1cdcbec1a3
Take away the ability for sys_capset() to affect processes other than current. This means that current will not need to lock its own credentials when reading them against interference by other processes. This has effectively been the case for a while anyway, since: (1) Without LSM enabled, sys_capset() is disallowed. (2) With file-based capabilities, sys_capset() is neutered. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Serge Hallyn <serue@us.ibm.com> Acked-by: Andrew G. Morgan <morgan@kernel.org> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
348 lines
9.1 KiB
C
348 lines
9.1 KiB
C
/*
|
|
* linux/kernel/capability.c
|
|
*
|
|
* Copyright (C) 1997 Andrew Main <zefram@fysh.org>
|
|
*
|
|
* Integrated into 2.1.97+, Andrew G. Morgan <morgan@kernel.org>
|
|
* 30 May 2002: Cleanup, Robert M. Love <rml@tech9.net>
|
|
*/
|
|
|
|
#include <linux/audit.h>
|
|
#include <linux/capability.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/module.h>
|
|
#include <linux/security.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/pid_namespace.h>
|
|
#include <asm/uaccess.h>
|
|
|
|
/*
|
|
* This lock protects task->cap_* for all tasks including current.
|
|
* Locking rule: acquire this prior to tasklist_lock.
|
|
*/
|
|
static DEFINE_SPINLOCK(task_capability_lock);
|
|
|
|
/*
|
|
* Leveraged for setting/resetting capabilities
|
|
*/
|
|
|
|
const kernel_cap_t __cap_empty_set = CAP_EMPTY_SET;
|
|
const kernel_cap_t __cap_full_set = CAP_FULL_SET;
|
|
const kernel_cap_t __cap_init_eff_set = CAP_INIT_EFF_SET;
|
|
|
|
EXPORT_SYMBOL(__cap_empty_set);
|
|
EXPORT_SYMBOL(__cap_full_set);
|
|
EXPORT_SYMBOL(__cap_init_eff_set);
|
|
|
|
#ifdef CONFIG_SECURITY_FILE_CAPABILITIES
|
|
int file_caps_enabled = 1;
|
|
|
|
static int __init file_caps_disable(char *str)
|
|
{
|
|
file_caps_enabled = 0;
|
|
return 1;
|
|
}
|
|
__setup("no_file_caps", file_caps_disable);
|
|
#endif
|
|
|
|
/*
|
|
* More recent versions of libcap are available from:
|
|
*
|
|
* http://www.kernel.org/pub/linux/libs/security/linux-privs/
|
|
*/
|
|
|
|
static void warn_legacy_capability_use(void)
|
|
{
|
|
static int warned;
|
|
if (!warned) {
|
|
char name[sizeof(current->comm)];
|
|
|
|
printk(KERN_INFO "warning: `%s' uses 32-bit capabilities"
|
|
" (legacy support in use)\n",
|
|
get_task_comm(name, current));
|
|
warned = 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Version 2 capabilities worked fine, but the linux/capability.h file
|
|
* that accompanied their introduction encouraged their use without
|
|
* the necessary user-space source code changes. As such, we have
|
|
* created a version 3 with equivalent functionality to version 2, but
|
|
* with a header change to protect legacy source code from using
|
|
* version 2 when it wanted to use version 1. If your system has code
|
|
* that trips the following warning, it is using version 2 specific
|
|
* capabilities and may be doing so insecurely.
|
|
*
|
|
* The remedy is to either upgrade your version of libcap (to 2.10+,
|
|
* if the application is linked against it), or recompile your
|
|
* application with modern kernel headers and this warning will go
|
|
* away.
|
|
*/
|
|
|
|
static void warn_deprecated_v2(void)
|
|
{
|
|
static int warned;
|
|
|
|
if (!warned) {
|
|
char name[sizeof(current->comm)];
|
|
|
|
printk(KERN_INFO "warning: `%s' uses deprecated v2"
|
|
" capabilities in a way that may be insecure.\n",
|
|
get_task_comm(name, current));
|
|
warned = 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Version check. Return the number of u32s in each capability flag
|
|
* array, or a negative value on error.
|
|
*/
|
|
static int cap_validate_magic(cap_user_header_t header, unsigned *tocopy)
|
|
{
|
|
__u32 version;
|
|
|
|
if (get_user(version, &header->version))
|
|
return -EFAULT;
|
|
|
|
switch (version) {
|
|
case _LINUX_CAPABILITY_VERSION_1:
|
|
warn_legacy_capability_use();
|
|
*tocopy = _LINUX_CAPABILITY_U32S_1;
|
|
break;
|
|
case _LINUX_CAPABILITY_VERSION_2:
|
|
warn_deprecated_v2();
|
|
/*
|
|
* fall through - v3 is otherwise equivalent to v2.
|
|
*/
|
|
case _LINUX_CAPABILITY_VERSION_3:
|
|
*tocopy = _LINUX_CAPABILITY_U32S_3;
|
|
break;
|
|
default:
|
|
if (put_user((u32)_KERNEL_CAPABILITY_VERSION, &header->version))
|
|
return -EFAULT;
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If we have configured with filesystem capability support, then the
|
|
* only thing that can change the capabilities of the current process
|
|
* is the current process. As such, we can't be in this code at the
|
|
* same time as we are in the process of setting capabilities in this
|
|
* process. The net result is that we can limit our use of locks to
|
|
* when we are reading the caps of another process.
|
|
*/
|
|
static inline int cap_get_target_pid(pid_t pid, kernel_cap_t *pEp,
|
|
kernel_cap_t *pIp, kernel_cap_t *pPp)
|
|
{
|
|
int ret;
|
|
|
|
if (pid && (pid != task_pid_vnr(current))) {
|
|
struct task_struct *target;
|
|
|
|
spin_lock(&task_capability_lock);
|
|
read_lock(&tasklist_lock);
|
|
|
|
target = find_task_by_vpid(pid);
|
|
if (!target)
|
|
ret = -ESRCH;
|
|
else
|
|
ret = security_capget(target, pEp, pIp, pPp);
|
|
|
|
read_unlock(&tasklist_lock);
|
|
spin_unlock(&task_capability_lock);
|
|
} else
|
|
ret = security_capget(current, pEp, pIp, pPp);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Atomically modify the effective capabilities returning the original
|
|
* value. No permission check is performed here - it is assumed that the
|
|
* caller is permitted to set the desired effective capabilities.
|
|
*/
|
|
kernel_cap_t cap_set_effective(const kernel_cap_t pE_new)
|
|
{
|
|
kernel_cap_t pE_old;
|
|
|
|
spin_lock(&task_capability_lock);
|
|
|
|
pE_old = current->cap_effective;
|
|
current->cap_effective = pE_new;
|
|
|
|
spin_unlock(&task_capability_lock);
|
|
|
|
return pE_old;
|
|
}
|
|
|
|
EXPORT_SYMBOL(cap_set_effective);
|
|
|
|
/**
|
|
* sys_capget - get the capabilities of a given process.
|
|
* @header: pointer to struct that contains capability version and
|
|
* target pid data
|
|
* @dataptr: pointer to struct that contains the effective, permitted,
|
|
* and inheritable capabilities that are returned
|
|
*
|
|
* Returns 0 on success and < 0 on error.
|
|
*/
|
|
asmlinkage long sys_capget(cap_user_header_t header, cap_user_data_t dataptr)
|
|
{
|
|
int ret = 0;
|
|
pid_t pid;
|
|
unsigned tocopy;
|
|
kernel_cap_t pE, pI, pP;
|
|
|
|
ret = cap_validate_magic(header, &tocopy);
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
if (get_user(pid, &header->pid))
|
|
return -EFAULT;
|
|
|
|
if (pid < 0)
|
|
return -EINVAL;
|
|
|
|
ret = cap_get_target_pid(pid, &pE, &pI, &pP);
|
|
|
|
if (!ret) {
|
|
struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S];
|
|
unsigned i;
|
|
|
|
for (i = 0; i < tocopy; i++) {
|
|
kdata[i].effective = pE.cap[i];
|
|
kdata[i].permitted = pP.cap[i];
|
|
kdata[i].inheritable = pI.cap[i];
|
|
}
|
|
|
|
/*
|
|
* Note, in the case, tocopy < _KERNEL_CAPABILITY_U32S,
|
|
* we silently drop the upper capabilities here. This
|
|
* has the effect of making older libcap
|
|
* implementations implicitly drop upper capability
|
|
* bits when they perform a: capget/modify/capset
|
|
* sequence.
|
|
*
|
|
* This behavior is considered fail-safe
|
|
* behavior. Upgrading the application to a newer
|
|
* version of libcap will enable access to the newer
|
|
* capabilities.
|
|
*
|
|
* An alternative would be to return an error here
|
|
* (-ERANGE), but that causes legacy applications to
|
|
* unexpectidly fail; the capget/modify/capset aborts
|
|
* before modification is attempted and the application
|
|
* fails.
|
|
*/
|
|
if (copy_to_user(dataptr, kdata, tocopy
|
|
* sizeof(struct __user_cap_data_struct))) {
|
|
return -EFAULT;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* sys_capset - set capabilities for a process or (*) a group of processes
|
|
* @header: pointer to struct that contains capability version and
|
|
* target pid data
|
|
* @data: pointer to struct that contains the effective, permitted,
|
|
* and inheritable capabilities
|
|
*
|
|
* Set capabilities for the current process only. The ability to any other
|
|
* process(es) has been deprecated and removed.
|
|
*
|
|
* The restrictions on setting capabilities are specified as:
|
|
*
|
|
* I: any raised capabilities must be a subset of the old permitted
|
|
* P: any raised capabilities must be a subset of the old permitted
|
|
* E: must be set to a subset of new permitted
|
|
*
|
|
* Returns 0 on success and < 0 on error.
|
|
*/
|
|
asmlinkage long sys_capset(cap_user_header_t header, const cap_user_data_t data)
|
|
{
|
|
struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S];
|
|
unsigned i, tocopy;
|
|
kernel_cap_t inheritable, permitted, effective;
|
|
int ret;
|
|
pid_t pid;
|
|
|
|
ret = cap_validate_magic(header, &tocopy);
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
if (get_user(pid, &header->pid))
|
|
return -EFAULT;
|
|
|
|
/* may only affect current now */
|
|
if (pid != 0 && pid != task_pid_vnr(current))
|
|
return -EPERM;
|
|
|
|
if (copy_from_user(&kdata, data, tocopy
|
|
* sizeof(struct __user_cap_data_struct)))
|
|
return -EFAULT;
|
|
|
|
for (i = 0; i < tocopy; i++) {
|
|
effective.cap[i] = kdata[i].effective;
|
|
permitted.cap[i] = kdata[i].permitted;
|
|
inheritable.cap[i] = kdata[i].inheritable;
|
|
}
|
|
while (i < _KERNEL_CAPABILITY_U32S) {
|
|
effective.cap[i] = 0;
|
|
permitted.cap[i] = 0;
|
|
inheritable.cap[i] = 0;
|
|
i++;
|
|
}
|
|
|
|
ret = audit_log_capset(pid, &effective, &inheritable, &permitted);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* This lock is required even when filesystem capability support is
|
|
* configured - it protects the sys_capget() call from returning
|
|
* incorrect data in the case that the targeted process is not the
|
|
* current one.
|
|
*/
|
|
spin_lock(&task_capability_lock);
|
|
|
|
ret = security_capset_check(&effective, &inheritable, &permitted);
|
|
/* Having verified that the proposed changes are legal, we now put them
|
|
* into effect.
|
|
*/
|
|
if (!ret)
|
|
security_capset_set(&effective, &inheritable, &permitted);
|
|
spin_unlock(&task_capability_lock);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* capable - Determine if the current task has a superior capability in effect
|
|
* @cap: The capability to be tested for
|
|
*
|
|
* Return true if the current task has the given superior capability currently
|
|
* available for use, false if not.
|
|
*
|
|
* This sets PF_SUPERPRIV on the task if the capability is available on the
|
|
* assumption that it's about to be used.
|
|
*/
|
|
int capable(int cap)
|
|
{
|
|
if (unlikely(!cap_valid(cap))) {
|
|
printk(KERN_CRIT "capable() called with invalid cap=%u\n", cap);
|
|
BUG();
|
|
}
|
|
|
|
if (has_capability(current, cap)) {
|
|
current->flags |= PF_SUPERPRIV;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(capable);
|