up hardware ring */
hw = ring[(ioat->tail+new_size-1) & (new_size-1)]->hw;
next = ring[(ioat->tail+new_size) & (new_size-1)];
hw->next = next->txd.phys;
}
dev_dbg(to_dev(chan), "%s: allocated %d descriptors\n",
__func__, new_size);
kfree(ioat->ring);
ioat->ring = ring;
ioat->alloc_order = order;
return true;
}
/**
* ioat2_alloc_and_lock - common descriptor alloc boilerplate for ioat2,3 ops
* @idx: gets starting descriptor index on successful allocation
* @ioat: ioat2,3 channel (ring) to operate on
* @num_descs: allocation length
*/
static int ioat2_alloc_and_lock(u16 *idx, struct ioat2_dma_chan *ioat, int num_descs)
{
struct ioat_chan_common *chan = &ioat->base;
spin_lock_bh(&ioat->ring_lock);
/* never allow the last descriptor to be consumed, we need at
* least one free at all times to allow for on-the-fly ring
* resizing.
*/
while (unlikely(ioat2_ring_space(ioat) <= num_descs)) {
if (reshape_ring(ioat, ioat->alloc_order + 1) &&
ioat2_ring_space(ioat) > num_descs)
break;
if (printk_ratelimit())
dev_dbg(to_dev(chan),
"%s: ring full! num_descs: %d (%x:%x:%x)\n",
__func__, num_descs, ioat->head, ioat->tail,
ioat->issued);
spin_unlock_bh(&ioat->ring_lock);
/* progress reclaim in the allocation failure case we
* may be called under bh_disabled so we need to trigger
* the timer event directly
*/
spin_lock_bh(&chan->cleanup_lock);
if (jiffies > chan->timer.expires &&
timer_pending(&chan->timer)) {
mod_timer(&chan->timer, jiffies + COMPLETION_TIMEOUT);
spin_unlock_bh(&chan->cleanup_lock);
ioat2_timer_event((unsigned long) ioat);
} else
spin_unlock_bh(&chan->cleanup_lock);
return -ENOMEM;
}
dev_dbg(to_dev(chan), "%s: num_descs: %d (%x:%x:%x)\n",
__func__, num_descs, ioat->head, ioat->tail, ioat->issued);
*idx = ioat2_desc_alloc(ioat, num_descs);
return 0; /* with ioat->ring_lock held */
}
static struct dma_async_tx_descriptor *
ioat2_dma_prep_memcpy_lock(struct dma_chan *c, dma_addr_t dma_dest,
dma_addr_t dma_src, size_t len, unsigned long flags)
{
struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
struct ioat_dma_descriptor *hw;
struct ioat_ring_ent *desc;
dma_addr_t dst = dma_dest;
dma_addr_t src = dma_src;
size_t total_len = len;
int num_descs;
u16 idx;
int i;
num_descs = ioat2_xferlen_to_descs(ioat, len);
if (likely(num_descs) &&
ioat2_alloc_and_lock(&idx, ioat, num_descs) == 0)
/* pass */;
else
return NULL;
for (i = 0; i < num_descs; i++) {
size_t copy = min_t(size_t, len, 1 << ioat->xfercap_log);
desc = ioat2_get_ring_ent(ioat, idx + i);
hw = desc->hw;
hw->size = copy;
hw->ctl = 0;
hw->src_addr = src;
hw->dst_addr = dst;
len -= copy;
dst += copy;
src += copy;
dump_desc_dbg(ioat, desc);
}
desc->txd.flags = flags;
desc->len = total_len;
hw->ctl_f.int_en = !!(flags & DMA_PREP_INTERRUPT);
hw->ctl_f.fence = !!(flags & DMA_PREP_FENCE);
hw->ctl_f.compl_write = 1;
dump_desc_dbg(ioat, desc);
/* we leave the channel locked to ensure in order submission */
return &desc->txd;
}
/**
* ioat2_free_chan_resources - release all the descriptors
* @chan: the channel to be cleaned
*/
static void ioat2_free_chan_resources(struct dma_chan *c)
{
struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
struct ioat_chan_common *chan = &ioat->base;
struct ioatdma_device *ioatdma_device = chan->device;
struct ioat_ring_ent *desc;
const u16 total_descs = 1 << ioat->alloc_order;
int descs;
int i;
/* Before freeing channel resources first check
* if they have been previously allocated for this channel.
*/
if (!ioat->ring)
return;
tasklet_disable(&chan->cleanup_task);
del_timer_sync(&chan->timer);
ioat2_cleanup(ioat);
/* Delay 100ms after reset to allow internal DMA logic to quiesce
* before removing DMA descriptor resources.
*/
writeb(IOAT_CHANCMD_RESET,
chan->reg_base + IOAT_CHANCMD_OFFSET(chan->device->version));
mdelay(100);
spin_lock_bh(&ioat->ring_lock);
descs = ioat2_ring_space(ioat);
dev_dbg(to_dev(chan), "freeing %d idle descriptors\n", descs);
for (i = 0; i < descs; i++) {
desc = ioat2_get_ring_ent(ioat, ioat->head + i);
ioat2_free_ring_ent(desc, c);
}
if (descs < total_descs)
dev_err(to_dev(chan), "Freeing %d in use descriptors!\n",
total_descs - descs);
for (i = 0; i < total_descs - descs; i++) {
desc = ioat2_get_ring_ent(ioat, ioat->tail + i);
dump_desc_dbg(ioat, desc);
ioat2_free_ring_ent(desc, c);
}
kfree(ioat->ring);
ioat->ring = NULL;
ioat->alloc_order = 0;
pci_pool_free(ioatdma_device->completion_pool,
chan->completion,
chan->completion_dma);
spin_unlock_bh(&ioat->ring_lock);
chan->last_completion = 0;
chan->completion_dma = 0;
ioat->pending = 0;
ioat->dmacount = 0;
}
static enum dma_status
ioat2_is_complete(struct dma_chan *c, dma_cookie_t cookie,
dma_cookie_t *done, dma_cookie_t *used)
{
struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
if (ioat_is_complete(c, cookie, done, used) == DMA_SUCCESS)
return DMA_SUCCESS;
ioat2_cleanup(ioat);
return ioat_is_complete(c, cookie, done, used);
}
int __devinit ioat2_dma_probe(struct ioatdma_device *device, int dca)
{
struct pci_dev *pdev = device->pdev;
struct dma_device *dma;
struct dma_chan *c;
struct ioat_chan_common *chan;
int err;
device->enumerate_channels = ioat2_enumerate_channels;
dma = &device->common;
dma->device_prep_dma_memcpy = ioat2_dma_prep_memcpy_lock;
dma->device_issue_pending = ioat2_issue_pending;
dma->device_alloc_chan_resources = ioat2_alloc_chan_resources;
dma->device_free_chan_resources = ioat2_free_chan_resources;
dma->device_is_tx_complete = ioat2_is_complete;
err = ioat_probe(device);
if (err)
return err;
ioat_set_tcp_copy_break(2048);
list_for_each_entry(c, &dma->channels, device_node) {
chan = to_chan_common(c);
writel(IOAT_DCACTRL_CMPL_WRITE_ENABLE | IOAT_DMA_DCA_ANY_CPU,
chan->reg_base + IOAT_DCACTRL_OFFSET);
}
err = ioat_register(device);
if (err)
return err;
if (dca)
device->dca = ioat2_dca_init(pdev, device->reg_base);
return err;
}
int __devinit ioat3_dma_probe(struct ioatdma_device *device, int dca)
{
struct pci_dev *pdev = device->pdev;
struct dma_device *dma;
struct dma_chan *c;
struct ioat_chan_common *chan;
int err;
u16 dev_id;
device->enumerate_channels = ioat2_enumerate_channels;
dma = &device->common;
dma->device_prep_dma_memcpy = ioat2_dma_prep_memcpy_lock;
dma->device_issue_pending = ioat2_issue_pending;
dma->device_alloc_chan_resources = ioat2_alloc_chan_resources;
dma->device_free_chan_resources = ioat2_free_chan_resources;
dma->device_is_tx_complete = ioat2_is_complete;
/* -= IOAT ver.3 workarounds =- */
/* Write CHANERRMSK_INT with 3E07h to mask out the errors
* that can cause stability issues for IOAT ver.3
*/
pci_write_config_dword(pdev, IOAT_PCI_CHANERRMASK_INT_OFFSET, 0x3e07);
/* Clear DMAUNCERRSTS Cfg-Reg Parity Error status bit
* (workaround for spurious config parity error after restart)
*/
pci_read_config_word(pdev, IOAT_PCI_DEVICE_ID_OFFSET, &dev_id);
if (dev_id == PCI_DEVICE_ID_INTEL_IOAT_TBG0)
pci_write_config_dword(pdev, IOAT_PCI_DMAUNCERRSTS_OFFSET, 0x10);
err = ioat_probe(device);
if (err)
return err;
ioat_set_tcp_copy_break(262144);
list_for_each_entry(c, &dma->channels, device_node) {
chan = to_chan_common(c);
writel(IOAT_DMA_DCA_ANY_CPU,
chan->reg_base + IOAT_DCACTRL_OFFSET);
}
err = ioat_register(device);
if (err)
return err;
if (dca)
device->dca = ioat3_dca_init(pdev, device->reg_base);
return err;
}