c1821c2e97
This provides a noexec protection on s390 hardware. Our hardware does not have any bits left in the pte for a hw noexec bit, so this is a different approach using shadow page tables and a special addressing mode that allows separate address spaces for code and data. As a special feature of our "secondary-space" addressing mode, separate page tables can be specified for the translation of data addresses (storage operands) and instruction addresses. The shadow page table is used for the instruction addresses and the standard page table for the data addresses. The shadow page table is linked to the standard page table by a pointer in page->lru.next of the struct page corresponding to the page that contains the standard page table (since page->private is not really private with the pte_lock and the page table pages are not in the LRU list). Depending on the software bits of a pte, it is either inserted into both page tables or just into the standard (data) page table. Pages of a vma that does not have the VM_EXEC bit set get mapped only in the data address space. Any try to execute code on such a page will cause a page translation exception. The standard reaction to this is a SIGSEGV with two exceptions: the two system call opcodes 0x0a77 (sys_sigreturn) and 0x0aad (sys_rt_sigreturn) are allowed. They are stored by the kernel to the signal stack frame. Unfortunately, the signal return mechanism cannot be modified to use an SA_RESTORER because the exception unwinding code depends on the system call opcode stored behind the signal stack frame. This feature requires that user space is executed in secondary-space mode and the kernel in home-space mode, which means that the addressing modes need to be switched and that the noexec protection only works for user space. After switching the addressing modes, we cannot use the mvcp/mvcs instructions anymore to copy between kernel and user space. A new mvcos instruction has been added to the z9 EC/BC hardware which allows to copy between arbitrary address spaces, but on older hardware the page tables need to be walked manually. Signed-off-by: Gerald Schaefer <geraldsc@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
390 lines
10 KiB
C
390 lines
10 KiB
C
/*
|
|
* arch/s390/kernel/process.c
|
|
*
|
|
* S390 version
|
|
* Copyright (C) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation
|
|
* Author(s): Martin Schwidefsky (schwidefsky@de.ibm.com),
|
|
* Hartmut Penner (hp@de.ibm.com),
|
|
* Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
|
|
*
|
|
* Derived from "arch/i386/kernel/process.c"
|
|
* Copyright (C) 1995, Linus Torvalds
|
|
*/
|
|
|
|
/*
|
|
* This file handles the architecture-dependent parts of process handling..
|
|
*/
|
|
|
|
#include <linux/compiler.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/smp_lock.h>
|
|
#include <linux/stddef.h>
|
|
#include <linux/unistd.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/user.h>
|
|
#include <linux/a.out.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/init.h>
|
|
#include <linux/module.h>
|
|
#include <linux/notifier.h>
|
|
|
|
#include <asm/uaccess.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/system.h>
|
|
#include <asm/io.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/timer.h>
|
|
|
|
asmlinkage void ret_from_fork(void) asm ("ret_from_fork");
|
|
|
|
/*
|
|
* Return saved PC of a blocked thread. used in kernel/sched.
|
|
* resume in entry.S does not create a new stack frame, it
|
|
* just stores the registers %r6-%r15 to the frame given by
|
|
* schedule. We want to return the address of the caller of
|
|
* schedule, so we have to walk the backchain one time to
|
|
* find the frame schedule() store its return address.
|
|
*/
|
|
unsigned long thread_saved_pc(struct task_struct *tsk)
|
|
{
|
|
struct stack_frame *sf, *low, *high;
|
|
|
|
if (!tsk || !task_stack_page(tsk))
|
|
return 0;
|
|
low = task_stack_page(tsk);
|
|
high = (struct stack_frame *) task_pt_regs(tsk);
|
|
sf = (struct stack_frame *) (tsk->thread.ksp & PSW_ADDR_INSN);
|
|
if (sf <= low || sf > high)
|
|
return 0;
|
|
sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
|
|
if (sf <= low || sf > high)
|
|
return 0;
|
|
return sf->gprs[8];
|
|
}
|
|
|
|
/*
|
|
* Need to know about CPUs going idle?
|
|
*/
|
|
static ATOMIC_NOTIFIER_HEAD(idle_chain);
|
|
|
|
int register_idle_notifier(struct notifier_block *nb)
|
|
{
|
|
return atomic_notifier_chain_register(&idle_chain, nb);
|
|
}
|
|
EXPORT_SYMBOL(register_idle_notifier);
|
|
|
|
int unregister_idle_notifier(struct notifier_block *nb)
|
|
{
|
|
return atomic_notifier_chain_unregister(&idle_chain, nb);
|
|
}
|
|
EXPORT_SYMBOL(unregister_idle_notifier);
|
|
|
|
void do_monitor_call(struct pt_regs *regs, long interruption_code)
|
|
{
|
|
/* disable monitor call class 0 */
|
|
__ctl_clear_bit(8, 15);
|
|
|
|
atomic_notifier_call_chain(&idle_chain, CPU_NOT_IDLE,
|
|
(void *)(long) smp_processor_id());
|
|
}
|
|
|
|
extern void s390_handle_mcck(void);
|
|
/*
|
|
* The idle loop on a S390...
|
|
*/
|
|
static void default_idle(void)
|
|
{
|
|
int cpu, rc;
|
|
|
|
/* CPU is going idle. */
|
|
cpu = smp_processor_id();
|
|
|
|
local_irq_disable();
|
|
if (need_resched()) {
|
|
local_irq_enable();
|
|
return;
|
|
}
|
|
|
|
rc = atomic_notifier_call_chain(&idle_chain,
|
|
CPU_IDLE, (void *)(long) cpu);
|
|
if (rc != NOTIFY_OK && rc != NOTIFY_DONE)
|
|
BUG();
|
|
if (rc != NOTIFY_OK) {
|
|
local_irq_enable();
|
|
return;
|
|
}
|
|
|
|
/* enable monitor call class 0 */
|
|
__ctl_set_bit(8, 15);
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
if (cpu_is_offline(cpu)) {
|
|
preempt_enable_no_resched();
|
|
cpu_die();
|
|
}
|
|
#endif
|
|
|
|
local_mcck_disable();
|
|
if (test_thread_flag(TIF_MCCK_PENDING)) {
|
|
local_mcck_enable();
|
|
local_irq_enable();
|
|
s390_handle_mcck();
|
|
return;
|
|
}
|
|
|
|
trace_hardirqs_on();
|
|
/* Wait for external, I/O or machine check interrupt. */
|
|
__load_psw_mask(psw_kernel_bits | PSW_MASK_WAIT |
|
|
PSW_MASK_IO | PSW_MASK_EXT);
|
|
}
|
|
|
|
void cpu_idle(void)
|
|
{
|
|
for (;;) {
|
|
while (!need_resched())
|
|
default_idle();
|
|
|
|
preempt_enable_no_resched();
|
|
schedule();
|
|
preempt_disable();
|
|
}
|
|
}
|
|
|
|
void show_regs(struct pt_regs *regs)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
|
|
printk("CPU: %d %s\n", task_thread_info(tsk)->cpu, print_tainted());
|
|
printk("Process %s (pid: %d, task: %p, ksp: %p)\n",
|
|
current->comm, current->pid, (void *) tsk,
|
|
(void *) tsk->thread.ksp);
|
|
|
|
show_registers(regs);
|
|
/* Show stack backtrace if pt_regs is from kernel mode */
|
|
if (!(regs->psw.mask & PSW_MASK_PSTATE))
|
|
show_trace(NULL, (unsigned long *) regs->gprs[15]);
|
|
}
|
|
|
|
extern void kernel_thread_starter(void);
|
|
|
|
asm(
|
|
".align 4\n"
|
|
"kernel_thread_starter:\n"
|
|
" la 2,0(10)\n"
|
|
" basr 14,9\n"
|
|
" la 2,0\n"
|
|
" br 11\n");
|
|
|
|
int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
|
|
{
|
|
struct pt_regs regs;
|
|
|
|
memset(®s, 0, sizeof(regs));
|
|
regs.psw.mask = psw_kernel_bits | PSW_MASK_IO | PSW_MASK_EXT;
|
|
regs.psw.addr = (unsigned long) kernel_thread_starter | PSW_ADDR_AMODE;
|
|
regs.gprs[9] = (unsigned long) fn;
|
|
regs.gprs[10] = (unsigned long) arg;
|
|
regs.gprs[11] = (unsigned long) do_exit;
|
|
regs.orig_gpr2 = -1;
|
|
|
|
/* Ok, create the new process.. */
|
|
return do_fork(flags | CLONE_VM | CLONE_UNTRACED,
|
|
0, ®s, 0, NULL, NULL);
|
|
}
|
|
|
|
/*
|
|
* Free current thread data structures etc..
|
|
*/
|
|
void exit_thread(void)
|
|
{
|
|
}
|
|
|
|
void flush_thread(void)
|
|
{
|
|
clear_used_math();
|
|
clear_tsk_thread_flag(current, TIF_USEDFPU);
|
|
}
|
|
|
|
void release_thread(struct task_struct *dead_task)
|
|
{
|
|
}
|
|
|
|
int copy_thread(int nr, unsigned long clone_flags, unsigned long new_stackp,
|
|
unsigned long unused,
|
|
struct task_struct * p, struct pt_regs * regs)
|
|
{
|
|
struct fake_frame
|
|
{
|
|
struct stack_frame sf;
|
|
struct pt_regs childregs;
|
|
} *frame;
|
|
|
|
frame = container_of(task_pt_regs(p), struct fake_frame, childregs);
|
|
p->thread.ksp = (unsigned long) frame;
|
|
/* Store access registers to kernel stack of new process. */
|
|
frame->childregs = *regs;
|
|
frame->childregs.gprs[2] = 0; /* child returns 0 on fork. */
|
|
frame->childregs.gprs[15] = new_stackp;
|
|
frame->sf.back_chain = 0;
|
|
|
|
/* new return point is ret_from_fork */
|
|
frame->sf.gprs[8] = (unsigned long) ret_from_fork;
|
|
|
|
/* fake return stack for resume(), don't go back to schedule */
|
|
frame->sf.gprs[9] = (unsigned long) frame;
|
|
|
|
/* Save access registers to new thread structure. */
|
|
save_access_regs(&p->thread.acrs[0]);
|
|
|
|
#ifndef CONFIG_64BIT
|
|
/*
|
|
* save fprs to current->thread.fp_regs to merge them with
|
|
* the emulated registers and then copy the result to the child.
|
|
*/
|
|
save_fp_regs(¤t->thread.fp_regs);
|
|
memcpy(&p->thread.fp_regs, ¤t->thread.fp_regs,
|
|
sizeof(s390_fp_regs));
|
|
p->thread.user_seg = __pa((unsigned long) p->mm->pgd) | _SEGMENT_TABLE;
|
|
/* Set a new TLS ? */
|
|
if (clone_flags & CLONE_SETTLS)
|
|
p->thread.acrs[0] = regs->gprs[6];
|
|
#else /* CONFIG_64BIT */
|
|
/* Save the fpu registers to new thread structure. */
|
|
save_fp_regs(&p->thread.fp_regs);
|
|
p->thread.user_seg = __pa((unsigned long) p->mm->pgd) | _REGION_TABLE;
|
|
/* Set a new TLS ? */
|
|
if (clone_flags & CLONE_SETTLS) {
|
|
if (test_thread_flag(TIF_31BIT)) {
|
|
p->thread.acrs[0] = (unsigned int) regs->gprs[6];
|
|
} else {
|
|
p->thread.acrs[0] = (unsigned int)(regs->gprs[6] >> 32);
|
|
p->thread.acrs[1] = (unsigned int) regs->gprs[6];
|
|
}
|
|
}
|
|
#endif /* CONFIG_64BIT */
|
|
/* start new process with ar4 pointing to the correct address space */
|
|
p->thread.mm_segment = get_fs();
|
|
/* Don't copy debug registers */
|
|
memset(&p->thread.per_info,0,sizeof(p->thread.per_info));
|
|
|
|
return 0;
|
|
}
|
|
|
|
asmlinkage long sys_fork(struct pt_regs regs)
|
|
{
|
|
return do_fork(SIGCHLD, regs.gprs[15], ®s, 0, NULL, NULL);
|
|
}
|
|
|
|
asmlinkage long sys_clone(struct pt_regs regs)
|
|
{
|
|
unsigned long clone_flags;
|
|
unsigned long newsp;
|
|
int __user *parent_tidptr, *child_tidptr;
|
|
|
|
clone_flags = regs.gprs[3];
|
|
newsp = regs.orig_gpr2;
|
|
parent_tidptr = (int __user *) regs.gprs[4];
|
|
child_tidptr = (int __user *) regs.gprs[5];
|
|
if (!newsp)
|
|
newsp = regs.gprs[15];
|
|
return do_fork(clone_flags, newsp, ®s, 0,
|
|
parent_tidptr, child_tidptr);
|
|
}
|
|
|
|
/*
|
|
* This is trivial, and on the face of it looks like it
|
|
* could equally well be done in user mode.
|
|
*
|
|
* Not so, for quite unobvious reasons - register pressure.
|
|
* In user mode vfork() cannot have a stack frame, and if
|
|
* done by calling the "clone()" system call directly, you
|
|
* do not have enough call-clobbered registers to hold all
|
|
* the information you need.
|
|
*/
|
|
asmlinkage long sys_vfork(struct pt_regs regs)
|
|
{
|
|
return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD,
|
|
regs.gprs[15], ®s, 0, NULL, NULL);
|
|
}
|
|
|
|
/*
|
|
* sys_execve() executes a new program.
|
|
*/
|
|
asmlinkage long sys_execve(struct pt_regs regs)
|
|
{
|
|
int error;
|
|
char * filename;
|
|
|
|
filename = getname((char __user *) regs.orig_gpr2);
|
|
error = PTR_ERR(filename);
|
|
if (IS_ERR(filename))
|
|
goto out;
|
|
error = do_execve(filename, (char __user * __user *) regs.gprs[3],
|
|
(char __user * __user *) regs.gprs[4], ®s);
|
|
if (error == 0) {
|
|
task_lock(current);
|
|
current->ptrace &= ~PT_DTRACE;
|
|
task_unlock(current);
|
|
current->thread.fp_regs.fpc = 0;
|
|
if (MACHINE_HAS_IEEE)
|
|
asm volatile("sfpc %0,%0" : : "d" (0));
|
|
}
|
|
putname(filename);
|
|
out:
|
|
return error;
|
|
}
|
|
|
|
|
|
/*
|
|
* fill in the FPU structure for a core dump.
|
|
*/
|
|
int dump_fpu (struct pt_regs * regs, s390_fp_regs *fpregs)
|
|
{
|
|
#ifndef CONFIG_64BIT
|
|
/*
|
|
* save fprs to current->thread.fp_regs to merge them with
|
|
* the emulated registers and then copy the result to the dump.
|
|
*/
|
|
save_fp_regs(¤t->thread.fp_regs);
|
|
memcpy(fpregs, ¤t->thread.fp_regs, sizeof(s390_fp_regs));
|
|
#else /* CONFIG_64BIT */
|
|
save_fp_regs(fpregs);
|
|
#endif /* CONFIG_64BIT */
|
|
return 1;
|
|
}
|
|
|
|
unsigned long get_wchan(struct task_struct *p)
|
|
{
|
|
struct stack_frame *sf, *low, *high;
|
|
unsigned long return_address;
|
|
int count;
|
|
|
|
if (!p || p == current || p->state == TASK_RUNNING || !task_stack_page(p))
|
|
return 0;
|
|
low = task_stack_page(p);
|
|
high = (struct stack_frame *) task_pt_regs(p);
|
|
sf = (struct stack_frame *) (p->thread.ksp & PSW_ADDR_INSN);
|
|
if (sf <= low || sf > high)
|
|
return 0;
|
|
for (count = 0; count < 16; count++) {
|
|
sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
|
|
if (sf <= low || sf > high)
|
|
return 0;
|
|
return_address = sf->gprs[8] & PSW_ADDR_INSN;
|
|
if (!in_sched_functions(return_address))
|
|
return return_address;
|
|
}
|
|
return 0;
|
|
}
|
|
|