linux/arch/ia64/lib/do_csum.S

324 lines
10 KiB
ArmAsm

/*
*
* Optmized version of the standard do_csum() function
*
* Return: a 64bit quantity containing the 16bit Internet checksum
*
* Inputs:
* in0: address of buffer to checksum (char *)
* in1: length of the buffer (int)
*
* Copyright (C) 1999, 2001-2002 Hewlett-Packard Co
* Stephane Eranian <eranian@hpl.hp.com>
*
* 02/04/22 Ken Chen <kenneth.w.chen@intel.com>
* Data locality study on the checksum buffer.
* More optimization cleanup - remove excessive stop bits.
* 02/04/08 David Mosberger <davidm@hpl.hp.com>
* More cleanup and tuning.
* 01/04/18 Jun Nakajima <jun.nakajima@intel.com>
* Clean up and optimize and the software pipeline, loading two
* back-to-back 8-byte words per loop. Clean up the initialization
* for the loop. Support the cases where load latency = 1 or 2.
* Set CONFIG_IA64_LOAD_LATENCY to 1 or 2 (default).
*/
#include <asm/asmmacro.h>
//
// Theory of operations:
// The goal is to go as quickly as possible to the point where
// we can checksum 16 bytes/loop. Before reaching that point we must
// take care of incorrect alignment of first byte.
//
// The code hereafter also takes care of the "tail" part of the buffer
// before entering the core loop, if any. The checksum is a sum so it
// allows us to commute operations. So we do the "head" and "tail"
// first to finish at full speed in the body. Once we get the head and
// tail values, we feed them into the pipeline, very handy initialization.
//
// Of course we deal with the special case where the whole buffer fits
// into one 8 byte word. In this case we have only one entry in the pipeline.
//
// We use a (LOAD_LATENCY+2)-stage pipeline in the loop to account for
// possible load latency and also to accommodate for head and tail.
//
// The end of the function deals with folding the checksum from 64bits
// down to 16bits taking care of the carry.
//
// This version avoids synchronization in the core loop by also using a
// pipeline for the accumulation of the checksum in resultx[] (x=1,2).
//
// wordx[] (x=1,2)
// |---|
// | | 0 : new value loaded in pipeline
// |---|
// | | - : in transit data
// |---|
// | | LOAD_LATENCY : current value to add to checksum
// |---|
// | | LOAD_LATENCY+1 : previous value added to checksum
// |---| (previous iteration)
//
// resultx[] (x=1,2)
// |---|
// | | 0 : initial value
// |---|
// | | LOAD_LATENCY-1 : new checksum
// |---|
// | | LOAD_LATENCY : previous value of checksum
// |---|
// | | LOAD_LATENCY+1 : final checksum when out of the loop
// |---|
//
//
// See RFC1071 "Computing the Internet Checksum" for various techniques for
// calculating the Internet checksum.
//
// NOT YET DONE:
// - Maybe another algorithm which would take care of the folding at the
// end in a different manner
// - Work with people more knowledgeable than me on the network stack
// to figure out if we could not split the function depending on the
// type of packet or alignment we get. Like the ip_fast_csum() routine
// where we know we have at least 20bytes worth of data to checksum.
// - Do a better job of handling small packets.
// - Note on prefetching: it was found that under various load, i.e. ftp read/write,
// nfs read/write, the L1 cache hit rate is at 60% and L2 cache hit rate is at 99.8%
// on the data that buffer points to (partly because the checksum is often preceded by
// a copy_from_user()). This finding indiate that lfetch will not be beneficial since
// the data is already in the cache.
//
#define saved_pfs r11
#define hmask r16
#define tmask r17
#define first1 r18
#define firstval r19
#define firstoff r20
#define last r21
#define lastval r22
#define lastoff r23
#define saved_lc r24
#define saved_pr r25
#define tmp1 r26
#define tmp2 r27
#define tmp3 r28
#define carry1 r29
#define carry2 r30
#define first2 r31
#define buf in0
#define len in1
#define LOAD_LATENCY 2 // XXX fix me
#if (LOAD_LATENCY != 1) && (LOAD_LATENCY != 2)
# error "Only 1 or 2 is supported/tested for LOAD_LATENCY."
#endif
#define PIPE_DEPTH (LOAD_LATENCY+2)
#define ELD p[LOAD_LATENCY] // end of load
#define ELD_1 p[LOAD_LATENCY+1] // and next stage
// unsigned long do_csum(unsigned char *buf,long len)
GLOBAL_ENTRY(do_csum)
.prologue
.save ar.pfs, saved_pfs
alloc saved_pfs=ar.pfs,2,16,0,16
.rotr word1[4], word2[4],result1[LOAD_LATENCY+2],result2[LOAD_LATENCY+2]
.rotp p[PIPE_DEPTH], pC1[2], pC2[2]
mov ret0=r0 // in case we have zero length
cmp.lt p0,p6=r0,len // check for zero length or negative (32bit len)
;;
add tmp1=buf,len // last byte's address
.save pr, saved_pr
mov saved_pr=pr // preserve predicates (rotation)
(p6) br.ret.spnt.many rp // return if zero or negative length
mov hmask=-1 // initialize head mask
tbit.nz p15,p0=buf,0 // is buf an odd address?
and first1=-8,buf // 8-byte align down address of first1 element
and firstoff=7,buf // how many bytes off for first1 element
mov tmask=-1 // initialize tail mask
;;
adds tmp2=-1,tmp1 // last-1
and lastoff=7,tmp1 // how many bytes off for last element
;;
sub tmp1=8,lastoff // complement to lastoff
and last=-8,tmp2 // address of word containing last byte
;;
sub tmp3=last,first1 // tmp3=distance from first1 to last
.save ar.lc, saved_lc
mov saved_lc=ar.lc // save lc
cmp.eq p8,p9=last,first1 // everything fits in one word ?
ld8 firstval=[first1],8 // load, ahead of time, "first1" word
and tmp1=7, tmp1 // make sure that if tmp1==8 -> tmp1=0
shl tmp2=firstoff,3 // number of bits
;;
(p9) ld8 lastval=[last] // load, ahead of time, "last" word, if needed
shl tmp1=tmp1,3 // number of bits
(p9) adds tmp3=-8,tmp3 // effectively loaded
;;
(p8) mov lastval=r0 // we don't need lastval if first1==last
shl hmask=hmask,tmp2 // build head mask, mask off [0,first1off[
shr.u tmask=tmask,tmp1 // build tail mask, mask off ]8,lastoff]
;;
.body
#define count tmp3
(p8) and hmask=hmask,tmask // apply tail mask to head mask if 1 word only
(p9) and word2[0]=lastval,tmask // mask last it as appropriate
shr.u count=count,3 // how many 8-byte?
;;
// If count is odd, finish this 8-byte word so that we can
// load two back-to-back 8-byte words per loop thereafter.
and word1[0]=firstval,hmask // and mask it as appropriate
tbit.nz p10,p11=count,0 // if (count is odd)
;;
(p8) mov result1[0]=word1[0]
(p9) add result1[0]=word1[0],word2[0]
;;
cmp.ltu p6,p0=result1[0],word1[0] // check the carry
cmp.eq.or.andcm p8,p0=0,count // exit if zero 8-byte
;;
(p6) adds result1[0]=1,result1[0]
(p8) br.cond.dptk .do_csum_exit // if (within an 8-byte word)
(p11) br.cond.dptk .do_csum16 // if (count is even)
// Here count is odd.
ld8 word1[1]=[first1],8 // load an 8-byte word
cmp.eq p9,p10=1,count // if (count == 1)
adds count=-1,count // loaded an 8-byte word
;;
add result1[0]=result1[0],word1[1]
;;
cmp.ltu p6,p0=result1[0],word1[1]
;;
(p6) adds result1[0]=1,result1[0]
(p9) br.cond.sptk .do_csum_exit // if (count == 1) exit
// Fall through to caluculate the checksum, feeding result1[0] as
// the initial value in result1[0].
//
// Calculate the checksum loading two 8-byte words per loop.
//
.do_csum16:
add first2=8,first1
shr.u count=count,1 // we do 16 bytes per loop
;;
adds count=-1,count
mov carry1=r0
mov carry2=r0
brp.loop.imp 1f,2f
;;
mov ar.ec=PIPE_DEPTH
mov ar.lc=count // set lc
mov pr.rot=1<<16
// result1[0] must be initialized in advance.
mov result2[0]=r0
;;
.align 32
1:
(ELD_1) cmp.ltu pC1[0],p0=result1[LOAD_LATENCY],word1[LOAD_LATENCY+1]
(pC1[1])adds carry1=1,carry1
(ELD_1) cmp.ltu pC2[0],p0=result2[LOAD_LATENCY],word2[LOAD_LATENCY+1]
(pC2[1])adds carry2=1,carry2
(ELD) add result1[LOAD_LATENCY-1]=result1[LOAD_LATENCY],word1[LOAD_LATENCY]
(ELD) add result2[LOAD_LATENCY-1]=result2[LOAD_LATENCY],word2[LOAD_LATENCY]
2:
(p[0]) ld8 word1[0]=[first1],16
(p[0]) ld8 word2[0]=[first2],16
br.ctop.sptk 1b
;;
// Since len is a 32-bit value, carry cannot be larger than a 64-bit value.
(pC1[1])adds carry1=1,carry1 // since we miss the last one
(pC2[1])adds carry2=1,carry2
;;
add result1[LOAD_LATENCY+1]=result1[LOAD_LATENCY+1],carry1
add result2[LOAD_LATENCY+1]=result2[LOAD_LATENCY+1],carry2
;;
cmp.ltu p6,p0=result1[LOAD_LATENCY+1],carry1
cmp.ltu p7,p0=result2[LOAD_LATENCY+1],carry2
;;
(p6) adds result1[LOAD_LATENCY+1]=1,result1[LOAD_LATENCY+1]
(p7) adds result2[LOAD_LATENCY+1]=1,result2[LOAD_LATENCY+1]
;;
add result1[0]=result1[LOAD_LATENCY+1],result2[LOAD_LATENCY+1]
;;
cmp.ltu p6,p0=result1[0],result2[LOAD_LATENCY+1]
;;
(p6) adds result1[0]=1,result1[0]
;;
.do_csum_exit:
//
// now fold 64 into 16 bits taking care of carry
// that's not very good because it has lots of sequentiality
//
mov tmp3=0xffff
zxt4 tmp1=result1[0]
shr.u tmp2=result1[0],32
;;
add result1[0]=tmp1,tmp2
;;
and tmp1=result1[0],tmp3
shr.u tmp2=result1[0],16
;;
add result1[0]=tmp1,tmp2
;;
and tmp1=result1[0],tmp3
shr.u tmp2=result1[0],16
;;
add result1[0]=tmp1,tmp2
;;
and tmp1=result1[0],tmp3
shr.u tmp2=result1[0],16
;;
add ret0=tmp1,tmp2
mov pr=saved_pr,0xffffffffffff0000
;;
// if buf was odd then swap bytes
mov ar.pfs=saved_pfs // restore ar.ec
(p15) mux1 ret0=ret0,@rev // reverse word
;;
mov ar.lc=saved_lc
(p15) shr.u ret0=ret0,64-16 // + shift back to position = swap bytes
br.ret.sptk.many rp
// I (Jun Nakajima) wrote an equivalent code (see below), but it was
// not much better than the original. So keep the original there so that
// someone else can challenge.
//
// shr.u word1[0]=result1[0],32
// zxt4 result1[0]=result1[0]
// ;;
// add result1[0]=result1[0],word1[0]
// ;;
// zxt2 result2[0]=result1[0]
// extr.u word1[0]=result1[0],16,16
// shr.u carry1=result1[0],32
// ;;
// add result2[0]=result2[0],word1[0]
// ;;
// add result2[0]=result2[0],carry1
// ;;
// extr.u ret0=result2[0],16,16
// ;;
// add ret0=ret0,result2[0]
// ;;
// zxt2 ret0=ret0
// mov ar.pfs=saved_pfs // restore ar.ec
// mov pr=saved_pr,0xffffffffffff0000
// ;;
// // if buf was odd then swap bytes
// mov ar.lc=saved_lc
//(p15) mux1 ret0=ret0,@rev // reverse word
// ;;
//(p15) shr.u ret0=ret0,64-16 // + shift back to position = swap bytes
// br.ret.sptk.many rp
END(do_csum)