linux/drivers/rtc/rtc-cmos.c
Mark Lord 615bb29ccb rtc: ignore msb when reading back mday from alarm
I have a system here that actively relies upon RTC wake alarms, and it
has been failing (again) for a few days when attempting to use the
/sys/class/rtc/rtc?/wakealarm interface.

The old (fixed by Linus) /proc/ interface still works, but I'd like to
get it using the new one.

This patch fixes rtc-cmos to ignore the two upper bits when reading the
BCD mday (day of month) register from CMOS.  Some systems (eg.  mine)
seem to have the top bit set to "1" for some reason.

The older /proc/ interface ignores the upper bits, and so we should too.

Signed-off-by: Mark Lord <mlord@pobox.com>
Acked-by: David Brownell <david-b@pacbell.net>
Cc: Alessandro Zummo <a.zummo@towertech.it>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-11-04 13:13:09 -08:00

800 lines
20 KiB
C

/*
* RTC class driver for "CMOS RTC": PCs, ACPI, etc
*
* Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
* Copyright (C) 2006 David Brownell (convert to new framework)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
/*
* The original "cmos clock" chip was an MC146818 chip, now obsolete.
* That defined the register interface now provided by all PCs, some
* non-PC systems, and incorporated into ACPI. Modern PC chipsets
* integrate an MC146818 clone in their southbridge, and boards use
* that instead of discrete clones like the DS12887 or M48T86. There
* are also clones that connect using the LPC bus.
*
* That register API is also used directly by various other drivers
* (notably for integrated NVRAM), infrastructure (x86 has code to
* bypass the RTC framework, directly reading the RTC during boot
* and updating minutes/seconds for systems using NTP synch) and
* utilities (like userspace 'hwclock', if no /dev node exists).
*
* So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
* interrupts disabled, holding the global rtc_lock, to exclude those
* other drivers and utilities on correctly configured systems.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/platform_device.h>
#include <linux/mod_devicetable.h>
/* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
#include <asm-generic/rtc.h>
struct cmos_rtc {
struct rtc_device *rtc;
struct device *dev;
int irq;
struct resource *iomem;
void (*wake_on)(struct device *);
void (*wake_off)(struct device *);
u8 enabled_wake;
u8 suspend_ctrl;
/* newer hardware extends the original register set */
u8 day_alrm;
u8 mon_alrm;
u8 century;
};
/* both platform and pnp busses use negative numbers for invalid irqs */
#define is_valid_irq(n) ((n) >= 0)
static const char driver_name[] = "rtc_cmos";
/* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
* always mask it against the irq enable bits in RTC_CONTROL. Bit values
* are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
*/
#define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
static inline int is_intr(u8 rtc_intr)
{
if (!(rtc_intr & RTC_IRQF))
return 0;
return rtc_intr & RTC_IRQMASK;
}
/*----------------------------------------------------------------*/
static int cmos_read_time(struct device *dev, struct rtc_time *t)
{
/* REVISIT: if the clock has a "century" register, use
* that instead of the heuristic in get_rtc_time().
* That'll make Y3K compatility (year > 2070) easy!
*/
get_rtc_time(t);
return 0;
}
static int cmos_set_time(struct device *dev, struct rtc_time *t)
{
/* REVISIT: set the "century" register if available
*
* NOTE: this ignores the issue whereby updating the seconds
* takes effect exactly 500ms after we write the register.
* (Also queueing and other delays before we get this far.)
*/
return set_rtc_time(t);
}
static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
{
struct cmos_rtc *cmos = dev_get_drvdata(dev);
unsigned char rtc_control;
if (!is_valid_irq(cmos->irq))
return -EIO;
/* Basic alarms only support hour, minute, and seconds fields.
* Some also support day and month, for alarms up to a year in
* the future.
*/
t->time.tm_mday = -1;
t->time.tm_mon = -1;
spin_lock_irq(&rtc_lock);
t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
if (cmos->day_alrm) {
/* ignore upper bits on readback per ACPI spec */
t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
if (!t->time.tm_mday)
t->time.tm_mday = -1;
if (cmos->mon_alrm) {
t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
if (!t->time.tm_mon)
t->time.tm_mon = -1;
}
}
rtc_control = CMOS_READ(RTC_CONTROL);
spin_unlock_irq(&rtc_lock);
/* REVISIT this assumes PC style usage: always BCD */
if (((unsigned)t->time.tm_sec) < 0x60)
t->time.tm_sec = BCD2BIN(t->time.tm_sec);
else
t->time.tm_sec = -1;
if (((unsigned)t->time.tm_min) < 0x60)
t->time.tm_min = BCD2BIN(t->time.tm_min);
else
t->time.tm_min = -1;
if (((unsigned)t->time.tm_hour) < 0x24)
t->time.tm_hour = BCD2BIN(t->time.tm_hour);
else
t->time.tm_hour = -1;
if (cmos->day_alrm) {
if (((unsigned)t->time.tm_mday) <= 0x31)
t->time.tm_mday = BCD2BIN(t->time.tm_mday);
else
t->time.tm_mday = -1;
if (cmos->mon_alrm) {
if (((unsigned)t->time.tm_mon) <= 0x12)
t->time.tm_mon = BCD2BIN(t->time.tm_mon) - 1;
else
t->time.tm_mon = -1;
}
}
t->time.tm_year = -1;
t->enabled = !!(rtc_control & RTC_AIE);
t->pending = 0;
return 0;
}
static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
{
struct cmos_rtc *cmos = dev_get_drvdata(dev);
unsigned char mon, mday, hrs, min, sec;
unsigned char rtc_control, rtc_intr;
if (!is_valid_irq(cmos->irq))
return -EIO;
/* REVISIT this assumes PC style usage: always BCD */
/* Writing 0xff means "don't care" or "match all". */
mon = t->time.tm_mon;
mon = (mon < 12) ? BIN2BCD(mon) : 0xff;
mon++;
mday = t->time.tm_mday;
mday = (mday >= 1 && mday <= 31) ? BIN2BCD(mday) : 0xff;
hrs = t->time.tm_hour;
hrs = (hrs < 24) ? BIN2BCD(hrs) : 0xff;
min = t->time.tm_min;
min = (min < 60) ? BIN2BCD(min) : 0xff;
sec = t->time.tm_sec;
sec = (sec < 60) ? BIN2BCD(sec) : 0xff;
spin_lock_irq(&rtc_lock);
/* next rtc irq must not be from previous alarm setting */
rtc_control = CMOS_READ(RTC_CONTROL);
rtc_control &= ~RTC_AIE;
CMOS_WRITE(rtc_control, RTC_CONTROL);
rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
if (is_intr(rtc_intr))
rtc_update_irq(cmos->rtc, 1, rtc_intr);
/* update alarm */
CMOS_WRITE(hrs, RTC_HOURS_ALARM);
CMOS_WRITE(min, RTC_MINUTES_ALARM);
CMOS_WRITE(sec, RTC_SECONDS_ALARM);
/* the system may support an "enhanced" alarm */
if (cmos->day_alrm) {
CMOS_WRITE(mday, cmos->day_alrm);
if (cmos->mon_alrm)
CMOS_WRITE(mon, cmos->mon_alrm);
}
if (t->enabled) {
rtc_control |= RTC_AIE;
CMOS_WRITE(rtc_control, RTC_CONTROL);
rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
if (is_intr(rtc_intr))
rtc_update_irq(cmos->rtc, 1, rtc_intr);
}
spin_unlock_irq(&rtc_lock);
return 0;
}
static int cmos_irq_set_freq(struct device *dev, int freq)
{
struct cmos_rtc *cmos = dev_get_drvdata(dev);
int f;
unsigned long flags;
if (!is_valid_irq(cmos->irq))
return -ENXIO;
/* 0 = no irqs; 1 = 2^15 Hz ... 15 = 2^0 Hz */
f = ffs(freq);
if (f-- > 16)
return -EINVAL;
f = 16 - f;
spin_lock_irqsave(&rtc_lock, flags);
CMOS_WRITE(RTC_REF_CLCK_32KHZ | f, RTC_FREQ_SELECT);
spin_unlock_irqrestore(&rtc_lock, flags);
return 0;
}
static int cmos_irq_set_state(struct device *dev, int enabled)
{
struct cmos_rtc *cmos = dev_get_drvdata(dev);
unsigned char rtc_control, rtc_intr;
unsigned long flags;
if (!is_valid_irq(cmos->irq))
return -ENXIO;
spin_lock_irqsave(&rtc_lock, flags);
rtc_control = CMOS_READ(RTC_CONTROL);
if (enabled)
rtc_control |= RTC_PIE;
else
rtc_control &= ~RTC_PIE;
CMOS_WRITE(rtc_control, RTC_CONTROL);
rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
if (is_intr(rtc_intr))
rtc_update_irq(cmos->rtc, 1, rtc_intr);
spin_unlock_irqrestore(&rtc_lock, flags);
return 0;
}
#if defined(CONFIG_RTC_INTF_DEV) || defined(CONFIG_RTC_INTF_DEV_MODULE)
static int
cmos_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
{
struct cmos_rtc *cmos = dev_get_drvdata(dev);
unsigned char rtc_control, rtc_intr;
unsigned long flags;
switch (cmd) {
case RTC_AIE_OFF:
case RTC_AIE_ON:
case RTC_UIE_OFF:
case RTC_UIE_ON:
case RTC_PIE_OFF:
case RTC_PIE_ON:
if (!is_valid_irq(cmos->irq))
return -EINVAL;
break;
default:
return -ENOIOCTLCMD;
}
spin_lock_irqsave(&rtc_lock, flags);
rtc_control = CMOS_READ(RTC_CONTROL);
switch (cmd) {
case RTC_AIE_OFF: /* alarm off */
rtc_control &= ~RTC_AIE;
break;
case RTC_AIE_ON: /* alarm on */
rtc_control |= RTC_AIE;
break;
case RTC_UIE_OFF: /* update off */
rtc_control &= ~RTC_UIE;
break;
case RTC_UIE_ON: /* update on */
rtc_control |= RTC_UIE;
break;
case RTC_PIE_OFF: /* periodic off */
rtc_control &= ~RTC_PIE;
break;
case RTC_PIE_ON: /* periodic on */
rtc_control |= RTC_PIE;
break;
}
CMOS_WRITE(rtc_control, RTC_CONTROL);
rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
if (is_intr(rtc_intr))
rtc_update_irq(cmos->rtc, 1, rtc_intr);
spin_unlock_irqrestore(&rtc_lock, flags);
return 0;
}
#else
#define cmos_rtc_ioctl NULL
#endif
#if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
static int cmos_procfs(struct device *dev, struct seq_file *seq)
{
struct cmos_rtc *cmos = dev_get_drvdata(dev);
unsigned char rtc_control, valid;
spin_lock_irq(&rtc_lock);
rtc_control = CMOS_READ(RTC_CONTROL);
valid = CMOS_READ(RTC_VALID);
spin_unlock_irq(&rtc_lock);
/* NOTE: at least ICH6 reports battery status using a different
* (non-RTC) bit; and SQWE is ignored on many current systems.
*/
return seq_printf(seq,
"periodic_IRQ\t: %s\n"
"update_IRQ\t: %s\n"
// "square_wave\t: %s\n"
// "BCD\t\t: %s\n"
"DST_enable\t: %s\n"
"periodic_freq\t: %d\n"
"batt_status\t: %s\n",
(rtc_control & RTC_PIE) ? "yes" : "no",
(rtc_control & RTC_UIE) ? "yes" : "no",
// (rtc_control & RTC_SQWE) ? "yes" : "no",
// (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
(rtc_control & RTC_DST_EN) ? "yes" : "no",
cmos->rtc->irq_freq,
(valid & RTC_VRT) ? "okay" : "dead");
}
#else
#define cmos_procfs NULL
#endif
static const struct rtc_class_ops cmos_rtc_ops = {
.ioctl = cmos_rtc_ioctl,
.read_time = cmos_read_time,
.set_time = cmos_set_time,
.read_alarm = cmos_read_alarm,
.set_alarm = cmos_set_alarm,
.proc = cmos_procfs,
.irq_set_freq = cmos_irq_set_freq,
.irq_set_state = cmos_irq_set_state,
};
/*----------------------------------------------------------------*/
static struct cmos_rtc cmos_rtc;
static irqreturn_t cmos_interrupt(int irq, void *p)
{
u8 irqstat;
spin_lock(&rtc_lock);
irqstat = CMOS_READ(RTC_INTR_FLAGS);
irqstat &= (CMOS_READ(RTC_CONTROL) & RTC_IRQMASK) | RTC_IRQF;
spin_unlock(&rtc_lock);
if (is_intr(irqstat)) {
rtc_update_irq(p, 1, irqstat);
return IRQ_HANDLED;
} else
return IRQ_NONE;
}
#ifdef CONFIG_PNP
#define is_pnp() 1
#define INITSECTION
#else
#define is_pnp() 0
#define INITSECTION __init
#endif
static int INITSECTION
cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
{
struct cmos_rtc_board_info *info = dev->platform_data;
int retval = 0;
unsigned char rtc_control;
/* there can be only one ... */
if (cmos_rtc.dev)
return -EBUSY;
if (!ports)
return -ENODEV;
/* Claim I/O ports ASAP, minimizing conflict with legacy driver.
*
* REVISIT non-x86 systems may instead use memory space resources
* (needing ioremap etc), not i/o space resources like this ...
*/
ports = request_region(ports->start,
ports->end + 1 - ports->start,
driver_name);
if (!ports) {
dev_dbg(dev, "i/o registers already in use\n");
return -EBUSY;
}
cmos_rtc.irq = rtc_irq;
cmos_rtc.iomem = ports;
/* For ACPI systems extension info comes from the FADT. On others,
* board specific setup provides it as appropriate. Systems where
* the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
* some almost-clones) can provide hooks to make that behave.
*/
if (info) {
cmos_rtc.day_alrm = info->rtc_day_alarm;
cmos_rtc.mon_alrm = info->rtc_mon_alarm;
cmos_rtc.century = info->rtc_century;
if (info->wake_on && info->wake_off) {
cmos_rtc.wake_on = info->wake_on;
cmos_rtc.wake_off = info->wake_off;
}
}
cmos_rtc.rtc = rtc_device_register(driver_name, dev,
&cmos_rtc_ops, THIS_MODULE);
if (IS_ERR(cmos_rtc.rtc)) {
retval = PTR_ERR(cmos_rtc.rtc);
goto cleanup0;
}
cmos_rtc.dev = dev;
dev_set_drvdata(dev, &cmos_rtc);
rename_region(ports, cmos_rtc.rtc->dev.bus_id);
spin_lock_irq(&rtc_lock);
/* force periodic irq to CMOS reset default of 1024Hz;
*
* REVISIT it's been reported that at least one x86_64 ALI mobo
* doesn't use 32KHz here ... for portability we might need to
* do something about other clock frequencies.
*/
CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
cmos_rtc.rtc->irq_freq = 1024;
/* disable irqs.
*
* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
* allegedly some older rtcs need that to handle irqs properly
*/
rtc_control = CMOS_READ(RTC_CONTROL);
rtc_control &= ~(RTC_PIE | RTC_AIE | RTC_UIE);
CMOS_WRITE(rtc_control, RTC_CONTROL);
CMOS_READ(RTC_INTR_FLAGS);
spin_unlock_irq(&rtc_lock);
/* FIXME teach the alarm code how to handle binary mode;
* <asm-generic/rtc.h> doesn't know 12-hour mode either.
*/
if (!(rtc_control & RTC_24H) || (rtc_control & (RTC_DM_BINARY))) {
dev_dbg(dev, "only 24-hr BCD mode supported\n");
retval = -ENXIO;
goto cleanup1;
}
if (is_valid_irq(rtc_irq))
retval = request_irq(rtc_irq, cmos_interrupt, IRQF_DISABLED,
cmos_rtc.rtc->dev.bus_id,
cmos_rtc.rtc);
if (retval < 0) {
dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
goto cleanup1;
}
/* REVISIT optionally make 50 or 114 bytes NVRAM available,
* like rtc-ds1553, rtc-ds1742 ... this will often include
* registers for century, and day/month alarm.
*/
pr_info("%s: alarms up to one %s%s\n",
cmos_rtc.rtc->dev.bus_id,
is_valid_irq(rtc_irq)
? (cmos_rtc.mon_alrm
? "year"
: (cmos_rtc.day_alrm
? "month" : "day"))
: "no",
cmos_rtc.century ? ", y3k" : ""
);
return 0;
cleanup1:
cmos_rtc.dev = NULL;
rtc_device_unregister(cmos_rtc.rtc);
cleanup0:
release_region(ports->start, ports->end + 1 - ports->start);
return retval;
}
static void cmos_do_shutdown(void)
{
unsigned char rtc_control;
spin_lock_irq(&rtc_lock);
rtc_control = CMOS_READ(RTC_CONTROL);
rtc_control &= ~(RTC_PIE|RTC_AIE|RTC_UIE);
CMOS_WRITE(rtc_control, RTC_CONTROL);
CMOS_READ(RTC_INTR_FLAGS);
spin_unlock_irq(&rtc_lock);
}
static void __exit cmos_do_remove(struct device *dev)
{
struct cmos_rtc *cmos = dev_get_drvdata(dev);
struct resource *ports;
cmos_do_shutdown();
if (is_valid_irq(cmos->irq))
free_irq(cmos->irq, cmos->rtc);
rtc_device_unregister(cmos->rtc);
cmos->rtc = NULL;
ports = cmos->iomem;
release_region(ports->start, ports->end + 1 - ports->start);
cmos->iomem = NULL;
cmos->dev = NULL;
dev_set_drvdata(dev, NULL);
}
#ifdef CONFIG_PM
static int cmos_suspend(struct device *dev, pm_message_t mesg)
{
struct cmos_rtc *cmos = dev_get_drvdata(dev);
int do_wake = device_may_wakeup(dev);
unsigned char tmp;
/* only the alarm might be a wakeup event source */
spin_lock_irq(&rtc_lock);
cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
unsigned char irqstat;
if (do_wake)
tmp &= ~(RTC_PIE|RTC_UIE);
else
tmp &= ~(RTC_PIE|RTC_AIE|RTC_UIE);
CMOS_WRITE(tmp, RTC_CONTROL);
irqstat = CMOS_READ(RTC_INTR_FLAGS);
irqstat &= (tmp & RTC_IRQMASK) | RTC_IRQF;
if (is_intr(irqstat))
rtc_update_irq(cmos->rtc, 1, irqstat);
}
spin_unlock_irq(&rtc_lock);
if (tmp & RTC_AIE) {
cmos->enabled_wake = 1;
if (cmos->wake_on)
cmos->wake_on(dev);
else
enable_irq_wake(cmos->irq);
}
pr_debug("%s: suspend%s, ctrl %02x\n",
cmos_rtc.rtc->dev.bus_id,
(tmp & RTC_AIE) ? ", alarm may wake" : "",
tmp);
return 0;
}
static int cmos_resume(struct device *dev)
{
struct cmos_rtc *cmos = dev_get_drvdata(dev);
unsigned char tmp = cmos->suspend_ctrl;
/* re-enable any irqs previously active */
if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
if (cmos->enabled_wake) {
if (cmos->wake_off)
cmos->wake_off(dev);
else
disable_irq_wake(cmos->irq);
cmos->enabled_wake = 0;
}
spin_lock_irq(&rtc_lock);
CMOS_WRITE(tmp, RTC_CONTROL);
tmp = CMOS_READ(RTC_INTR_FLAGS);
tmp &= (cmos->suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
if (is_intr(tmp))
rtc_update_irq(cmos->rtc, 1, tmp);
spin_unlock_irq(&rtc_lock);
}
pr_debug("%s: resume, ctrl %02x\n",
cmos_rtc.rtc->dev.bus_id,
cmos->suspend_ctrl);
return 0;
}
#else
#define cmos_suspend NULL
#define cmos_resume NULL
#endif
/*----------------------------------------------------------------*/
/* The "CMOS" RTC normally lives on the platform_bus. On ACPI systems,
* the device node will always be created as a PNPACPI device. Plus
* pre-ACPI PCs probably list it in the PNPBIOS tables.
*/
#ifdef CONFIG_PNP
#include <linux/pnp.h>
static int __devinit
cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
{
/* REVISIT paranoia argues for a shutdown notifier, since PNP
* drivers can't provide shutdown() methods to disable IRQs.
* Or better yet, fix PNP to allow those methods...
*/
if (pnp_port_start(pnp,0) == 0x70 && !pnp_irq_valid(pnp,0))
/* Some machines contain a PNP entry for the RTC, but
* don't define the IRQ. It should always be safe to
* hardcode it in these cases
*/
return cmos_do_probe(&pnp->dev, &pnp->res.port_resource[0], 8);
else
return cmos_do_probe(&pnp->dev,
&pnp->res.port_resource[0],
pnp->res.irq_resource[0].start);
}
static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
{
cmos_do_remove(&pnp->dev);
}
#ifdef CONFIG_PM
static int cmos_pnp_suspend(struct pnp_dev *pnp, pm_message_t mesg)
{
return cmos_suspend(&pnp->dev, mesg);
}
static int cmos_pnp_resume(struct pnp_dev *pnp)
{
return cmos_resume(&pnp->dev);
}
#else
#define cmos_pnp_suspend NULL
#define cmos_pnp_resume NULL
#endif
static const struct pnp_device_id rtc_ids[] = {
{ .id = "PNP0b00", },
{ .id = "PNP0b01", },
{ .id = "PNP0b02", },
{ },
};
MODULE_DEVICE_TABLE(pnp, rtc_ids);
static struct pnp_driver cmos_pnp_driver = {
.name = (char *) driver_name,
.id_table = rtc_ids,
.probe = cmos_pnp_probe,
.remove = __exit_p(cmos_pnp_remove),
/* flag ensures resume() gets called, and stops syslog spam */
.flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
.suspend = cmos_pnp_suspend,
.resume = cmos_pnp_resume,
};
static int __init cmos_init(void)
{
return pnp_register_driver(&cmos_pnp_driver);
}
module_init(cmos_init);
static void __exit cmos_exit(void)
{
pnp_unregister_driver(&cmos_pnp_driver);
}
module_exit(cmos_exit);
#else /* no PNP */
/*----------------------------------------------------------------*/
/* Platform setup should have set up an RTC device, when PNP is
* unavailable ... this could happen even on (older) PCs.
*/
static int __init cmos_platform_probe(struct platform_device *pdev)
{
return cmos_do_probe(&pdev->dev,
platform_get_resource(pdev, IORESOURCE_IO, 0),
platform_get_irq(pdev, 0));
}
static int __exit cmos_platform_remove(struct platform_device *pdev)
{
cmos_do_remove(&pdev->dev);
return 0;
}
static void cmos_platform_shutdown(struct platform_device *pdev)
{
cmos_do_shutdown();
}
static struct platform_driver cmos_platform_driver = {
.remove = __exit_p(cmos_platform_remove),
.shutdown = cmos_platform_shutdown,
.driver = {
.name = (char *) driver_name,
.suspend = cmos_suspend,
.resume = cmos_resume,
}
};
static int __init cmos_init(void)
{
return platform_driver_probe(&cmos_platform_driver,
cmos_platform_probe);
}
module_init(cmos_init);
static void __exit cmos_exit(void)
{
platform_driver_unregister(&cmos_platform_driver);
}
module_exit(cmos_exit);
#endif /* !PNP */
MODULE_AUTHOR("David Brownell");
MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
MODULE_LICENSE("GPL");