314 lines
8.1 KiB
C
314 lines
8.1 KiB
C
#ifndef __CTREE__
|
|
#define __CTREE__
|
|
|
|
#include "list.h"
|
|
#include "kerncompat.h"
|
|
|
|
#define CTREE_BLOCKSIZE 1024
|
|
|
|
/*
|
|
* the key defines the order in the tree, and so it also defines (optimal)
|
|
* block layout. objectid corresonds to the inode number. The flags
|
|
* tells us things about the object, and is a kind of stream selector.
|
|
* so for a given inode, keys with flags of 1 might refer to the inode
|
|
* data, flags of 2 may point to file data in the btree and flags == 3
|
|
* may point to extents.
|
|
*
|
|
* offset is the starting byte offset for this key in the stream.
|
|
*
|
|
* btrfs_disk_key is in disk byte order. struct btrfs_key is always
|
|
* in cpu native order. Otherwise they are identical and their sizes
|
|
* should be the same (ie both packed)
|
|
*/
|
|
struct btrfs_disk_key {
|
|
__le64 objectid;
|
|
__le32 flags;
|
|
__le64 offset;
|
|
} __attribute__ ((__packed__));
|
|
|
|
struct btrfs_key {
|
|
u64 objectid;
|
|
u32 flags;
|
|
u64 offset;
|
|
} __attribute__ ((__packed__));
|
|
|
|
/*
|
|
* every tree block (leaf or node) starts with this header.
|
|
*/
|
|
struct btrfs_header {
|
|
__le64 fsid[2]; /* FS specific uuid */
|
|
__le64 blocknr; /* which block this node is supposed to live in */
|
|
__le64 parentid; /* objectid of the tree root */
|
|
__le32 csum;
|
|
__le32 ham;
|
|
__le16 nritems;
|
|
__le16 flags;
|
|
/* generation flags to be added */
|
|
} __attribute__ ((__packed__));
|
|
|
|
#define MAX_LEVEL 8
|
|
#define NODEPTRS_PER_BLOCK ((CTREE_BLOCKSIZE - sizeof(struct btrfs_header)) / \
|
|
(sizeof(struct btrfs_disk_key) + sizeof(u64)))
|
|
|
|
struct tree_buffer;
|
|
|
|
/*
|
|
* in ram representation of the tree. extent_root is used for all allocations
|
|
* and for the extent tree extent_root root. current_insert is used
|
|
* only for the extent tree.
|
|
*/
|
|
struct ctree_root {
|
|
struct tree_buffer *node;
|
|
struct tree_buffer *commit_root;
|
|
struct ctree_root *extent_root;
|
|
struct btrfs_key current_insert;
|
|
struct btrfs_key last_insert;
|
|
int fp;
|
|
struct radix_tree_root cache_radix;
|
|
struct radix_tree_root pinned_radix;
|
|
struct list_head trans;
|
|
struct list_head cache;
|
|
int cache_size;
|
|
};
|
|
|
|
/*
|
|
* describes a tree on disk
|
|
*/
|
|
struct ctree_root_info {
|
|
u64 fsid[2]; /* FS specific uuid */
|
|
u64 blocknr; /* blocknr of this block */
|
|
u64 objectid; /* inode number of this root */
|
|
u64 tree_root; /* the tree root block */
|
|
u32 csum;
|
|
u32 ham;
|
|
u64 snapuuid[2]; /* root specific uuid */
|
|
} __attribute__ ((__packed__));
|
|
|
|
/*
|
|
* the super block basically lists the main trees of the FS
|
|
* it currently lacks any block count etc etc
|
|
*/
|
|
struct ctree_super_block {
|
|
struct ctree_root_info root_info;
|
|
struct ctree_root_info extent_info;
|
|
} __attribute__ ((__packed__));
|
|
|
|
/*
|
|
* A leaf is full of items. The exact type of item is defined by
|
|
* the key flags parameter. offset and size tell us where to find
|
|
* the item in the leaf (relative to the start of the data area)
|
|
*/
|
|
struct btrfs_item {
|
|
struct btrfs_disk_key key;
|
|
__le16 offset;
|
|
__le16 size;
|
|
} __attribute__ ((__packed__));
|
|
|
|
/*
|
|
* leaves have an item area and a data area:
|
|
* [item0, item1....itemN] [free space] [dataN...data1, data0]
|
|
*
|
|
* The data is separate from the items to get the keys closer together
|
|
* during searches.
|
|
*/
|
|
#define LEAF_DATA_SIZE (CTREE_BLOCKSIZE - sizeof(struct btrfs_header))
|
|
struct leaf {
|
|
struct btrfs_header header;
|
|
union {
|
|
struct btrfs_item items[LEAF_DATA_SIZE/
|
|
sizeof(struct btrfs_item)];
|
|
u8 data[CTREE_BLOCKSIZE-sizeof(struct btrfs_header)];
|
|
};
|
|
} __attribute__ ((__packed__));
|
|
|
|
/*
|
|
* all non-leaf blocks are nodes, they hold only keys and pointers to
|
|
* other blocks
|
|
*/
|
|
struct node {
|
|
struct btrfs_header header;
|
|
struct btrfs_disk_key keys[NODEPTRS_PER_BLOCK];
|
|
__le64 blockptrs[NODEPTRS_PER_BLOCK];
|
|
} __attribute__ ((__packed__));
|
|
|
|
/*
|
|
* items in the extent btree are used to record the objectid of the
|
|
* owner of the block and the number of references
|
|
*/
|
|
struct extent_item {
|
|
u32 refs;
|
|
u64 owner;
|
|
} __attribute__ ((__packed__));
|
|
|
|
/*
|
|
* ctree_paths remember the path taken from the root down to the leaf.
|
|
* level 0 is always the leaf, and nodes[1...MAX_LEVEL] will point
|
|
* to any other levels that are present.
|
|
*
|
|
* The slots array records the index of the item or block pointer
|
|
* used while walking the tree.
|
|
*/
|
|
struct ctree_path {
|
|
struct tree_buffer *nodes[MAX_LEVEL];
|
|
int slots[MAX_LEVEL];
|
|
};
|
|
|
|
static inline u64 btrfs_node_blockptr(struct node *n, int nr)
|
|
{
|
|
return le64_to_cpu(n->blockptrs[nr]);
|
|
}
|
|
|
|
static inline void btrfs_set_node_blockptr(struct node *n, int nr, u64 val)
|
|
{
|
|
n->blockptrs[nr] = cpu_to_le64(val);
|
|
}
|
|
|
|
static inline u16 btrfs_item_offset(struct btrfs_item *item)
|
|
{
|
|
return le16_to_cpu(item->offset);
|
|
}
|
|
|
|
static inline void btrfs_set_item_offset(struct btrfs_item *item, u16 val)
|
|
{
|
|
item->offset = cpu_to_le16(val);
|
|
}
|
|
|
|
static inline u16 btrfs_item_end(struct btrfs_item *item)
|
|
{
|
|
return le16_to_cpu(item->offset) + le16_to_cpu(item->size);
|
|
}
|
|
|
|
static inline u16 btrfs_item_size(struct btrfs_item *item)
|
|
{
|
|
return le16_to_cpu(item->size);
|
|
}
|
|
|
|
static inline void btrfs_set_item_size(struct btrfs_item *item, u16 val)
|
|
{
|
|
item->size = cpu_to_le16(val);
|
|
}
|
|
|
|
static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
|
|
struct btrfs_disk_key *disk)
|
|
{
|
|
cpu->offset = le64_to_cpu(disk->offset);
|
|
cpu->flags = le32_to_cpu(disk->flags);
|
|
cpu->objectid = le64_to_cpu(disk->objectid);
|
|
}
|
|
|
|
static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
|
|
struct btrfs_key *cpu)
|
|
{
|
|
disk->offset = cpu_to_le64(cpu->offset);
|
|
disk->flags = cpu_to_le32(cpu->flags);
|
|
disk->objectid = cpu_to_le64(cpu->objectid);
|
|
}
|
|
|
|
static inline u64 btrfs_key_objectid(struct btrfs_disk_key *disk)
|
|
{
|
|
return le64_to_cpu(disk->objectid);
|
|
}
|
|
|
|
static inline void btrfs_set_key_objectid(struct btrfs_disk_key *disk,
|
|
u64 val)
|
|
{
|
|
disk->objectid = cpu_to_le64(val);
|
|
}
|
|
|
|
static inline u64 btrfs_key_offset(struct btrfs_disk_key *disk)
|
|
{
|
|
return le64_to_cpu(disk->offset);
|
|
}
|
|
|
|
static inline void btrfs_set_key_offset(struct btrfs_disk_key *disk,
|
|
u64 val)
|
|
{
|
|
disk->offset = cpu_to_le64(val);
|
|
}
|
|
|
|
static inline u32 btrfs_key_flags(struct btrfs_disk_key *disk)
|
|
{
|
|
return le32_to_cpu(disk->flags);
|
|
}
|
|
|
|
static inline void btrfs_set_key_flags(struct btrfs_disk_key *disk,
|
|
u32 val)
|
|
{
|
|
disk->flags = cpu_to_le32(val);
|
|
}
|
|
|
|
static inline u64 btrfs_header_blocknr(struct btrfs_header *h)
|
|
{
|
|
return le64_to_cpu(h->blocknr);
|
|
}
|
|
|
|
static inline void btrfs_set_header_blocknr(struct btrfs_header *h, u64 blocknr)
|
|
{
|
|
h->blocknr = cpu_to_le64(blocknr);
|
|
}
|
|
|
|
static inline u64 btrfs_header_parentid(struct btrfs_header *h)
|
|
{
|
|
return le64_to_cpu(h->parentid);
|
|
}
|
|
|
|
static inline void btrfs_set_header_parentid(struct btrfs_header *h,
|
|
u64 parentid)
|
|
{
|
|
h->parentid = cpu_to_le64(parentid);
|
|
}
|
|
|
|
static inline u16 btrfs_header_nritems(struct btrfs_header *h)
|
|
{
|
|
return le16_to_cpu(h->nritems);
|
|
}
|
|
|
|
static inline void btrfs_set_header_nritems(struct btrfs_header *h, u16 val)
|
|
{
|
|
h->nritems = cpu_to_le16(val);
|
|
}
|
|
|
|
static inline u16 btrfs_header_flags(struct btrfs_header *h)
|
|
{
|
|
return le16_to_cpu(h->flags);
|
|
}
|
|
|
|
static inline void btrfs_set_header_flags(struct btrfs_header *h, u16 val)
|
|
{
|
|
h->flags = cpu_to_le16(val);
|
|
}
|
|
|
|
static inline int btrfs_header_level(struct btrfs_header *h)
|
|
{
|
|
return btrfs_header_flags(h) & (MAX_LEVEL - 1);
|
|
}
|
|
|
|
static inline void btrfs_set_header_level(struct btrfs_header *h, int level)
|
|
{
|
|
u16 flags;
|
|
BUG_ON(level > MAX_LEVEL);
|
|
flags = btrfs_header_flags(h) & ~(MAX_LEVEL - 1);
|
|
btrfs_set_header_flags(h, flags | level);
|
|
}
|
|
|
|
static inline int btrfs_is_leaf(struct node *n)
|
|
{
|
|
return (btrfs_header_level(&n->header) == 0);
|
|
}
|
|
|
|
struct tree_buffer *alloc_free_block(struct ctree_root *root);
|
|
int btrfs_inc_ref(struct ctree_root *root, struct tree_buffer *buf);
|
|
int free_extent(struct ctree_root *root, u64 blocknr, u64 num_blocks);
|
|
int search_slot(struct ctree_root *root, struct btrfs_key *key,
|
|
struct ctree_path *p, int ins_len, int cow);
|
|
void release_path(struct ctree_root *root, struct ctree_path *p);
|
|
void init_path(struct ctree_path *p);
|
|
int del_item(struct ctree_root *root, struct ctree_path *path);
|
|
int insert_item(struct ctree_root *root, struct btrfs_key *key,
|
|
void *data, int data_size);
|
|
int next_leaf(struct ctree_root *root, struct ctree_path *path);
|
|
int leaf_free_space(struct leaf *leaf);
|
|
int btrfs_drop_snapshot(struct ctree_root *root, struct tree_buffer *snap);
|
|
int btrfs_finish_extent_commit(struct ctree_root *root);
|
|
#endif
|