3068 lines
77 KiB
C
3068 lines
77 KiB
C
/*
|
|
* Copyright (C) Ericsson AB 2007-2008
|
|
* Copyright (C) ST-Ericsson SA 2008-2010
|
|
* Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
|
|
* Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
|
|
* License terms: GNU General Public License (GPL) version 2
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/err.h>
|
|
|
|
#include <plat/ste_dma40.h>
|
|
|
|
#include "ste_dma40_ll.h"
|
|
|
|
#define D40_NAME "dma40"
|
|
|
|
#define D40_PHY_CHAN -1
|
|
|
|
/* For masking out/in 2 bit channel positions */
|
|
#define D40_CHAN_POS(chan) (2 * (chan / 2))
|
|
#define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
|
|
|
|
/* Maximum iterations taken before giving up suspending a channel */
|
|
#define D40_SUSPEND_MAX_IT 500
|
|
|
|
/* Hardware requirement on LCLA alignment */
|
|
#define LCLA_ALIGNMENT 0x40000
|
|
|
|
/* Max number of links per event group */
|
|
#define D40_LCLA_LINK_PER_EVENT_GRP 128
|
|
#define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
|
|
|
|
/* Attempts before giving up to trying to get pages that are aligned */
|
|
#define MAX_LCLA_ALLOC_ATTEMPTS 256
|
|
|
|
/* Bit markings for allocation map */
|
|
#define D40_ALLOC_FREE (1 << 31)
|
|
#define D40_ALLOC_PHY (1 << 30)
|
|
#define D40_ALLOC_LOG_FREE 0
|
|
|
|
/* Hardware designer of the block */
|
|
#define D40_HW_DESIGNER 0x8
|
|
|
|
/**
|
|
* enum 40_command - The different commands and/or statuses.
|
|
*
|
|
* @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
|
|
* @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
|
|
* @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
|
|
* @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
|
|
*/
|
|
enum d40_command {
|
|
D40_DMA_STOP = 0,
|
|
D40_DMA_RUN = 1,
|
|
D40_DMA_SUSPEND_REQ = 2,
|
|
D40_DMA_SUSPENDED = 3
|
|
};
|
|
|
|
/**
|
|
* struct d40_lli_pool - Structure for keeping LLIs in memory
|
|
*
|
|
* @base: Pointer to memory area when the pre_alloc_lli's are not large
|
|
* enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
|
|
* pre_alloc_lli is used.
|
|
* @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
|
|
* @pre_alloc_lli: Pre allocated area for the most common case of transfers,
|
|
* one buffer to one buffer.
|
|
*/
|
|
struct d40_lli_pool {
|
|
void *base;
|
|
int size;
|
|
/* Space for dst and src, plus an extra for padding */
|
|
u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
|
|
};
|
|
|
|
/**
|
|
* struct d40_desc - A descriptor is one DMA job.
|
|
*
|
|
* @lli_phy: LLI settings for physical channel. Both src and dst=
|
|
* points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
|
|
* lli_len equals one.
|
|
* @lli_log: Same as above but for logical channels.
|
|
* @lli_pool: The pool with two entries pre-allocated.
|
|
* @lli_len: Number of llis of current descriptor.
|
|
* @lli_current: Number of transfered llis.
|
|
* @lcla_alloc: Number of LCLA entries allocated.
|
|
* @txd: DMA engine struct. Used for among other things for communication
|
|
* during a transfer.
|
|
* @node: List entry.
|
|
* @is_in_client_list: true if the client owns this descriptor.
|
|
* @is_hw_linked: true if this job will automatically be continued for
|
|
* the previous one.
|
|
*
|
|
* This descriptor is used for both logical and physical transfers.
|
|
*/
|
|
struct d40_desc {
|
|
/* LLI physical */
|
|
struct d40_phy_lli_bidir lli_phy;
|
|
/* LLI logical */
|
|
struct d40_log_lli_bidir lli_log;
|
|
|
|
struct d40_lli_pool lli_pool;
|
|
int lli_len;
|
|
int lli_current;
|
|
int lcla_alloc;
|
|
|
|
struct dma_async_tx_descriptor txd;
|
|
struct list_head node;
|
|
|
|
bool is_in_client_list;
|
|
bool is_hw_linked;
|
|
};
|
|
|
|
/**
|
|
* struct d40_lcla_pool - LCLA pool settings and data.
|
|
*
|
|
* @base: The virtual address of LCLA. 18 bit aligned.
|
|
* @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
|
|
* This pointer is only there for clean-up on error.
|
|
* @pages: The number of pages needed for all physical channels.
|
|
* Only used later for clean-up on error
|
|
* @lock: Lock to protect the content in this struct.
|
|
* @alloc_map: big map over which LCLA entry is own by which job.
|
|
*/
|
|
struct d40_lcla_pool {
|
|
void *base;
|
|
void *base_unaligned;
|
|
int pages;
|
|
spinlock_t lock;
|
|
struct d40_desc **alloc_map;
|
|
};
|
|
|
|
/**
|
|
* struct d40_phy_res - struct for handling eventlines mapped to physical
|
|
* channels.
|
|
*
|
|
* @lock: A lock protection this entity.
|
|
* @num: The physical channel number of this entity.
|
|
* @allocated_src: Bit mapped to show which src event line's are mapped to
|
|
* this physical channel. Can also be free or physically allocated.
|
|
* @allocated_dst: Same as for src but is dst.
|
|
* allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
|
|
* event line number.
|
|
*/
|
|
struct d40_phy_res {
|
|
spinlock_t lock;
|
|
int num;
|
|
u32 allocated_src;
|
|
u32 allocated_dst;
|
|
};
|
|
|
|
struct d40_base;
|
|
|
|
/**
|
|
* struct d40_chan - Struct that describes a channel.
|
|
*
|
|
* @lock: A spinlock to protect this struct.
|
|
* @log_num: The logical number, if any of this channel.
|
|
* @completed: Starts with 1, after first interrupt it is set to dma engine's
|
|
* current cookie.
|
|
* @pending_tx: The number of pending transfers. Used between interrupt handler
|
|
* and tasklet.
|
|
* @busy: Set to true when transfer is ongoing on this channel.
|
|
* @phy_chan: Pointer to physical channel which this instance runs on. If this
|
|
* point is NULL, then the channel is not allocated.
|
|
* @chan: DMA engine handle.
|
|
* @tasklet: Tasklet that gets scheduled from interrupt context to complete a
|
|
* transfer and call client callback.
|
|
* @client: Cliented owned descriptor list.
|
|
* @active: Active descriptor.
|
|
* @queue: Queued jobs.
|
|
* @dma_cfg: The client configuration of this dma channel.
|
|
* @configured: whether the dma_cfg configuration is valid
|
|
* @base: Pointer to the device instance struct.
|
|
* @src_def_cfg: Default cfg register setting for src.
|
|
* @dst_def_cfg: Default cfg register setting for dst.
|
|
* @log_def: Default logical channel settings.
|
|
* @lcla: Space for one dst src pair for logical channel transfers.
|
|
* @lcpa: Pointer to dst and src lcpa settings.
|
|
*
|
|
* This struct can either "be" a logical or a physical channel.
|
|
*/
|
|
struct d40_chan {
|
|
spinlock_t lock;
|
|
int log_num;
|
|
/* ID of the most recent completed transfer */
|
|
int completed;
|
|
int pending_tx;
|
|
bool busy;
|
|
struct d40_phy_res *phy_chan;
|
|
struct dma_chan chan;
|
|
struct tasklet_struct tasklet;
|
|
struct list_head client;
|
|
struct list_head active;
|
|
struct list_head queue;
|
|
struct stedma40_chan_cfg dma_cfg;
|
|
bool configured;
|
|
struct d40_base *base;
|
|
/* Default register configurations */
|
|
u32 src_def_cfg;
|
|
u32 dst_def_cfg;
|
|
struct d40_def_lcsp log_def;
|
|
struct d40_log_lli_full *lcpa;
|
|
/* Runtime reconfiguration */
|
|
dma_addr_t runtime_addr;
|
|
enum dma_data_direction runtime_direction;
|
|
};
|
|
|
|
/**
|
|
* struct d40_base - The big global struct, one for each probe'd instance.
|
|
*
|
|
* @interrupt_lock: Lock used to make sure one interrupt is handle a time.
|
|
* @execmd_lock: Lock for execute command usage since several channels share
|
|
* the same physical register.
|
|
* @dev: The device structure.
|
|
* @virtbase: The virtual base address of the DMA's register.
|
|
* @rev: silicon revision detected.
|
|
* @clk: Pointer to the DMA clock structure.
|
|
* @phy_start: Physical memory start of the DMA registers.
|
|
* @phy_size: Size of the DMA register map.
|
|
* @irq: The IRQ number.
|
|
* @num_phy_chans: The number of physical channels. Read from HW. This
|
|
* is the number of available channels for this driver, not counting "Secure
|
|
* mode" allocated physical channels.
|
|
* @num_log_chans: The number of logical channels. Calculated from
|
|
* num_phy_chans.
|
|
* @dma_both: dma_device channels that can do both memcpy and slave transfers.
|
|
* @dma_slave: dma_device channels that can do only do slave transfers.
|
|
* @dma_memcpy: dma_device channels that can do only do memcpy transfers.
|
|
* @log_chans: Room for all possible logical channels in system.
|
|
* @lookup_log_chans: Used to map interrupt number to logical channel. Points
|
|
* to log_chans entries.
|
|
* @lookup_phy_chans: Used to map interrupt number to physical channel. Points
|
|
* to phy_chans entries.
|
|
* @plat_data: Pointer to provided platform_data which is the driver
|
|
* configuration.
|
|
* @phy_res: Vector containing all physical channels.
|
|
* @lcla_pool: lcla pool settings and data.
|
|
* @lcpa_base: The virtual mapped address of LCPA.
|
|
* @phy_lcpa: The physical address of the LCPA.
|
|
* @lcpa_size: The size of the LCPA area.
|
|
* @desc_slab: cache for descriptors.
|
|
*/
|
|
struct d40_base {
|
|
spinlock_t interrupt_lock;
|
|
spinlock_t execmd_lock;
|
|
struct device *dev;
|
|
void __iomem *virtbase;
|
|
u8 rev:4;
|
|
struct clk *clk;
|
|
phys_addr_t phy_start;
|
|
resource_size_t phy_size;
|
|
int irq;
|
|
int num_phy_chans;
|
|
int num_log_chans;
|
|
struct dma_device dma_both;
|
|
struct dma_device dma_slave;
|
|
struct dma_device dma_memcpy;
|
|
struct d40_chan *phy_chans;
|
|
struct d40_chan *log_chans;
|
|
struct d40_chan **lookup_log_chans;
|
|
struct d40_chan **lookup_phy_chans;
|
|
struct stedma40_platform_data *plat_data;
|
|
/* Physical half channels */
|
|
struct d40_phy_res *phy_res;
|
|
struct d40_lcla_pool lcla_pool;
|
|
void *lcpa_base;
|
|
dma_addr_t phy_lcpa;
|
|
resource_size_t lcpa_size;
|
|
struct kmem_cache *desc_slab;
|
|
};
|
|
|
|
/**
|
|
* struct d40_interrupt_lookup - lookup table for interrupt handler
|
|
*
|
|
* @src: Interrupt mask register.
|
|
* @clr: Interrupt clear register.
|
|
* @is_error: true if this is an error interrupt.
|
|
* @offset: start delta in the lookup_log_chans in d40_base. If equals to
|
|
* D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
|
|
*/
|
|
struct d40_interrupt_lookup {
|
|
u32 src;
|
|
u32 clr;
|
|
bool is_error;
|
|
int offset;
|
|
};
|
|
|
|
/**
|
|
* struct d40_reg_val - simple lookup struct
|
|
*
|
|
* @reg: The register.
|
|
* @val: The value that belongs to the register in reg.
|
|
*/
|
|
struct d40_reg_val {
|
|
unsigned int reg;
|
|
unsigned int val;
|
|
};
|
|
|
|
static int d40_pool_lli_alloc(struct d40_desc *d40d,
|
|
int lli_len, bool is_log)
|
|
{
|
|
u32 align;
|
|
void *base;
|
|
|
|
if (is_log)
|
|
align = sizeof(struct d40_log_lli);
|
|
else
|
|
align = sizeof(struct d40_phy_lli);
|
|
|
|
if (lli_len == 1) {
|
|
base = d40d->lli_pool.pre_alloc_lli;
|
|
d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
|
|
d40d->lli_pool.base = NULL;
|
|
} else {
|
|
d40d->lli_pool.size = ALIGN(lli_len * 2 * align, align);
|
|
|
|
base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
|
|
d40d->lli_pool.base = base;
|
|
|
|
if (d40d->lli_pool.base == NULL)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (is_log) {
|
|
d40d->lli_log.src = PTR_ALIGN((struct d40_log_lli *) base,
|
|
align);
|
|
d40d->lli_log.dst = PTR_ALIGN(d40d->lli_log.src + lli_len,
|
|
align);
|
|
} else {
|
|
d40d->lli_phy.src = PTR_ALIGN((struct d40_phy_lli *)base,
|
|
align);
|
|
d40d->lli_phy.dst = PTR_ALIGN(d40d->lli_phy.src + lli_len,
|
|
align);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void d40_pool_lli_free(struct d40_desc *d40d)
|
|
{
|
|
kfree(d40d->lli_pool.base);
|
|
d40d->lli_pool.base = NULL;
|
|
d40d->lli_pool.size = 0;
|
|
d40d->lli_log.src = NULL;
|
|
d40d->lli_log.dst = NULL;
|
|
d40d->lli_phy.src = NULL;
|
|
d40d->lli_phy.dst = NULL;
|
|
}
|
|
|
|
static int d40_lcla_alloc_one(struct d40_chan *d40c,
|
|
struct d40_desc *d40d)
|
|
{
|
|
unsigned long flags;
|
|
int i;
|
|
int ret = -EINVAL;
|
|
int p;
|
|
|
|
spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
|
|
|
|
p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
|
|
|
|
/*
|
|
* Allocate both src and dst at the same time, therefore the half
|
|
* start on 1 since 0 can't be used since zero is used as end marker.
|
|
*/
|
|
for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
|
|
if (!d40c->base->lcla_pool.alloc_map[p + i]) {
|
|
d40c->base->lcla_pool.alloc_map[p + i] = d40d;
|
|
d40d->lcla_alloc++;
|
|
ret = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int d40_lcla_free_all(struct d40_chan *d40c,
|
|
struct d40_desc *d40d)
|
|
{
|
|
unsigned long flags;
|
|
int i;
|
|
int ret = -EINVAL;
|
|
|
|
if (d40c->log_num == D40_PHY_CHAN)
|
|
return 0;
|
|
|
|
spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
|
|
|
|
for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
|
|
if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
|
|
D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
|
|
d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
|
|
D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
|
|
d40d->lcla_alloc--;
|
|
if (d40d->lcla_alloc == 0) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
static void d40_desc_remove(struct d40_desc *d40d)
|
|
{
|
|
list_del(&d40d->node);
|
|
}
|
|
|
|
static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
|
|
{
|
|
struct d40_desc *desc = NULL;
|
|
|
|
if (!list_empty(&d40c->client)) {
|
|
struct d40_desc *d;
|
|
struct d40_desc *_d;
|
|
|
|
list_for_each_entry_safe(d, _d, &d40c->client, node)
|
|
if (async_tx_test_ack(&d->txd)) {
|
|
d40_pool_lli_free(d);
|
|
d40_desc_remove(d);
|
|
desc = d;
|
|
memset(desc, 0, sizeof(*desc));
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!desc)
|
|
desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
|
|
|
|
if (desc)
|
|
INIT_LIST_HEAD(&desc->node);
|
|
|
|
return desc;
|
|
}
|
|
|
|
static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
|
|
{
|
|
|
|
d40_lcla_free_all(d40c, d40d);
|
|
kmem_cache_free(d40c->base->desc_slab, d40d);
|
|
}
|
|
|
|
static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
|
|
{
|
|
list_add_tail(&desc->node, &d40c->active);
|
|
}
|
|
|
|
static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
|
|
{
|
|
int curr_lcla = -EINVAL, next_lcla;
|
|
|
|
if (d40c->log_num == D40_PHY_CHAN) {
|
|
d40_phy_lli_write(d40c->base->virtbase,
|
|
d40c->phy_chan->num,
|
|
d40d->lli_phy.dst,
|
|
d40d->lli_phy.src);
|
|
d40d->lli_current = d40d->lli_len;
|
|
} else {
|
|
|
|
if ((d40d->lli_len - d40d->lli_current) > 1)
|
|
curr_lcla = d40_lcla_alloc_one(d40c, d40d);
|
|
|
|
d40_log_lli_lcpa_write(d40c->lcpa,
|
|
&d40d->lli_log.dst[d40d->lli_current],
|
|
&d40d->lli_log.src[d40d->lli_current],
|
|
curr_lcla);
|
|
|
|
d40d->lli_current++;
|
|
for (; d40d->lli_current < d40d->lli_len; d40d->lli_current++) {
|
|
struct d40_log_lli *lcla;
|
|
|
|
if (d40d->lli_current + 1 < d40d->lli_len)
|
|
next_lcla = d40_lcla_alloc_one(d40c, d40d);
|
|
else
|
|
next_lcla = -EINVAL;
|
|
|
|
lcla = d40c->base->lcla_pool.base +
|
|
d40c->phy_chan->num * 1024 +
|
|
8 * curr_lcla * 2;
|
|
|
|
d40_log_lli_lcla_write(lcla,
|
|
&d40d->lli_log.dst[d40d->lli_current],
|
|
&d40d->lli_log.src[d40d->lli_current],
|
|
next_lcla);
|
|
|
|
(void) dma_map_single(d40c->base->dev, lcla,
|
|
2 * sizeof(struct d40_log_lli),
|
|
DMA_TO_DEVICE);
|
|
|
|
curr_lcla = next_lcla;
|
|
|
|
if (curr_lcla == -EINVAL) {
|
|
d40d->lli_current++;
|
|
break;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
|
|
{
|
|
struct d40_desc *d;
|
|
|
|
if (list_empty(&d40c->active))
|
|
return NULL;
|
|
|
|
d = list_first_entry(&d40c->active,
|
|
struct d40_desc,
|
|
node);
|
|
return d;
|
|
}
|
|
|
|
static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
|
|
{
|
|
list_add_tail(&desc->node, &d40c->queue);
|
|
}
|
|
|
|
static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
|
|
{
|
|
struct d40_desc *d;
|
|
|
|
if (list_empty(&d40c->queue))
|
|
return NULL;
|
|
|
|
d = list_first_entry(&d40c->queue,
|
|
struct d40_desc,
|
|
node);
|
|
return d;
|
|
}
|
|
|
|
static struct d40_desc *d40_last_queued(struct d40_chan *d40c)
|
|
{
|
|
struct d40_desc *d;
|
|
|
|
if (list_empty(&d40c->queue))
|
|
return NULL;
|
|
list_for_each_entry(d, &d40c->queue, node)
|
|
if (list_is_last(&d->node, &d40c->queue))
|
|
break;
|
|
return d;
|
|
}
|
|
|
|
static int d40_psize_2_burst_size(bool is_log, int psize)
|
|
{
|
|
if (is_log) {
|
|
if (psize == STEDMA40_PSIZE_LOG_1)
|
|
return 1;
|
|
} else {
|
|
if (psize == STEDMA40_PSIZE_PHY_1)
|
|
return 1;
|
|
}
|
|
|
|
return 2 << psize;
|
|
}
|
|
|
|
/*
|
|
* The dma only supports transmitting packages up to
|
|
* STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
|
|
* dma elements required to send the entire sg list
|
|
*/
|
|
static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
|
|
{
|
|
int dmalen;
|
|
u32 max_w = max(data_width1, data_width2);
|
|
u32 min_w = min(data_width1, data_width2);
|
|
u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
|
|
|
|
if (seg_max > STEDMA40_MAX_SEG_SIZE)
|
|
seg_max -= (1 << max_w);
|
|
|
|
if (!IS_ALIGNED(size, 1 << max_w))
|
|
return -EINVAL;
|
|
|
|
if (size <= seg_max)
|
|
dmalen = 1;
|
|
else {
|
|
dmalen = size / seg_max;
|
|
if (dmalen * seg_max < size)
|
|
dmalen++;
|
|
}
|
|
return dmalen;
|
|
}
|
|
|
|
static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
|
|
u32 data_width1, u32 data_width2)
|
|
{
|
|
struct scatterlist *sg;
|
|
int i;
|
|
int len = 0;
|
|
int ret;
|
|
|
|
for_each_sg(sgl, sg, sg_len, i) {
|
|
ret = d40_size_2_dmalen(sg_dma_len(sg),
|
|
data_width1, data_width2);
|
|
if (ret < 0)
|
|
return ret;
|
|
len += ret;
|
|
}
|
|
return len;
|
|
}
|
|
|
|
/* Support functions for logical channels */
|
|
|
|
static int d40_channel_execute_command(struct d40_chan *d40c,
|
|
enum d40_command command)
|
|
{
|
|
u32 status;
|
|
int i;
|
|
void __iomem *active_reg;
|
|
int ret = 0;
|
|
unsigned long flags;
|
|
u32 wmask;
|
|
|
|
spin_lock_irqsave(&d40c->base->execmd_lock, flags);
|
|
|
|
if (d40c->phy_chan->num % 2 == 0)
|
|
active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
|
|
else
|
|
active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
|
|
|
|
if (command == D40_DMA_SUSPEND_REQ) {
|
|
status = (readl(active_reg) &
|
|
D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
|
|
D40_CHAN_POS(d40c->phy_chan->num);
|
|
|
|
if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
|
|
goto done;
|
|
}
|
|
|
|
wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
|
|
writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
|
|
active_reg);
|
|
|
|
if (command == D40_DMA_SUSPEND_REQ) {
|
|
|
|
for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
|
|
status = (readl(active_reg) &
|
|
D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
|
|
D40_CHAN_POS(d40c->phy_chan->num);
|
|
|
|
cpu_relax();
|
|
/*
|
|
* Reduce the number of bus accesses while
|
|
* waiting for the DMA to suspend.
|
|
*/
|
|
udelay(3);
|
|
|
|
if (status == D40_DMA_STOP ||
|
|
status == D40_DMA_SUSPENDED)
|
|
break;
|
|
}
|
|
|
|
if (i == D40_SUSPEND_MAX_IT) {
|
|
dev_err(&d40c->chan.dev->device,
|
|
"[%s]: unable to suspend the chl %d (log: %d) status %x\n",
|
|
__func__, d40c->phy_chan->num, d40c->log_num,
|
|
status);
|
|
dump_stack();
|
|
ret = -EBUSY;
|
|
}
|
|
|
|
}
|
|
done:
|
|
spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
|
|
return ret;
|
|
}
|
|
|
|
static void d40_term_all(struct d40_chan *d40c)
|
|
{
|
|
struct d40_desc *d40d;
|
|
|
|
/* Release active descriptors */
|
|
while ((d40d = d40_first_active_get(d40c))) {
|
|
d40_desc_remove(d40d);
|
|
d40_desc_free(d40c, d40d);
|
|
}
|
|
|
|
/* Release queued descriptors waiting for transfer */
|
|
while ((d40d = d40_first_queued(d40c))) {
|
|
d40_desc_remove(d40d);
|
|
d40_desc_free(d40c, d40d);
|
|
}
|
|
|
|
|
|
d40c->pending_tx = 0;
|
|
d40c->busy = false;
|
|
}
|
|
|
|
static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
|
|
{
|
|
u32 val;
|
|
unsigned long flags;
|
|
|
|
/* Notice, that disable requires the physical channel to be stopped */
|
|
if (do_enable)
|
|
val = D40_ACTIVATE_EVENTLINE;
|
|
else
|
|
val = D40_DEACTIVATE_EVENTLINE;
|
|
|
|
spin_lock_irqsave(&d40c->phy_chan->lock, flags);
|
|
|
|
/* Enable event line connected to device (or memcpy) */
|
|
if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
|
|
(d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
|
|
u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
|
|
|
|
writel((val << D40_EVENTLINE_POS(event)) |
|
|
~D40_EVENTLINE_MASK(event),
|
|
d40c->base->virtbase + D40_DREG_PCBASE +
|
|
d40c->phy_chan->num * D40_DREG_PCDELTA +
|
|
D40_CHAN_REG_SSLNK);
|
|
}
|
|
if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) {
|
|
u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
|
|
|
|
writel((val << D40_EVENTLINE_POS(event)) |
|
|
~D40_EVENTLINE_MASK(event),
|
|
d40c->base->virtbase + D40_DREG_PCBASE +
|
|
d40c->phy_chan->num * D40_DREG_PCDELTA +
|
|
D40_CHAN_REG_SDLNK);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
|
|
}
|
|
|
|
static u32 d40_chan_has_events(struct d40_chan *d40c)
|
|
{
|
|
u32 val;
|
|
|
|
val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
|
|
d40c->phy_chan->num * D40_DREG_PCDELTA +
|
|
D40_CHAN_REG_SSLNK);
|
|
|
|
val |= readl(d40c->base->virtbase + D40_DREG_PCBASE +
|
|
d40c->phy_chan->num * D40_DREG_PCDELTA +
|
|
D40_CHAN_REG_SDLNK);
|
|
return val;
|
|
}
|
|
|
|
static u32 d40_get_prmo(struct d40_chan *d40c)
|
|
{
|
|
static const unsigned int phy_map[] = {
|
|
[STEDMA40_PCHAN_BASIC_MODE]
|
|
= D40_DREG_PRMO_PCHAN_BASIC,
|
|
[STEDMA40_PCHAN_MODULO_MODE]
|
|
= D40_DREG_PRMO_PCHAN_MODULO,
|
|
[STEDMA40_PCHAN_DOUBLE_DST_MODE]
|
|
= D40_DREG_PRMO_PCHAN_DOUBLE_DST,
|
|
};
|
|
static const unsigned int log_map[] = {
|
|
[STEDMA40_LCHAN_SRC_PHY_DST_LOG]
|
|
= D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
|
|
[STEDMA40_LCHAN_SRC_LOG_DST_PHY]
|
|
= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
|
|
[STEDMA40_LCHAN_SRC_LOG_DST_LOG]
|
|
= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
|
|
};
|
|
|
|
if (d40c->log_num == D40_PHY_CHAN)
|
|
return phy_map[d40c->dma_cfg.mode_opt];
|
|
else
|
|
return log_map[d40c->dma_cfg.mode_opt];
|
|
}
|
|
|
|
static void d40_config_write(struct d40_chan *d40c)
|
|
{
|
|
u32 addr_base;
|
|
u32 var;
|
|
|
|
/* Odd addresses are even addresses + 4 */
|
|
addr_base = (d40c->phy_chan->num % 2) * 4;
|
|
/* Setup channel mode to logical or physical */
|
|
var = ((u32)(d40c->log_num != D40_PHY_CHAN) + 1) <<
|
|
D40_CHAN_POS(d40c->phy_chan->num);
|
|
writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
|
|
|
|
/* Setup operational mode option register */
|
|
var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
|
|
|
|
writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
|
|
|
|
if (d40c->log_num != D40_PHY_CHAN) {
|
|
/* Set default config for CFG reg */
|
|
writel(d40c->src_def_cfg,
|
|
d40c->base->virtbase + D40_DREG_PCBASE +
|
|
d40c->phy_chan->num * D40_DREG_PCDELTA +
|
|
D40_CHAN_REG_SSCFG);
|
|
writel(d40c->dst_def_cfg,
|
|
d40c->base->virtbase + D40_DREG_PCBASE +
|
|
d40c->phy_chan->num * D40_DREG_PCDELTA +
|
|
D40_CHAN_REG_SDCFG);
|
|
|
|
/* Set LIDX for lcla */
|
|
writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) &
|
|
D40_SREG_ELEM_LOG_LIDX_MASK,
|
|
d40c->base->virtbase + D40_DREG_PCBASE +
|
|
d40c->phy_chan->num * D40_DREG_PCDELTA +
|
|
D40_CHAN_REG_SDELT);
|
|
|
|
writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) &
|
|
D40_SREG_ELEM_LOG_LIDX_MASK,
|
|
d40c->base->virtbase + D40_DREG_PCBASE +
|
|
d40c->phy_chan->num * D40_DREG_PCDELTA +
|
|
D40_CHAN_REG_SSELT);
|
|
|
|
}
|
|
}
|
|
|
|
static u32 d40_residue(struct d40_chan *d40c)
|
|
{
|
|
u32 num_elt;
|
|
|
|
if (d40c->log_num != D40_PHY_CHAN)
|
|
num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
|
|
>> D40_MEM_LCSP2_ECNT_POS;
|
|
else
|
|
num_elt = (readl(d40c->base->virtbase + D40_DREG_PCBASE +
|
|
d40c->phy_chan->num * D40_DREG_PCDELTA +
|
|
D40_CHAN_REG_SDELT) &
|
|
D40_SREG_ELEM_PHY_ECNT_MASK) >>
|
|
D40_SREG_ELEM_PHY_ECNT_POS;
|
|
return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
|
|
}
|
|
|
|
static bool d40_tx_is_linked(struct d40_chan *d40c)
|
|
{
|
|
bool is_link;
|
|
|
|
if (d40c->log_num != D40_PHY_CHAN)
|
|
is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
|
|
else
|
|
is_link = readl(d40c->base->virtbase + D40_DREG_PCBASE +
|
|
d40c->phy_chan->num * D40_DREG_PCDELTA +
|
|
D40_CHAN_REG_SDLNK) &
|
|
D40_SREG_LNK_PHYS_LNK_MASK;
|
|
return is_link;
|
|
}
|
|
|
|
static int d40_pause(struct dma_chan *chan)
|
|
{
|
|
struct d40_chan *d40c =
|
|
container_of(chan, struct d40_chan, chan);
|
|
int res = 0;
|
|
unsigned long flags;
|
|
|
|
if (!d40c->busy)
|
|
return 0;
|
|
|
|
spin_lock_irqsave(&d40c->lock, flags);
|
|
|
|
res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
|
|
if (res == 0) {
|
|
if (d40c->log_num != D40_PHY_CHAN) {
|
|
d40_config_set_event(d40c, false);
|
|
/* Resume the other logical channels if any */
|
|
if (d40_chan_has_events(d40c))
|
|
res = d40_channel_execute_command(d40c,
|
|
D40_DMA_RUN);
|
|
}
|
|
}
|
|
|
|
spin_unlock_irqrestore(&d40c->lock, flags);
|
|
return res;
|
|
}
|
|
|
|
static int d40_resume(struct dma_chan *chan)
|
|
{
|
|
struct d40_chan *d40c =
|
|
container_of(chan, struct d40_chan, chan);
|
|
int res = 0;
|
|
unsigned long flags;
|
|
|
|
if (!d40c->busy)
|
|
return 0;
|
|
|
|
spin_lock_irqsave(&d40c->lock, flags);
|
|
|
|
if (d40c->base->rev == 0)
|
|
if (d40c->log_num != D40_PHY_CHAN) {
|
|
res = d40_channel_execute_command(d40c,
|
|
D40_DMA_SUSPEND_REQ);
|
|
goto no_suspend;
|
|
}
|
|
|
|
/* If bytes left to transfer or linked tx resume job */
|
|
if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
|
|
|
|
if (d40c->log_num != D40_PHY_CHAN)
|
|
d40_config_set_event(d40c, true);
|
|
|
|
res = d40_channel_execute_command(d40c, D40_DMA_RUN);
|
|
}
|
|
|
|
no_suspend:
|
|
spin_unlock_irqrestore(&d40c->lock, flags);
|
|
return res;
|
|
}
|
|
|
|
static void d40_tx_submit_log(struct d40_chan *d40c, struct d40_desc *d40d)
|
|
{
|
|
/* TODO: Write */
|
|
}
|
|
|
|
static void d40_tx_submit_phy(struct d40_chan *d40c, struct d40_desc *d40d)
|
|
{
|
|
struct d40_desc *d40d_prev = NULL;
|
|
int i;
|
|
u32 val;
|
|
|
|
if (!list_empty(&d40c->queue))
|
|
d40d_prev = d40_last_queued(d40c);
|
|
else if (!list_empty(&d40c->active))
|
|
d40d_prev = d40_first_active_get(d40c);
|
|
|
|
if (!d40d_prev)
|
|
return;
|
|
|
|
/* Here we try to join this job with previous jobs */
|
|
val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
|
|
d40c->phy_chan->num * D40_DREG_PCDELTA +
|
|
D40_CHAN_REG_SSLNK);
|
|
|
|
/* Figure out which link we're currently transmitting */
|
|
for (i = 0; i < d40d_prev->lli_len; i++)
|
|
if (val == d40d_prev->lli_phy.src[i].reg_lnk)
|
|
break;
|
|
|
|
val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
|
|
d40c->phy_chan->num * D40_DREG_PCDELTA +
|
|
D40_CHAN_REG_SSELT) >> D40_SREG_ELEM_LOG_ECNT_POS;
|
|
|
|
if (i == (d40d_prev->lli_len - 1) && val > 0) {
|
|
/* Change the current one */
|
|
writel(virt_to_phys(d40d->lli_phy.src),
|
|
d40c->base->virtbase + D40_DREG_PCBASE +
|
|
d40c->phy_chan->num * D40_DREG_PCDELTA +
|
|
D40_CHAN_REG_SSLNK);
|
|
writel(virt_to_phys(d40d->lli_phy.dst),
|
|
d40c->base->virtbase + D40_DREG_PCBASE +
|
|
d40c->phy_chan->num * D40_DREG_PCDELTA +
|
|
D40_CHAN_REG_SDLNK);
|
|
|
|
d40d->is_hw_linked = true;
|
|
|
|
} else if (i < d40d_prev->lli_len) {
|
|
(void) dma_unmap_single(d40c->base->dev,
|
|
virt_to_phys(d40d_prev->lli_phy.src),
|
|
d40d_prev->lli_pool.size,
|
|
DMA_TO_DEVICE);
|
|
|
|
/* Keep the settings */
|
|
val = d40d_prev->lli_phy.src[d40d_prev->lli_len - 1].reg_lnk &
|
|
~D40_SREG_LNK_PHYS_LNK_MASK;
|
|
d40d_prev->lli_phy.src[d40d_prev->lli_len - 1].reg_lnk =
|
|
val | virt_to_phys(d40d->lli_phy.src);
|
|
|
|
val = d40d_prev->lli_phy.dst[d40d_prev->lli_len - 1].reg_lnk &
|
|
~D40_SREG_LNK_PHYS_LNK_MASK;
|
|
d40d_prev->lli_phy.dst[d40d_prev->lli_len - 1].reg_lnk =
|
|
val | virt_to_phys(d40d->lli_phy.dst);
|
|
|
|
(void) dma_map_single(d40c->base->dev,
|
|
d40d_prev->lli_phy.src,
|
|
d40d_prev->lli_pool.size,
|
|
DMA_TO_DEVICE);
|
|
d40d->is_hw_linked = true;
|
|
}
|
|
}
|
|
|
|
static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
|
|
{
|
|
struct d40_chan *d40c = container_of(tx->chan,
|
|
struct d40_chan,
|
|
chan);
|
|
struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
|
|
unsigned long flags;
|
|
|
|
(void) d40_pause(&d40c->chan);
|
|
|
|
spin_lock_irqsave(&d40c->lock, flags);
|
|
|
|
d40c->chan.cookie++;
|
|
|
|
if (d40c->chan.cookie < 0)
|
|
d40c->chan.cookie = 1;
|
|
|
|
d40d->txd.cookie = d40c->chan.cookie;
|
|
|
|
if (d40c->log_num == D40_PHY_CHAN)
|
|
d40_tx_submit_phy(d40c, d40d);
|
|
else
|
|
d40_tx_submit_log(d40c, d40d);
|
|
|
|
d40_desc_queue(d40c, d40d);
|
|
|
|
spin_unlock_irqrestore(&d40c->lock, flags);
|
|
|
|
(void) d40_resume(&d40c->chan);
|
|
|
|
return tx->cookie;
|
|
}
|
|
|
|
static int d40_start(struct d40_chan *d40c)
|
|
{
|
|
if (d40c->base->rev == 0) {
|
|
int err;
|
|
|
|
if (d40c->log_num != D40_PHY_CHAN) {
|
|
err = d40_channel_execute_command(d40c,
|
|
D40_DMA_SUSPEND_REQ);
|
|
if (err)
|
|
return err;
|
|
}
|
|
}
|
|
|
|
if (d40c->log_num != D40_PHY_CHAN)
|
|
d40_config_set_event(d40c, true);
|
|
|
|
return d40_channel_execute_command(d40c, D40_DMA_RUN);
|
|
}
|
|
|
|
static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
|
|
{
|
|
struct d40_desc *d40d;
|
|
int err;
|
|
|
|
/* Start queued jobs, if any */
|
|
d40d = d40_first_queued(d40c);
|
|
|
|
if (d40d != NULL) {
|
|
d40c->busy = true;
|
|
|
|
/* Remove from queue */
|
|
d40_desc_remove(d40d);
|
|
|
|
/* Add to active queue */
|
|
d40_desc_submit(d40c, d40d);
|
|
|
|
/*
|
|
* If this job is already linked in hw,
|
|
* do not submit it.
|
|
*/
|
|
|
|
if (!d40d->is_hw_linked) {
|
|
/* Initiate DMA job */
|
|
d40_desc_load(d40c, d40d);
|
|
|
|
/* Start dma job */
|
|
err = d40_start(d40c);
|
|
|
|
if (err)
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
return d40d;
|
|
}
|
|
|
|
/* called from interrupt context */
|
|
static void dma_tc_handle(struct d40_chan *d40c)
|
|
{
|
|
struct d40_desc *d40d;
|
|
|
|
/* Get first active entry from list */
|
|
d40d = d40_first_active_get(d40c);
|
|
|
|
if (d40d == NULL)
|
|
return;
|
|
|
|
d40_lcla_free_all(d40c, d40d);
|
|
|
|
if (d40d->lli_current < d40d->lli_len) {
|
|
d40_desc_load(d40c, d40d);
|
|
/* Start dma job */
|
|
(void) d40_start(d40c);
|
|
return;
|
|
}
|
|
|
|
if (d40_queue_start(d40c) == NULL)
|
|
d40c->busy = false;
|
|
|
|
d40c->pending_tx++;
|
|
tasklet_schedule(&d40c->tasklet);
|
|
|
|
}
|
|
|
|
static void dma_tasklet(unsigned long data)
|
|
{
|
|
struct d40_chan *d40c = (struct d40_chan *) data;
|
|
struct d40_desc *d40d;
|
|
unsigned long flags;
|
|
dma_async_tx_callback callback;
|
|
void *callback_param;
|
|
|
|
spin_lock_irqsave(&d40c->lock, flags);
|
|
|
|
/* Get first active entry from list */
|
|
d40d = d40_first_active_get(d40c);
|
|
|
|
if (d40d == NULL)
|
|
goto err;
|
|
|
|
d40c->completed = d40d->txd.cookie;
|
|
|
|
/*
|
|
* If terminating a channel pending_tx is set to zero.
|
|
* This prevents any finished active jobs to return to the client.
|
|
*/
|
|
if (d40c->pending_tx == 0) {
|
|
spin_unlock_irqrestore(&d40c->lock, flags);
|
|
return;
|
|
}
|
|
|
|
/* Callback to client */
|
|
callback = d40d->txd.callback;
|
|
callback_param = d40d->txd.callback_param;
|
|
|
|
if (async_tx_test_ack(&d40d->txd)) {
|
|
d40_pool_lli_free(d40d);
|
|
d40_desc_remove(d40d);
|
|
d40_desc_free(d40c, d40d);
|
|
} else {
|
|
if (!d40d->is_in_client_list) {
|
|
d40_desc_remove(d40d);
|
|
d40_lcla_free_all(d40c, d40d);
|
|
list_add_tail(&d40d->node, &d40c->client);
|
|
d40d->is_in_client_list = true;
|
|
}
|
|
}
|
|
|
|
d40c->pending_tx--;
|
|
|
|
if (d40c->pending_tx)
|
|
tasklet_schedule(&d40c->tasklet);
|
|
|
|
spin_unlock_irqrestore(&d40c->lock, flags);
|
|
|
|
if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
|
|
callback(callback_param);
|
|
|
|
return;
|
|
|
|
err:
|
|
/* Rescue manouver if receiving double interrupts */
|
|
if (d40c->pending_tx > 0)
|
|
d40c->pending_tx--;
|
|
spin_unlock_irqrestore(&d40c->lock, flags);
|
|
}
|
|
|
|
static irqreturn_t d40_handle_interrupt(int irq, void *data)
|
|
{
|
|
static const struct d40_interrupt_lookup il[] = {
|
|
{D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
|
|
{D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
|
|
{D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
|
|
{D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
|
|
{D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
|
|
{D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
|
|
{D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
|
|
{D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
|
|
{D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
|
|
{D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
|
|
};
|
|
|
|
int i;
|
|
u32 regs[ARRAY_SIZE(il)];
|
|
u32 idx;
|
|
u32 row;
|
|
long chan = -1;
|
|
struct d40_chan *d40c;
|
|
unsigned long flags;
|
|
struct d40_base *base = data;
|
|
|
|
spin_lock_irqsave(&base->interrupt_lock, flags);
|
|
|
|
/* Read interrupt status of both logical and physical channels */
|
|
for (i = 0; i < ARRAY_SIZE(il); i++)
|
|
regs[i] = readl(base->virtbase + il[i].src);
|
|
|
|
for (;;) {
|
|
|
|
chan = find_next_bit((unsigned long *)regs,
|
|
BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
|
|
|
|
/* No more set bits found? */
|
|
if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
|
|
break;
|
|
|
|
row = chan / BITS_PER_LONG;
|
|
idx = chan & (BITS_PER_LONG - 1);
|
|
|
|
/* ACK interrupt */
|
|
writel(1 << idx, base->virtbase + il[row].clr);
|
|
|
|
if (il[row].offset == D40_PHY_CHAN)
|
|
d40c = base->lookup_phy_chans[idx];
|
|
else
|
|
d40c = base->lookup_log_chans[il[row].offset + idx];
|
|
spin_lock(&d40c->lock);
|
|
|
|
if (!il[row].is_error)
|
|
dma_tc_handle(d40c);
|
|
else
|
|
dev_err(base->dev,
|
|
"[%s] IRQ chan: %ld offset %d idx %d\n",
|
|
__func__, chan, il[row].offset, idx);
|
|
|
|
spin_unlock(&d40c->lock);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&base->interrupt_lock, flags);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int d40_validate_conf(struct d40_chan *d40c,
|
|
struct stedma40_chan_cfg *conf)
|
|
{
|
|
int res = 0;
|
|
u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
|
|
u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
|
|
bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
|
|
|
|
if (!conf->dir) {
|
|
dev_err(&d40c->chan.dev->device, "[%s] Invalid direction.\n",
|
|
__func__);
|
|
res = -EINVAL;
|
|
}
|
|
|
|
if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
|
|
d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
|
|
d40c->runtime_addr == 0) {
|
|
|
|
dev_err(&d40c->chan.dev->device,
|
|
"[%s] Invalid TX channel address (%d)\n",
|
|
__func__, conf->dst_dev_type);
|
|
res = -EINVAL;
|
|
}
|
|
|
|
if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
|
|
d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
|
|
d40c->runtime_addr == 0) {
|
|
dev_err(&d40c->chan.dev->device,
|
|
"[%s] Invalid RX channel address (%d)\n",
|
|
__func__, conf->src_dev_type);
|
|
res = -EINVAL;
|
|
}
|
|
|
|
if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
|
|
dst_event_group == STEDMA40_DEV_DST_MEMORY) {
|
|
dev_err(&d40c->chan.dev->device, "[%s] Invalid dst\n",
|
|
__func__);
|
|
res = -EINVAL;
|
|
}
|
|
|
|
if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
|
|
src_event_group == STEDMA40_DEV_SRC_MEMORY) {
|
|
dev_err(&d40c->chan.dev->device, "[%s] Invalid src\n",
|
|
__func__);
|
|
res = -EINVAL;
|
|
}
|
|
|
|
if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
|
|
dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
|
|
dev_err(&d40c->chan.dev->device,
|
|
"[%s] No event line\n", __func__);
|
|
res = -EINVAL;
|
|
}
|
|
|
|
if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
|
|
(src_event_group != dst_event_group)) {
|
|
dev_err(&d40c->chan.dev->device,
|
|
"[%s] Invalid event group\n", __func__);
|
|
res = -EINVAL;
|
|
}
|
|
|
|
if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
|
|
/*
|
|
* DMAC HW supports it. Will be added to this driver,
|
|
* in case any dma client requires it.
|
|
*/
|
|
dev_err(&d40c->chan.dev->device,
|
|
"[%s] periph to periph not supported\n",
|
|
__func__);
|
|
res = -EINVAL;
|
|
}
|
|
|
|
if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
|
|
(1 << conf->src_info.data_width) !=
|
|
d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
|
|
(1 << conf->dst_info.data_width)) {
|
|
/*
|
|
* The DMAC hardware only supports
|
|
* src (burst x width) == dst (burst x width)
|
|
*/
|
|
|
|
dev_err(&d40c->chan.dev->device,
|
|
"[%s] src (burst x width) != dst (burst x width)\n",
|
|
__func__);
|
|
res = -EINVAL;
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
|
|
int log_event_line, bool is_log)
|
|
{
|
|
unsigned long flags;
|
|
spin_lock_irqsave(&phy->lock, flags);
|
|
if (!is_log) {
|
|
/* Physical interrupts are masked per physical full channel */
|
|
if (phy->allocated_src == D40_ALLOC_FREE &&
|
|
phy->allocated_dst == D40_ALLOC_FREE) {
|
|
phy->allocated_dst = D40_ALLOC_PHY;
|
|
phy->allocated_src = D40_ALLOC_PHY;
|
|
goto found;
|
|
} else
|
|
goto not_found;
|
|
}
|
|
|
|
/* Logical channel */
|
|
if (is_src) {
|
|
if (phy->allocated_src == D40_ALLOC_PHY)
|
|
goto not_found;
|
|
|
|
if (phy->allocated_src == D40_ALLOC_FREE)
|
|
phy->allocated_src = D40_ALLOC_LOG_FREE;
|
|
|
|
if (!(phy->allocated_src & (1 << log_event_line))) {
|
|
phy->allocated_src |= 1 << log_event_line;
|
|
goto found;
|
|
} else
|
|
goto not_found;
|
|
} else {
|
|
if (phy->allocated_dst == D40_ALLOC_PHY)
|
|
goto not_found;
|
|
|
|
if (phy->allocated_dst == D40_ALLOC_FREE)
|
|
phy->allocated_dst = D40_ALLOC_LOG_FREE;
|
|
|
|
if (!(phy->allocated_dst & (1 << log_event_line))) {
|
|
phy->allocated_dst |= 1 << log_event_line;
|
|
goto found;
|
|
} else
|
|
goto not_found;
|
|
}
|
|
|
|
not_found:
|
|
spin_unlock_irqrestore(&phy->lock, flags);
|
|
return false;
|
|
found:
|
|
spin_unlock_irqrestore(&phy->lock, flags);
|
|
return true;
|
|
}
|
|
|
|
static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
|
|
int log_event_line)
|
|
{
|
|
unsigned long flags;
|
|
bool is_free = false;
|
|
|
|
spin_lock_irqsave(&phy->lock, flags);
|
|
if (!log_event_line) {
|
|
phy->allocated_dst = D40_ALLOC_FREE;
|
|
phy->allocated_src = D40_ALLOC_FREE;
|
|
is_free = true;
|
|
goto out;
|
|
}
|
|
|
|
/* Logical channel */
|
|
if (is_src) {
|
|
phy->allocated_src &= ~(1 << log_event_line);
|
|
if (phy->allocated_src == D40_ALLOC_LOG_FREE)
|
|
phy->allocated_src = D40_ALLOC_FREE;
|
|
} else {
|
|
phy->allocated_dst &= ~(1 << log_event_line);
|
|
if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
|
|
phy->allocated_dst = D40_ALLOC_FREE;
|
|
}
|
|
|
|
is_free = ((phy->allocated_src | phy->allocated_dst) ==
|
|
D40_ALLOC_FREE);
|
|
|
|
out:
|
|
spin_unlock_irqrestore(&phy->lock, flags);
|
|
|
|
return is_free;
|
|
}
|
|
|
|
static int d40_allocate_channel(struct d40_chan *d40c)
|
|
{
|
|
int dev_type;
|
|
int event_group;
|
|
int event_line;
|
|
struct d40_phy_res *phys;
|
|
int i;
|
|
int j;
|
|
int log_num;
|
|
bool is_src;
|
|
bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
|
|
|
|
phys = d40c->base->phy_res;
|
|
|
|
if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
|
|
dev_type = d40c->dma_cfg.src_dev_type;
|
|
log_num = 2 * dev_type;
|
|
is_src = true;
|
|
} else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
|
|
d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
|
|
/* dst event lines are used for logical memcpy */
|
|
dev_type = d40c->dma_cfg.dst_dev_type;
|
|
log_num = 2 * dev_type + 1;
|
|
is_src = false;
|
|
} else
|
|
return -EINVAL;
|
|
|
|
event_group = D40_TYPE_TO_GROUP(dev_type);
|
|
event_line = D40_TYPE_TO_EVENT(dev_type);
|
|
|
|
if (!is_log) {
|
|
if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
|
|
/* Find physical half channel */
|
|
for (i = 0; i < d40c->base->num_phy_chans; i++) {
|
|
|
|
if (d40_alloc_mask_set(&phys[i], is_src,
|
|
0, is_log))
|
|
goto found_phy;
|
|
}
|
|
} else
|
|
for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
|
|
int phy_num = j + event_group * 2;
|
|
for (i = phy_num; i < phy_num + 2; i++) {
|
|
if (d40_alloc_mask_set(&phys[i],
|
|
is_src,
|
|
0,
|
|
is_log))
|
|
goto found_phy;
|
|
}
|
|
}
|
|
return -EINVAL;
|
|
found_phy:
|
|
d40c->phy_chan = &phys[i];
|
|
d40c->log_num = D40_PHY_CHAN;
|
|
goto out;
|
|
}
|
|
if (dev_type == -1)
|
|
return -EINVAL;
|
|
|
|
/* Find logical channel */
|
|
for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
|
|
int phy_num = j + event_group * 2;
|
|
/*
|
|
* Spread logical channels across all available physical rather
|
|
* than pack every logical channel at the first available phy
|
|
* channels.
|
|
*/
|
|
if (is_src) {
|
|
for (i = phy_num; i < phy_num + 2; i++) {
|
|
if (d40_alloc_mask_set(&phys[i], is_src,
|
|
event_line, is_log))
|
|
goto found_log;
|
|
}
|
|
} else {
|
|
for (i = phy_num + 1; i >= phy_num; i--) {
|
|
if (d40_alloc_mask_set(&phys[i], is_src,
|
|
event_line, is_log))
|
|
goto found_log;
|
|
}
|
|
}
|
|
}
|
|
return -EINVAL;
|
|
|
|
found_log:
|
|
d40c->phy_chan = &phys[i];
|
|
d40c->log_num = log_num;
|
|
out:
|
|
|
|
if (is_log)
|
|
d40c->base->lookup_log_chans[d40c->log_num] = d40c;
|
|
else
|
|
d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
static int d40_config_memcpy(struct d40_chan *d40c)
|
|
{
|
|
dma_cap_mask_t cap = d40c->chan.device->cap_mask;
|
|
|
|
if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
|
|
d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
|
|
d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
|
|
d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
|
|
memcpy[d40c->chan.chan_id];
|
|
|
|
} else if (dma_has_cap(DMA_MEMCPY, cap) &&
|
|
dma_has_cap(DMA_SLAVE, cap)) {
|
|
d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
|
|
} else {
|
|
dev_err(&d40c->chan.dev->device, "[%s] No memcpy\n",
|
|
__func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int d40_free_dma(struct d40_chan *d40c)
|
|
{
|
|
|
|
int res = 0;
|
|
u32 event;
|
|
struct d40_phy_res *phy = d40c->phy_chan;
|
|
bool is_src;
|
|
struct d40_desc *d;
|
|
struct d40_desc *_d;
|
|
|
|
|
|
/* Terminate all queued and active transfers */
|
|
d40_term_all(d40c);
|
|
|
|
/* Release client owned descriptors */
|
|
if (!list_empty(&d40c->client))
|
|
list_for_each_entry_safe(d, _d, &d40c->client, node) {
|
|
d40_pool_lli_free(d);
|
|
d40_desc_remove(d);
|
|
d40_desc_free(d40c, d);
|
|
}
|
|
|
|
if (phy == NULL) {
|
|
dev_err(&d40c->chan.dev->device, "[%s] phy == null\n",
|
|
__func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (phy->allocated_src == D40_ALLOC_FREE &&
|
|
phy->allocated_dst == D40_ALLOC_FREE) {
|
|
dev_err(&d40c->chan.dev->device, "[%s] channel already free\n",
|
|
__func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
|
|
d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
|
|
event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
|
|
is_src = false;
|
|
} else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
|
|
event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
|
|
is_src = true;
|
|
} else {
|
|
dev_err(&d40c->chan.dev->device,
|
|
"[%s] Unknown direction\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
|
|
if (res) {
|
|
dev_err(&d40c->chan.dev->device, "[%s] suspend failed\n",
|
|
__func__);
|
|
return res;
|
|
}
|
|
|
|
if (d40c->log_num != D40_PHY_CHAN) {
|
|
/* Release logical channel, deactivate the event line */
|
|
|
|
d40_config_set_event(d40c, false);
|
|
d40c->base->lookup_log_chans[d40c->log_num] = NULL;
|
|
|
|
/*
|
|
* Check if there are more logical allocation
|
|
* on this phy channel.
|
|
*/
|
|
if (!d40_alloc_mask_free(phy, is_src, event)) {
|
|
/* Resume the other logical channels if any */
|
|
if (d40_chan_has_events(d40c)) {
|
|
res = d40_channel_execute_command(d40c,
|
|
D40_DMA_RUN);
|
|
if (res) {
|
|
dev_err(&d40c->chan.dev->device,
|
|
"[%s] Executing RUN command\n",
|
|
__func__);
|
|
return res;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
} else {
|
|
(void) d40_alloc_mask_free(phy, is_src, 0);
|
|
}
|
|
|
|
/* Release physical channel */
|
|
res = d40_channel_execute_command(d40c, D40_DMA_STOP);
|
|
if (res) {
|
|
dev_err(&d40c->chan.dev->device,
|
|
"[%s] Failed to stop channel\n", __func__);
|
|
return res;
|
|
}
|
|
d40c->phy_chan = NULL;
|
|
d40c->configured = false;
|
|
d40c->base->lookup_phy_chans[phy->num] = NULL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool d40_is_paused(struct d40_chan *d40c)
|
|
{
|
|
bool is_paused = false;
|
|
unsigned long flags;
|
|
void __iomem *active_reg;
|
|
u32 status;
|
|
u32 event;
|
|
|
|
spin_lock_irqsave(&d40c->lock, flags);
|
|
|
|
if (d40c->log_num == D40_PHY_CHAN) {
|
|
if (d40c->phy_chan->num % 2 == 0)
|
|
active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
|
|
else
|
|
active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
|
|
|
|
status = (readl(active_reg) &
|
|
D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
|
|
D40_CHAN_POS(d40c->phy_chan->num);
|
|
if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
|
|
is_paused = true;
|
|
|
|
goto _exit;
|
|
}
|
|
|
|
if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
|
|
d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
|
|
event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
|
|
status = readl(d40c->base->virtbase + D40_DREG_PCBASE +
|
|
d40c->phy_chan->num * D40_DREG_PCDELTA +
|
|
D40_CHAN_REG_SDLNK);
|
|
} else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
|
|
event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
|
|
status = readl(d40c->base->virtbase + D40_DREG_PCBASE +
|
|
d40c->phy_chan->num * D40_DREG_PCDELTA +
|
|
D40_CHAN_REG_SSLNK);
|
|
} else {
|
|
dev_err(&d40c->chan.dev->device,
|
|
"[%s] Unknown direction\n", __func__);
|
|
goto _exit;
|
|
}
|
|
|
|
status = (status & D40_EVENTLINE_MASK(event)) >>
|
|
D40_EVENTLINE_POS(event);
|
|
|
|
if (status != D40_DMA_RUN)
|
|
is_paused = true;
|
|
_exit:
|
|
spin_unlock_irqrestore(&d40c->lock, flags);
|
|
return is_paused;
|
|
|
|
}
|
|
|
|
|
|
static u32 stedma40_residue(struct dma_chan *chan)
|
|
{
|
|
struct d40_chan *d40c =
|
|
container_of(chan, struct d40_chan, chan);
|
|
u32 bytes_left;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&d40c->lock, flags);
|
|
bytes_left = d40_residue(d40c);
|
|
spin_unlock_irqrestore(&d40c->lock, flags);
|
|
|
|
return bytes_left;
|
|
}
|
|
|
|
struct dma_async_tx_descriptor *stedma40_memcpy_sg(struct dma_chan *chan,
|
|
struct scatterlist *sgl_dst,
|
|
struct scatterlist *sgl_src,
|
|
unsigned int sgl_len,
|
|
unsigned long dma_flags)
|
|
{
|
|
int res;
|
|
struct d40_desc *d40d;
|
|
struct d40_chan *d40c = container_of(chan, struct d40_chan,
|
|
chan);
|
|
unsigned long flags;
|
|
|
|
if (d40c->phy_chan == NULL) {
|
|
dev_err(&d40c->chan.dev->device,
|
|
"[%s] Unallocated channel.\n", __func__);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
spin_lock_irqsave(&d40c->lock, flags);
|
|
d40d = d40_desc_get(d40c);
|
|
|
|
if (d40d == NULL)
|
|
goto err;
|
|
|
|
d40d->lli_len = d40_sg_2_dmalen(sgl_dst, sgl_len,
|
|
d40c->dma_cfg.src_info.data_width,
|
|
d40c->dma_cfg.dst_info.data_width);
|
|
if (d40d->lli_len < 0) {
|
|
dev_err(&d40c->chan.dev->device,
|
|
"[%s] Unaligned size\n", __func__);
|
|
goto err;
|
|
}
|
|
|
|
d40d->lli_current = 0;
|
|
d40d->txd.flags = dma_flags;
|
|
|
|
if (d40c->log_num != D40_PHY_CHAN) {
|
|
|
|
if (d40_pool_lli_alloc(d40d, d40d->lli_len, true) < 0) {
|
|
dev_err(&d40c->chan.dev->device,
|
|
"[%s] Out of memory\n", __func__);
|
|
goto err;
|
|
}
|
|
|
|
(void) d40_log_sg_to_lli(sgl_src,
|
|
sgl_len,
|
|
d40d->lli_log.src,
|
|
d40c->log_def.lcsp1,
|
|
d40c->dma_cfg.src_info.data_width,
|
|
d40c->dma_cfg.dst_info.data_width);
|
|
|
|
(void) d40_log_sg_to_lli(sgl_dst,
|
|
sgl_len,
|
|
d40d->lli_log.dst,
|
|
d40c->log_def.lcsp3,
|
|
d40c->dma_cfg.dst_info.data_width,
|
|
d40c->dma_cfg.src_info.data_width);
|
|
} else {
|
|
if (d40_pool_lli_alloc(d40d, d40d->lli_len, false) < 0) {
|
|
dev_err(&d40c->chan.dev->device,
|
|
"[%s] Out of memory\n", __func__);
|
|
goto err;
|
|
}
|
|
|
|
res = d40_phy_sg_to_lli(sgl_src,
|
|
sgl_len,
|
|
0,
|
|
d40d->lli_phy.src,
|
|
virt_to_phys(d40d->lli_phy.src),
|
|
d40c->src_def_cfg,
|
|
d40c->dma_cfg.src_info.data_width,
|
|
d40c->dma_cfg.dst_info.data_width,
|
|
d40c->dma_cfg.src_info.psize);
|
|
|
|
if (res < 0)
|
|
goto err;
|
|
|
|
res = d40_phy_sg_to_lli(sgl_dst,
|
|
sgl_len,
|
|
0,
|
|
d40d->lli_phy.dst,
|
|
virt_to_phys(d40d->lli_phy.dst),
|
|
d40c->dst_def_cfg,
|
|
d40c->dma_cfg.dst_info.data_width,
|
|
d40c->dma_cfg.src_info.data_width,
|
|
d40c->dma_cfg.dst_info.psize);
|
|
|
|
if (res < 0)
|
|
goto err;
|
|
|
|
(void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
|
|
d40d->lli_pool.size, DMA_TO_DEVICE);
|
|
}
|
|
|
|
dma_async_tx_descriptor_init(&d40d->txd, chan);
|
|
|
|
d40d->txd.tx_submit = d40_tx_submit;
|
|
|
|
spin_unlock_irqrestore(&d40c->lock, flags);
|
|
|
|
return &d40d->txd;
|
|
err:
|
|
if (d40d)
|
|
d40_desc_free(d40c, d40d);
|
|
spin_unlock_irqrestore(&d40c->lock, flags);
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL(stedma40_memcpy_sg);
|
|
|
|
bool stedma40_filter(struct dma_chan *chan, void *data)
|
|
{
|
|
struct stedma40_chan_cfg *info = data;
|
|
struct d40_chan *d40c =
|
|
container_of(chan, struct d40_chan, chan);
|
|
int err;
|
|
|
|
if (data) {
|
|
err = d40_validate_conf(d40c, info);
|
|
if (!err)
|
|
d40c->dma_cfg = *info;
|
|
} else
|
|
err = d40_config_memcpy(d40c);
|
|
|
|
if (!err)
|
|
d40c->configured = true;
|
|
|
|
return err == 0;
|
|
}
|
|
EXPORT_SYMBOL(stedma40_filter);
|
|
|
|
/* DMA ENGINE functions */
|
|
static int d40_alloc_chan_resources(struct dma_chan *chan)
|
|
{
|
|
int err;
|
|
unsigned long flags;
|
|
struct d40_chan *d40c =
|
|
container_of(chan, struct d40_chan, chan);
|
|
bool is_free_phy;
|
|
spin_lock_irqsave(&d40c->lock, flags);
|
|
|
|
d40c->completed = chan->cookie = 1;
|
|
|
|
/* If no dma configuration is set use default configuration (memcpy) */
|
|
if (!d40c->configured) {
|
|
err = d40_config_memcpy(d40c);
|
|
if (err) {
|
|
dev_err(&d40c->chan.dev->device,
|
|
"[%s] Failed to configure memcpy channel\n",
|
|
__func__);
|
|
goto fail;
|
|
}
|
|
}
|
|
is_free_phy = (d40c->phy_chan == NULL);
|
|
|
|
err = d40_allocate_channel(d40c);
|
|
if (err) {
|
|
dev_err(&d40c->chan.dev->device,
|
|
"[%s] Failed to allocate channel\n", __func__);
|
|
goto fail;
|
|
}
|
|
|
|
/* Fill in basic CFG register values */
|
|
d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
|
|
&d40c->dst_def_cfg, d40c->log_num != D40_PHY_CHAN);
|
|
|
|
if (d40c->log_num != D40_PHY_CHAN) {
|
|
d40_log_cfg(&d40c->dma_cfg,
|
|
&d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
|
|
|
|
if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
|
|
d40c->lcpa = d40c->base->lcpa_base +
|
|
d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
|
|
else
|
|
d40c->lcpa = d40c->base->lcpa_base +
|
|
d40c->dma_cfg.dst_dev_type *
|
|
D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
|
|
}
|
|
|
|
/*
|
|
* Only write channel configuration to the DMA if the physical
|
|
* resource is free. In case of multiple logical channels
|
|
* on the same physical resource, only the first write is necessary.
|
|
*/
|
|
if (is_free_phy)
|
|
d40_config_write(d40c);
|
|
fail:
|
|
spin_unlock_irqrestore(&d40c->lock, flags);
|
|
return err;
|
|
}
|
|
|
|
static void d40_free_chan_resources(struct dma_chan *chan)
|
|
{
|
|
struct d40_chan *d40c =
|
|
container_of(chan, struct d40_chan, chan);
|
|
int err;
|
|
unsigned long flags;
|
|
|
|
if (d40c->phy_chan == NULL) {
|
|
dev_err(&d40c->chan.dev->device,
|
|
"[%s] Cannot free unallocated channel\n", __func__);
|
|
return;
|
|
}
|
|
|
|
|
|
spin_lock_irqsave(&d40c->lock, flags);
|
|
|
|
err = d40_free_dma(d40c);
|
|
|
|
if (err)
|
|
dev_err(&d40c->chan.dev->device,
|
|
"[%s] Failed to free channel\n", __func__);
|
|
spin_unlock_irqrestore(&d40c->lock, flags);
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
|
|
dma_addr_t dst,
|
|
dma_addr_t src,
|
|
size_t size,
|
|
unsigned long dma_flags)
|
|
{
|
|
struct d40_desc *d40d;
|
|
struct d40_chan *d40c = container_of(chan, struct d40_chan,
|
|
chan);
|
|
unsigned long flags;
|
|
|
|
if (d40c->phy_chan == NULL) {
|
|
dev_err(&d40c->chan.dev->device,
|
|
"[%s] Channel is not allocated.\n", __func__);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
spin_lock_irqsave(&d40c->lock, flags);
|
|
d40d = d40_desc_get(d40c);
|
|
|
|
if (d40d == NULL) {
|
|
dev_err(&d40c->chan.dev->device,
|
|
"[%s] Descriptor is NULL\n", __func__);
|
|
goto err;
|
|
}
|
|
|
|
d40d->txd.flags = dma_flags;
|
|
d40d->lli_len = d40_size_2_dmalen(size,
|
|
d40c->dma_cfg.src_info.data_width,
|
|
d40c->dma_cfg.dst_info.data_width);
|
|
if (d40d->lli_len < 0) {
|
|
dev_err(&d40c->chan.dev->device,
|
|
"[%s] Unaligned size\n", __func__);
|
|
goto err;
|
|
}
|
|
|
|
|
|
dma_async_tx_descriptor_init(&d40d->txd, chan);
|
|
|
|
d40d->txd.tx_submit = d40_tx_submit;
|
|
|
|
if (d40c->log_num != D40_PHY_CHAN) {
|
|
|
|
if (d40_pool_lli_alloc(d40d, d40d->lli_len, true) < 0) {
|
|
dev_err(&d40c->chan.dev->device,
|
|
"[%s] Out of memory\n", __func__);
|
|
goto err;
|
|
}
|
|
d40d->lli_current = 0;
|
|
|
|
if (d40_log_buf_to_lli(d40d->lli_log.src,
|
|
src,
|
|
size,
|
|
d40c->log_def.lcsp1,
|
|
d40c->dma_cfg.src_info.data_width,
|
|
d40c->dma_cfg.dst_info.data_width,
|
|
true) == NULL)
|
|
goto err;
|
|
|
|
if (d40_log_buf_to_lli(d40d->lli_log.dst,
|
|
dst,
|
|
size,
|
|
d40c->log_def.lcsp3,
|
|
d40c->dma_cfg.dst_info.data_width,
|
|
d40c->dma_cfg.src_info.data_width,
|
|
true) == NULL)
|
|
goto err;
|
|
|
|
} else {
|
|
|
|
if (d40_pool_lli_alloc(d40d, d40d->lli_len, false) < 0) {
|
|
dev_err(&d40c->chan.dev->device,
|
|
"[%s] Out of memory\n", __func__);
|
|
goto err;
|
|
}
|
|
|
|
if (d40_phy_buf_to_lli(d40d->lli_phy.src,
|
|
src,
|
|
size,
|
|
d40c->dma_cfg.src_info.psize,
|
|
0,
|
|
d40c->src_def_cfg,
|
|
true,
|
|
d40c->dma_cfg.src_info.data_width,
|
|
d40c->dma_cfg.dst_info.data_width,
|
|
false) == NULL)
|
|
goto err;
|
|
|
|
if (d40_phy_buf_to_lli(d40d->lli_phy.dst,
|
|
dst,
|
|
size,
|
|
d40c->dma_cfg.dst_info.psize,
|
|
0,
|
|
d40c->dst_def_cfg,
|
|
true,
|
|
d40c->dma_cfg.dst_info.data_width,
|
|
d40c->dma_cfg.src_info.data_width,
|
|
false) == NULL)
|
|
goto err;
|
|
|
|
(void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
|
|
d40d->lli_pool.size, DMA_TO_DEVICE);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&d40c->lock, flags);
|
|
return &d40d->txd;
|
|
|
|
err:
|
|
if (d40d)
|
|
d40_desc_free(d40c, d40d);
|
|
spin_unlock_irqrestore(&d40c->lock, flags);
|
|
return NULL;
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *
|
|
d40_prep_sg(struct dma_chan *chan,
|
|
struct scatterlist *dst_sg, unsigned int dst_nents,
|
|
struct scatterlist *src_sg, unsigned int src_nents,
|
|
unsigned long dma_flags)
|
|
{
|
|
if (dst_nents != src_nents)
|
|
return NULL;
|
|
|
|
return stedma40_memcpy_sg(chan, dst_sg, src_sg, dst_nents, dma_flags);
|
|
}
|
|
|
|
static int d40_prep_slave_sg_log(struct d40_desc *d40d,
|
|
struct d40_chan *d40c,
|
|
struct scatterlist *sgl,
|
|
unsigned int sg_len,
|
|
enum dma_data_direction direction,
|
|
unsigned long dma_flags)
|
|
{
|
|
dma_addr_t dev_addr = 0;
|
|
int total_size;
|
|
|
|
d40d->lli_len = d40_sg_2_dmalen(sgl, sg_len,
|
|
d40c->dma_cfg.src_info.data_width,
|
|
d40c->dma_cfg.dst_info.data_width);
|
|
if (d40d->lli_len < 0) {
|
|
dev_err(&d40c->chan.dev->device,
|
|
"[%s] Unaligned size\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (d40_pool_lli_alloc(d40d, d40d->lli_len, true) < 0) {
|
|
dev_err(&d40c->chan.dev->device,
|
|
"[%s] Out of memory\n", __func__);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
d40d->lli_current = 0;
|
|
|
|
if (direction == DMA_FROM_DEVICE)
|
|
if (d40c->runtime_addr)
|
|
dev_addr = d40c->runtime_addr;
|
|
else
|
|
dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
|
|
else if (direction == DMA_TO_DEVICE)
|
|
if (d40c->runtime_addr)
|
|
dev_addr = d40c->runtime_addr;
|
|
else
|
|
dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
|
|
|
|
else
|
|
return -EINVAL;
|
|
|
|
total_size = d40_log_sg_to_dev(sgl, sg_len,
|
|
&d40d->lli_log,
|
|
&d40c->log_def,
|
|
d40c->dma_cfg.src_info.data_width,
|
|
d40c->dma_cfg.dst_info.data_width,
|
|
direction,
|
|
dev_addr);
|
|
|
|
if (total_size < 0)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int d40_prep_slave_sg_phy(struct d40_desc *d40d,
|
|
struct d40_chan *d40c,
|
|
struct scatterlist *sgl,
|
|
unsigned int sgl_len,
|
|
enum dma_data_direction direction,
|
|
unsigned long dma_flags)
|
|
{
|
|
dma_addr_t src_dev_addr;
|
|
dma_addr_t dst_dev_addr;
|
|
int res;
|
|
|
|
d40d->lli_len = d40_sg_2_dmalen(sgl, sgl_len,
|
|
d40c->dma_cfg.src_info.data_width,
|
|
d40c->dma_cfg.dst_info.data_width);
|
|
if (d40d->lli_len < 0) {
|
|
dev_err(&d40c->chan.dev->device,
|
|
"[%s] Unaligned size\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (d40_pool_lli_alloc(d40d, d40d->lli_len, false) < 0) {
|
|
dev_err(&d40c->chan.dev->device,
|
|
"[%s] Out of memory\n", __func__);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
d40d->lli_current = 0;
|
|
|
|
if (direction == DMA_FROM_DEVICE) {
|
|
dst_dev_addr = 0;
|
|
if (d40c->runtime_addr)
|
|
src_dev_addr = d40c->runtime_addr;
|
|
else
|
|
src_dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
|
|
} else if (direction == DMA_TO_DEVICE) {
|
|
if (d40c->runtime_addr)
|
|
dst_dev_addr = d40c->runtime_addr;
|
|
else
|
|
dst_dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
|
|
src_dev_addr = 0;
|
|
} else
|
|
return -EINVAL;
|
|
|
|
res = d40_phy_sg_to_lli(sgl,
|
|
sgl_len,
|
|
src_dev_addr,
|
|
d40d->lli_phy.src,
|
|
virt_to_phys(d40d->lli_phy.src),
|
|
d40c->src_def_cfg,
|
|
d40c->dma_cfg.src_info.data_width,
|
|
d40c->dma_cfg.dst_info.data_width,
|
|
d40c->dma_cfg.src_info.psize);
|
|
if (res < 0)
|
|
return res;
|
|
|
|
res = d40_phy_sg_to_lli(sgl,
|
|
sgl_len,
|
|
dst_dev_addr,
|
|
d40d->lli_phy.dst,
|
|
virt_to_phys(d40d->lli_phy.dst),
|
|
d40c->dst_def_cfg,
|
|
d40c->dma_cfg.dst_info.data_width,
|
|
d40c->dma_cfg.src_info.data_width,
|
|
d40c->dma_cfg.dst_info.psize);
|
|
if (res < 0)
|
|
return res;
|
|
|
|
(void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
|
|
d40d->lli_pool.size, DMA_TO_DEVICE);
|
|
return 0;
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
|
|
struct scatterlist *sgl,
|
|
unsigned int sg_len,
|
|
enum dma_data_direction direction,
|
|
unsigned long dma_flags)
|
|
{
|
|
struct d40_desc *d40d;
|
|
struct d40_chan *d40c = container_of(chan, struct d40_chan,
|
|
chan);
|
|
unsigned long flags;
|
|
int err;
|
|
|
|
if (d40c->phy_chan == NULL) {
|
|
dev_err(&d40c->chan.dev->device,
|
|
"[%s] Cannot prepare unallocated channel\n", __func__);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
spin_lock_irqsave(&d40c->lock, flags);
|
|
d40d = d40_desc_get(d40c);
|
|
|
|
if (d40d == NULL)
|
|
goto err;
|
|
|
|
if (d40c->log_num != D40_PHY_CHAN)
|
|
err = d40_prep_slave_sg_log(d40d, d40c, sgl, sg_len,
|
|
direction, dma_flags);
|
|
else
|
|
err = d40_prep_slave_sg_phy(d40d, d40c, sgl, sg_len,
|
|
direction, dma_flags);
|
|
if (err) {
|
|
dev_err(&d40c->chan.dev->device,
|
|
"[%s] Failed to prepare %s slave sg job: %d\n",
|
|
__func__,
|
|
d40c->log_num != D40_PHY_CHAN ? "log" : "phy", err);
|
|
goto err;
|
|
}
|
|
|
|
d40d->txd.flags = dma_flags;
|
|
|
|
dma_async_tx_descriptor_init(&d40d->txd, chan);
|
|
|
|
d40d->txd.tx_submit = d40_tx_submit;
|
|
|
|
spin_unlock_irqrestore(&d40c->lock, flags);
|
|
return &d40d->txd;
|
|
|
|
err:
|
|
if (d40d)
|
|
d40_desc_free(d40c, d40d);
|
|
spin_unlock_irqrestore(&d40c->lock, flags);
|
|
return NULL;
|
|
}
|
|
|
|
static enum dma_status d40_tx_status(struct dma_chan *chan,
|
|
dma_cookie_t cookie,
|
|
struct dma_tx_state *txstate)
|
|
{
|
|
struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
|
|
dma_cookie_t last_used;
|
|
dma_cookie_t last_complete;
|
|
int ret;
|
|
|
|
if (d40c->phy_chan == NULL) {
|
|
dev_err(&d40c->chan.dev->device,
|
|
"[%s] Cannot read status of unallocated channel\n",
|
|
__func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
last_complete = d40c->completed;
|
|
last_used = chan->cookie;
|
|
|
|
if (d40_is_paused(d40c))
|
|
ret = DMA_PAUSED;
|
|
else
|
|
ret = dma_async_is_complete(cookie, last_complete, last_used);
|
|
|
|
dma_set_tx_state(txstate, last_complete, last_used,
|
|
stedma40_residue(chan));
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void d40_issue_pending(struct dma_chan *chan)
|
|
{
|
|
struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
|
|
unsigned long flags;
|
|
|
|
if (d40c->phy_chan == NULL) {
|
|
dev_err(&d40c->chan.dev->device,
|
|
"[%s] Channel is not allocated!\n", __func__);
|
|
return;
|
|
}
|
|
|
|
spin_lock_irqsave(&d40c->lock, flags);
|
|
|
|
/* Busy means that pending jobs are already being processed */
|
|
if (!d40c->busy)
|
|
(void) d40_queue_start(d40c);
|
|
|
|
spin_unlock_irqrestore(&d40c->lock, flags);
|
|
}
|
|
|
|
/* Runtime reconfiguration extension */
|
|
static void d40_set_runtime_config(struct dma_chan *chan,
|
|
struct dma_slave_config *config)
|
|
{
|
|
struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
|
|
struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
|
|
enum dma_slave_buswidth config_addr_width;
|
|
dma_addr_t config_addr;
|
|
u32 config_maxburst;
|
|
enum stedma40_periph_data_width addr_width;
|
|
int psize;
|
|
|
|
if (config->direction == DMA_FROM_DEVICE) {
|
|
dma_addr_t dev_addr_rx =
|
|
d40c->base->plat_data->dev_rx[cfg->src_dev_type];
|
|
|
|
config_addr = config->src_addr;
|
|
if (dev_addr_rx)
|
|
dev_dbg(d40c->base->dev,
|
|
"channel has a pre-wired RX address %08x "
|
|
"overriding with %08x\n",
|
|
dev_addr_rx, config_addr);
|
|
if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
|
|
dev_dbg(d40c->base->dev,
|
|
"channel was not configured for peripheral "
|
|
"to memory transfer (%d) overriding\n",
|
|
cfg->dir);
|
|
cfg->dir = STEDMA40_PERIPH_TO_MEM;
|
|
|
|
config_addr_width = config->src_addr_width;
|
|
config_maxburst = config->src_maxburst;
|
|
|
|
} else if (config->direction == DMA_TO_DEVICE) {
|
|
dma_addr_t dev_addr_tx =
|
|
d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
|
|
|
|
config_addr = config->dst_addr;
|
|
if (dev_addr_tx)
|
|
dev_dbg(d40c->base->dev,
|
|
"channel has a pre-wired TX address %08x "
|
|
"overriding with %08x\n",
|
|
dev_addr_tx, config_addr);
|
|
if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
|
|
dev_dbg(d40c->base->dev,
|
|
"channel was not configured for memory "
|
|
"to peripheral transfer (%d) overriding\n",
|
|
cfg->dir);
|
|
cfg->dir = STEDMA40_MEM_TO_PERIPH;
|
|
|
|
config_addr_width = config->dst_addr_width;
|
|
config_maxburst = config->dst_maxburst;
|
|
|
|
} else {
|
|
dev_err(d40c->base->dev,
|
|
"unrecognized channel direction %d\n",
|
|
config->direction);
|
|
return;
|
|
}
|
|
|
|
switch (config_addr_width) {
|
|
case DMA_SLAVE_BUSWIDTH_1_BYTE:
|
|
addr_width = STEDMA40_BYTE_WIDTH;
|
|
break;
|
|
case DMA_SLAVE_BUSWIDTH_2_BYTES:
|
|
addr_width = STEDMA40_HALFWORD_WIDTH;
|
|
break;
|
|
case DMA_SLAVE_BUSWIDTH_4_BYTES:
|
|
addr_width = STEDMA40_WORD_WIDTH;
|
|
break;
|
|
case DMA_SLAVE_BUSWIDTH_8_BYTES:
|
|
addr_width = STEDMA40_DOUBLEWORD_WIDTH;
|
|
break;
|
|
default:
|
|
dev_err(d40c->base->dev,
|
|
"illegal peripheral address width "
|
|
"requested (%d)\n",
|
|
config->src_addr_width);
|
|
return;
|
|
}
|
|
|
|
if (d40c->log_num != D40_PHY_CHAN) {
|
|
if (config_maxburst >= 16)
|
|
psize = STEDMA40_PSIZE_LOG_16;
|
|
else if (config_maxburst >= 8)
|
|
psize = STEDMA40_PSIZE_LOG_8;
|
|
else if (config_maxburst >= 4)
|
|
psize = STEDMA40_PSIZE_LOG_4;
|
|
else
|
|
psize = STEDMA40_PSIZE_LOG_1;
|
|
} else {
|
|
if (config_maxburst >= 16)
|
|
psize = STEDMA40_PSIZE_PHY_16;
|
|
else if (config_maxburst >= 8)
|
|
psize = STEDMA40_PSIZE_PHY_8;
|
|
else if (config_maxburst >= 4)
|
|
psize = STEDMA40_PSIZE_PHY_4;
|
|
else if (config_maxburst >= 2)
|
|
psize = STEDMA40_PSIZE_PHY_2;
|
|
else
|
|
psize = STEDMA40_PSIZE_PHY_1;
|
|
}
|
|
|
|
/* Set up all the endpoint configs */
|
|
cfg->src_info.data_width = addr_width;
|
|
cfg->src_info.psize = psize;
|
|
cfg->src_info.big_endian = false;
|
|
cfg->src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
|
|
cfg->dst_info.data_width = addr_width;
|
|
cfg->dst_info.psize = psize;
|
|
cfg->dst_info.big_endian = false;
|
|
cfg->dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
|
|
|
|
/* Fill in register values */
|
|
if (d40c->log_num != D40_PHY_CHAN)
|
|
d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
|
|
else
|
|
d40_phy_cfg(cfg, &d40c->src_def_cfg,
|
|
&d40c->dst_def_cfg, false);
|
|
|
|
/* These settings will take precedence later */
|
|
d40c->runtime_addr = config_addr;
|
|
d40c->runtime_direction = config->direction;
|
|
dev_dbg(d40c->base->dev,
|
|
"configured channel %s for %s, data width %d, "
|
|
"maxburst %d bytes, LE, no flow control\n",
|
|
dma_chan_name(chan),
|
|
(config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
|
|
config_addr_width,
|
|
config_maxburst);
|
|
}
|
|
|
|
static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
|
|
unsigned long arg)
|
|
{
|
|
unsigned long flags;
|
|
struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
|
|
|
|
if (d40c->phy_chan == NULL) {
|
|
dev_err(&d40c->chan.dev->device,
|
|
"[%s] Channel is not allocated!\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (cmd) {
|
|
case DMA_TERMINATE_ALL:
|
|
spin_lock_irqsave(&d40c->lock, flags);
|
|
d40_term_all(d40c);
|
|
spin_unlock_irqrestore(&d40c->lock, flags);
|
|
return 0;
|
|
case DMA_PAUSE:
|
|
return d40_pause(chan);
|
|
case DMA_RESUME:
|
|
return d40_resume(chan);
|
|
case DMA_SLAVE_CONFIG:
|
|
d40_set_runtime_config(chan,
|
|
(struct dma_slave_config *) arg);
|
|
return 0;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* Other commands are unimplemented */
|
|
return -ENXIO;
|
|
}
|
|
|
|
/* Initialization functions */
|
|
|
|
static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
|
|
struct d40_chan *chans, int offset,
|
|
int num_chans)
|
|
{
|
|
int i = 0;
|
|
struct d40_chan *d40c;
|
|
|
|
INIT_LIST_HEAD(&dma->channels);
|
|
|
|
for (i = offset; i < offset + num_chans; i++) {
|
|
d40c = &chans[i];
|
|
d40c->base = base;
|
|
d40c->chan.device = dma;
|
|
|
|
spin_lock_init(&d40c->lock);
|
|
|
|
d40c->log_num = D40_PHY_CHAN;
|
|
|
|
INIT_LIST_HEAD(&d40c->active);
|
|
INIT_LIST_HEAD(&d40c->queue);
|
|
INIT_LIST_HEAD(&d40c->client);
|
|
|
|
tasklet_init(&d40c->tasklet, dma_tasklet,
|
|
(unsigned long) d40c);
|
|
|
|
list_add_tail(&d40c->chan.device_node,
|
|
&dma->channels);
|
|
}
|
|
}
|
|
|
|
static int __init d40_dmaengine_init(struct d40_base *base,
|
|
int num_reserved_chans)
|
|
{
|
|
int err ;
|
|
|
|
d40_chan_init(base, &base->dma_slave, base->log_chans,
|
|
0, base->num_log_chans);
|
|
|
|
dma_cap_zero(base->dma_slave.cap_mask);
|
|
dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
|
|
|
|
base->dma_slave.device_alloc_chan_resources = d40_alloc_chan_resources;
|
|
base->dma_slave.device_free_chan_resources = d40_free_chan_resources;
|
|
base->dma_slave.device_prep_dma_memcpy = d40_prep_memcpy;
|
|
base->dma_slave.device_prep_dma_sg = d40_prep_sg;
|
|
base->dma_slave.device_prep_slave_sg = d40_prep_slave_sg;
|
|
base->dma_slave.device_tx_status = d40_tx_status;
|
|
base->dma_slave.device_issue_pending = d40_issue_pending;
|
|
base->dma_slave.device_control = d40_control;
|
|
base->dma_slave.dev = base->dev;
|
|
|
|
err = dma_async_device_register(&base->dma_slave);
|
|
|
|
if (err) {
|
|
dev_err(base->dev,
|
|
"[%s] Failed to register slave channels\n",
|
|
__func__);
|
|
goto failure1;
|
|
}
|
|
|
|
d40_chan_init(base, &base->dma_memcpy, base->log_chans,
|
|
base->num_log_chans, base->plat_data->memcpy_len);
|
|
|
|
dma_cap_zero(base->dma_memcpy.cap_mask);
|
|
dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
|
|
dma_cap_set(DMA_SG, base->dma_slave.cap_mask);
|
|
|
|
base->dma_memcpy.device_alloc_chan_resources = d40_alloc_chan_resources;
|
|
base->dma_memcpy.device_free_chan_resources = d40_free_chan_resources;
|
|
base->dma_memcpy.device_prep_dma_memcpy = d40_prep_memcpy;
|
|
base->dma_slave.device_prep_dma_sg = d40_prep_sg;
|
|
base->dma_memcpy.device_prep_slave_sg = d40_prep_slave_sg;
|
|
base->dma_memcpy.device_tx_status = d40_tx_status;
|
|
base->dma_memcpy.device_issue_pending = d40_issue_pending;
|
|
base->dma_memcpy.device_control = d40_control;
|
|
base->dma_memcpy.dev = base->dev;
|
|
/*
|
|
* This controller can only access address at even
|
|
* 32bit boundaries, i.e. 2^2
|
|
*/
|
|
base->dma_memcpy.copy_align = 2;
|
|
|
|
err = dma_async_device_register(&base->dma_memcpy);
|
|
|
|
if (err) {
|
|
dev_err(base->dev,
|
|
"[%s] Failed to regsiter memcpy only channels\n",
|
|
__func__);
|
|
goto failure2;
|
|
}
|
|
|
|
d40_chan_init(base, &base->dma_both, base->phy_chans,
|
|
0, num_reserved_chans);
|
|
|
|
dma_cap_zero(base->dma_both.cap_mask);
|
|
dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
|
|
dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
|
|
dma_cap_set(DMA_SG, base->dma_slave.cap_mask);
|
|
|
|
base->dma_both.device_alloc_chan_resources = d40_alloc_chan_resources;
|
|
base->dma_both.device_free_chan_resources = d40_free_chan_resources;
|
|
base->dma_both.device_prep_dma_memcpy = d40_prep_memcpy;
|
|
base->dma_slave.device_prep_dma_sg = d40_prep_sg;
|
|
base->dma_both.device_prep_slave_sg = d40_prep_slave_sg;
|
|
base->dma_both.device_tx_status = d40_tx_status;
|
|
base->dma_both.device_issue_pending = d40_issue_pending;
|
|
base->dma_both.device_control = d40_control;
|
|
base->dma_both.dev = base->dev;
|
|
base->dma_both.copy_align = 2;
|
|
err = dma_async_device_register(&base->dma_both);
|
|
|
|
if (err) {
|
|
dev_err(base->dev,
|
|
"[%s] Failed to register logical and physical capable channels\n",
|
|
__func__);
|
|
goto failure3;
|
|
}
|
|
return 0;
|
|
failure3:
|
|
dma_async_device_unregister(&base->dma_memcpy);
|
|
failure2:
|
|
dma_async_device_unregister(&base->dma_slave);
|
|
failure1:
|
|
return err;
|
|
}
|
|
|
|
/* Initialization functions. */
|
|
|
|
static int __init d40_phy_res_init(struct d40_base *base)
|
|
{
|
|
int i;
|
|
int num_phy_chans_avail = 0;
|
|
u32 val[2];
|
|
int odd_even_bit = -2;
|
|
|
|
val[0] = readl(base->virtbase + D40_DREG_PRSME);
|
|
val[1] = readl(base->virtbase + D40_DREG_PRSMO);
|
|
|
|
for (i = 0; i < base->num_phy_chans; i++) {
|
|
base->phy_res[i].num = i;
|
|
odd_even_bit += 2 * ((i % 2) == 0);
|
|
if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
|
|
/* Mark security only channels as occupied */
|
|
base->phy_res[i].allocated_src = D40_ALLOC_PHY;
|
|
base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
|
|
} else {
|
|
base->phy_res[i].allocated_src = D40_ALLOC_FREE;
|
|
base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
|
|
num_phy_chans_avail++;
|
|
}
|
|
spin_lock_init(&base->phy_res[i].lock);
|
|
}
|
|
|
|
/* Mark disabled channels as occupied */
|
|
for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
|
|
int chan = base->plat_data->disabled_channels[i];
|
|
|
|
base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
|
|
base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
|
|
num_phy_chans_avail--;
|
|
}
|
|
|
|
dev_info(base->dev, "%d of %d physical DMA channels available\n",
|
|
num_phy_chans_avail, base->num_phy_chans);
|
|
|
|
/* Verify settings extended vs standard */
|
|
val[0] = readl(base->virtbase + D40_DREG_PRTYP);
|
|
|
|
for (i = 0; i < base->num_phy_chans; i++) {
|
|
|
|
if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
|
|
(val[0] & 0x3) != 1)
|
|
dev_info(base->dev,
|
|
"[%s] INFO: channel %d is misconfigured (%d)\n",
|
|
__func__, i, val[0] & 0x3);
|
|
|
|
val[0] = val[0] >> 2;
|
|
}
|
|
|
|
return num_phy_chans_avail;
|
|
}
|
|
|
|
static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
|
|
{
|
|
static const struct d40_reg_val dma_id_regs[] = {
|
|
/* Peripheral Id */
|
|
{ .reg = D40_DREG_PERIPHID0, .val = 0x0040},
|
|
{ .reg = D40_DREG_PERIPHID1, .val = 0x0000},
|
|
/*
|
|
* D40_DREG_PERIPHID2 Depends on HW revision:
|
|
* MOP500/HREF ED has 0x0008,
|
|
* ? has 0x0018,
|
|
* HREF V1 has 0x0028
|
|
*/
|
|
{ .reg = D40_DREG_PERIPHID3, .val = 0x0000},
|
|
|
|
/* PCell Id */
|
|
{ .reg = D40_DREG_CELLID0, .val = 0x000d},
|
|
{ .reg = D40_DREG_CELLID1, .val = 0x00f0},
|
|
{ .reg = D40_DREG_CELLID2, .val = 0x0005},
|
|
{ .reg = D40_DREG_CELLID3, .val = 0x00b1}
|
|
};
|
|
struct stedma40_platform_data *plat_data;
|
|
struct clk *clk = NULL;
|
|
void __iomem *virtbase = NULL;
|
|
struct resource *res = NULL;
|
|
struct d40_base *base = NULL;
|
|
int num_log_chans = 0;
|
|
int num_phy_chans;
|
|
int i;
|
|
u32 val;
|
|
u32 rev;
|
|
|
|
clk = clk_get(&pdev->dev, NULL);
|
|
|
|
if (IS_ERR(clk)) {
|
|
dev_err(&pdev->dev, "[%s] No matching clock found\n",
|
|
__func__);
|
|
goto failure;
|
|
}
|
|
|
|
clk_enable(clk);
|
|
|
|
/* Get IO for DMAC base address */
|
|
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
|
|
if (!res)
|
|
goto failure;
|
|
|
|
if (request_mem_region(res->start, resource_size(res),
|
|
D40_NAME " I/O base") == NULL)
|
|
goto failure;
|
|
|
|
virtbase = ioremap(res->start, resource_size(res));
|
|
if (!virtbase)
|
|
goto failure;
|
|
|
|
/* HW version check */
|
|
for (i = 0; i < ARRAY_SIZE(dma_id_regs); i++) {
|
|
if (dma_id_regs[i].val !=
|
|
readl(virtbase + dma_id_regs[i].reg)) {
|
|
dev_err(&pdev->dev,
|
|
"[%s] Unknown hardware! Expected 0x%x at 0x%x but got 0x%x\n",
|
|
__func__,
|
|
dma_id_regs[i].val,
|
|
dma_id_regs[i].reg,
|
|
readl(virtbase + dma_id_regs[i].reg));
|
|
goto failure;
|
|
}
|
|
}
|
|
|
|
/* Get silicon revision and designer */
|
|
val = readl(virtbase + D40_DREG_PERIPHID2);
|
|
|
|
if ((val & D40_DREG_PERIPHID2_DESIGNER_MASK) !=
|
|
D40_HW_DESIGNER) {
|
|
dev_err(&pdev->dev,
|
|
"[%s] Unknown designer! Got %x wanted %x\n",
|
|
__func__, val & D40_DREG_PERIPHID2_DESIGNER_MASK,
|
|
D40_HW_DESIGNER);
|
|
goto failure;
|
|
}
|
|
|
|
rev = (val & D40_DREG_PERIPHID2_REV_MASK) >>
|
|
D40_DREG_PERIPHID2_REV_POS;
|
|
|
|
/* The number of physical channels on this HW */
|
|
num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
|
|
|
|
dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
|
|
rev, res->start);
|
|
|
|
plat_data = pdev->dev.platform_data;
|
|
|
|
/* Count the number of logical channels in use */
|
|
for (i = 0; i < plat_data->dev_len; i++)
|
|
if (plat_data->dev_rx[i] != 0)
|
|
num_log_chans++;
|
|
|
|
for (i = 0; i < plat_data->dev_len; i++)
|
|
if (plat_data->dev_tx[i] != 0)
|
|
num_log_chans++;
|
|
|
|
base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
|
|
(num_phy_chans + num_log_chans + plat_data->memcpy_len) *
|
|
sizeof(struct d40_chan), GFP_KERNEL);
|
|
|
|
if (base == NULL) {
|
|
dev_err(&pdev->dev, "[%s] Out of memory\n", __func__);
|
|
goto failure;
|
|
}
|
|
|
|
base->rev = rev;
|
|
base->clk = clk;
|
|
base->num_phy_chans = num_phy_chans;
|
|
base->num_log_chans = num_log_chans;
|
|
base->phy_start = res->start;
|
|
base->phy_size = resource_size(res);
|
|
base->virtbase = virtbase;
|
|
base->plat_data = plat_data;
|
|
base->dev = &pdev->dev;
|
|
base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
|
|
base->log_chans = &base->phy_chans[num_phy_chans];
|
|
|
|
base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
|
|
GFP_KERNEL);
|
|
if (!base->phy_res)
|
|
goto failure;
|
|
|
|
base->lookup_phy_chans = kzalloc(num_phy_chans *
|
|
sizeof(struct d40_chan *),
|
|
GFP_KERNEL);
|
|
if (!base->lookup_phy_chans)
|
|
goto failure;
|
|
|
|
if (num_log_chans + plat_data->memcpy_len) {
|
|
/*
|
|
* The max number of logical channels are event lines for all
|
|
* src devices and dst devices
|
|
*/
|
|
base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
|
|
sizeof(struct d40_chan *),
|
|
GFP_KERNEL);
|
|
if (!base->lookup_log_chans)
|
|
goto failure;
|
|
}
|
|
|
|
base->lcla_pool.alloc_map = kzalloc(num_phy_chans *
|
|
sizeof(struct d40_desc *) *
|
|
D40_LCLA_LINK_PER_EVENT_GRP,
|
|
GFP_KERNEL);
|
|
if (!base->lcla_pool.alloc_map)
|
|
goto failure;
|
|
|
|
base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
|
|
0, SLAB_HWCACHE_ALIGN,
|
|
NULL);
|
|
if (base->desc_slab == NULL)
|
|
goto failure;
|
|
|
|
return base;
|
|
|
|
failure:
|
|
if (!IS_ERR(clk)) {
|
|
clk_disable(clk);
|
|
clk_put(clk);
|
|
}
|
|
if (virtbase)
|
|
iounmap(virtbase);
|
|
if (res)
|
|
release_mem_region(res->start,
|
|
resource_size(res));
|
|
if (virtbase)
|
|
iounmap(virtbase);
|
|
|
|
if (base) {
|
|
kfree(base->lcla_pool.alloc_map);
|
|
kfree(base->lookup_log_chans);
|
|
kfree(base->lookup_phy_chans);
|
|
kfree(base->phy_res);
|
|
kfree(base);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void __init d40_hw_init(struct d40_base *base)
|
|
{
|
|
|
|
static const struct d40_reg_val dma_init_reg[] = {
|
|
/* Clock every part of the DMA block from start */
|
|
{ .reg = D40_DREG_GCC, .val = 0x0000ff01},
|
|
|
|
/* Interrupts on all logical channels */
|
|
{ .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
|
|
{ .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
|
|
{ .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
|
|
{ .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
|
|
{ .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
|
|
{ .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
|
|
{ .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
|
|
{ .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
|
|
{ .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
|
|
{ .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
|
|
{ .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
|
|
{ .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
|
|
};
|
|
int i;
|
|
u32 prmseo[2] = {0, 0};
|
|
u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
|
|
u32 pcmis = 0;
|
|
u32 pcicr = 0;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
|
|
writel(dma_init_reg[i].val,
|
|
base->virtbase + dma_init_reg[i].reg);
|
|
|
|
/* Configure all our dma channels to default settings */
|
|
for (i = 0; i < base->num_phy_chans; i++) {
|
|
|
|
activeo[i % 2] = activeo[i % 2] << 2;
|
|
|
|
if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
|
|
== D40_ALLOC_PHY) {
|
|
activeo[i % 2] |= 3;
|
|
continue;
|
|
}
|
|
|
|
/* Enable interrupt # */
|
|
pcmis = (pcmis << 1) | 1;
|
|
|
|
/* Clear interrupt # */
|
|
pcicr = (pcicr << 1) | 1;
|
|
|
|
/* Set channel to physical mode */
|
|
prmseo[i % 2] = prmseo[i % 2] << 2;
|
|
prmseo[i % 2] |= 1;
|
|
|
|
}
|
|
|
|
writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
|
|
writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
|
|
writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
|
|
writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
|
|
|
|
/* Write which interrupt to enable */
|
|
writel(pcmis, base->virtbase + D40_DREG_PCMIS);
|
|
|
|
/* Write which interrupt to clear */
|
|
writel(pcicr, base->virtbase + D40_DREG_PCICR);
|
|
|
|
}
|
|
|
|
static int __init d40_lcla_allocate(struct d40_base *base)
|
|
{
|
|
unsigned long *page_list;
|
|
int i, j;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
|
|
* To full fill this hardware requirement without wasting 256 kb
|
|
* we allocate pages until we get an aligned one.
|
|
*/
|
|
page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
|
|
GFP_KERNEL);
|
|
|
|
if (!page_list) {
|
|
ret = -ENOMEM;
|
|
goto failure;
|
|
}
|
|
|
|
/* Calculating how many pages that are required */
|
|
base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
|
|
|
|
for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
|
|
page_list[i] = __get_free_pages(GFP_KERNEL,
|
|
base->lcla_pool.pages);
|
|
if (!page_list[i]) {
|
|
|
|
dev_err(base->dev,
|
|
"[%s] Failed to allocate %d pages.\n",
|
|
__func__, base->lcla_pool.pages);
|
|
|
|
for (j = 0; j < i; j++)
|
|
free_pages(page_list[j], base->lcla_pool.pages);
|
|
goto failure;
|
|
}
|
|
|
|
if ((virt_to_phys((void *)page_list[i]) &
|
|
(LCLA_ALIGNMENT - 1)) == 0)
|
|
break;
|
|
}
|
|
|
|
for (j = 0; j < i; j++)
|
|
free_pages(page_list[j], base->lcla_pool.pages);
|
|
|
|
if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
|
|
base->lcla_pool.base = (void *)page_list[i];
|
|
} else {
|
|
/*
|
|
* After many attempts and no succees with finding the correct
|
|
* alignment, try with allocating a big buffer.
|
|
*/
|
|
dev_warn(base->dev,
|
|
"[%s] Failed to get %d pages @ 18 bit align.\n",
|
|
__func__, base->lcla_pool.pages);
|
|
base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
|
|
base->num_phy_chans +
|
|
LCLA_ALIGNMENT,
|
|
GFP_KERNEL);
|
|
if (!base->lcla_pool.base_unaligned) {
|
|
ret = -ENOMEM;
|
|
goto failure;
|
|
}
|
|
|
|
base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
|
|
LCLA_ALIGNMENT);
|
|
}
|
|
|
|
writel(virt_to_phys(base->lcla_pool.base),
|
|
base->virtbase + D40_DREG_LCLA);
|
|
failure:
|
|
kfree(page_list);
|
|
return ret;
|
|
}
|
|
|
|
static int __init d40_probe(struct platform_device *pdev)
|
|
{
|
|
int err;
|
|
int ret = -ENOENT;
|
|
struct d40_base *base;
|
|
struct resource *res = NULL;
|
|
int num_reserved_chans;
|
|
u32 val;
|
|
|
|
base = d40_hw_detect_init(pdev);
|
|
|
|
if (!base)
|
|
goto failure;
|
|
|
|
num_reserved_chans = d40_phy_res_init(base);
|
|
|
|
platform_set_drvdata(pdev, base);
|
|
|
|
spin_lock_init(&base->interrupt_lock);
|
|
spin_lock_init(&base->execmd_lock);
|
|
|
|
/* Get IO for logical channel parameter address */
|
|
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
|
|
if (!res) {
|
|
ret = -ENOENT;
|
|
dev_err(&pdev->dev,
|
|
"[%s] No \"lcpa\" memory resource\n",
|
|
__func__);
|
|
goto failure;
|
|
}
|
|
base->lcpa_size = resource_size(res);
|
|
base->phy_lcpa = res->start;
|
|
|
|
if (request_mem_region(res->start, resource_size(res),
|
|
D40_NAME " I/O lcpa") == NULL) {
|
|
ret = -EBUSY;
|
|
dev_err(&pdev->dev,
|
|
"[%s] Failed to request LCPA region 0x%x-0x%x\n",
|
|
__func__, res->start, res->end);
|
|
goto failure;
|
|
}
|
|
|
|
/* We make use of ESRAM memory for this. */
|
|
val = readl(base->virtbase + D40_DREG_LCPA);
|
|
if (res->start != val && val != 0) {
|
|
dev_warn(&pdev->dev,
|
|
"[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
|
|
__func__, val, res->start);
|
|
} else
|
|
writel(res->start, base->virtbase + D40_DREG_LCPA);
|
|
|
|
base->lcpa_base = ioremap(res->start, resource_size(res));
|
|
if (!base->lcpa_base) {
|
|
ret = -ENOMEM;
|
|
dev_err(&pdev->dev,
|
|
"[%s] Failed to ioremap LCPA region\n",
|
|
__func__);
|
|
goto failure;
|
|
}
|
|
|
|
ret = d40_lcla_allocate(base);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "[%s] Failed to allocate LCLA area\n",
|
|
__func__);
|
|
goto failure;
|
|
}
|
|
|
|
spin_lock_init(&base->lcla_pool.lock);
|
|
|
|
base->irq = platform_get_irq(pdev, 0);
|
|
|
|
ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
|
|
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "[%s] No IRQ defined\n", __func__);
|
|
goto failure;
|
|
}
|
|
|
|
err = d40_dmaengine_init(base, num_reserved_chans);
|
|
if (err)
|
|
goto failure;
|
|
|
|
d40_hw_init(base);
|
|
|
|
dev_info(base->dev, "initialized\n");
|
|
return 0;
|
|
|
|
failure:
|
|
if (base) {
|
|
if (base->desc_slab)
|
|
kmem_cache_destroy(base->desc_slab);
|
|
if (base->virtbase)
|
|
iounmap(base->virtbase);
|
|
if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
|
|
free_pages((unsigned long)base->lcla_pool.base,
|
|
base->lcla_pool.pages);
|
|
|
|
kfree(base->lcla_pool.base_unaligned);
|
|
|
|
if (base->phy_lcpa)
|
|
release_mem_region(base->phy_lcpa,
|
|
base->lcpa_size);
|
|
if (base->phy_start)
|
|
release_mem_region(base->phy_start,
|
|
base->phy_size);
|
|
if (base->clk) {
|
|
clk_disable(base->clk);
|
|
clk_put(base->clk);
|
|
}
|
|
|
|
kfree(base->lcla_pool.alloc_map);
|
|
kfree(base->lookup_log_chans);
|
|
kfree(base->lookup_phy_chans);
|
|
kfree(base->phy_res);
|
|
kfree(base);
|
|
}
|
|
|
|
dev_err(&pdev->dev, "[%s] probe failed\n", __func__);
|
|
return ret;
|
|
}
|
|
|
|
static struct platform_driver d40_driver = {
|
|
.driver = {
|
|
.owner = THIS_MODULE,
|
|
.name = D40_NAME,
|
|
},
|
|
};
|
|
|
|
int __init stedma40_init(void)
|
|
{
|
|
return platform_driver_probe(&d40_driver, d40_probe);
|
|
}
|
|
arch_initcall(stedma40_init);
|