linux/fs/ubifs/debug.c
Sheng Yong 235c362bd0 UBIFS: extend debug/message capabilities
In the case where we have more than one volumes on different UBI
devices, it may be not that easy to tell which volume prints the
messages.  Add ubi number and volume id in ubifs_msg/warn/error
to help debug. These two values are passed by struct ubifs_info.

For those where ubifs_info is not initialized yet, ubifs_* is
replaced by pr_*. For those where ubifs_info is not avaliable,
ubifs_info is passed to the calling function as a const parameter.

The output looks like,

[   95.444879] UBIFS (ubi0:1): background thread "ubifs_bgt0_1" started, PID 696
[   95.484688] UBIFS (ubi0:1): UBIFS: mounted UBI device 0, volume 1, name "test1"
[   95.484694] UBIFS (ubi0:1): LEB size: 126976 bytes (124 KiB), min./max. I/O unit sizes: 2048 bytes/2048 bytes
[   95.484699] UBIFS (ubi0:1): FS size: 30220288 bytes (28 MiB, 238 LEBs), journal size 1523712 bytes (1 MiB, 12 LEBs)
[   95.484703] UBIFS (ubi0:1): reserved for root: 1427378 bytes (1393 KiB)
[   95.484709] UBIFS (ubi0:1): media format: w4/r0 (latest is w4/r0), UUID 40DFFC0E-70BE-4193-8905-F7D6DFE60B17, small LPT model
[   95.489875] UBIFS (ubi1:0): background thread "ubifs_bgt1_0" started, PID 699
[   95.529713] UBIFS (ubi1:0): UBIFS: mounted UBI device 1, volume 0, name "test2"
[   95.529718] UBIFS (ubi1:0): LEB size: 126976 bytes (124 KiB), min./max. I/O unit sizes: 2048 bytes/2048 bytes
[   95.529724] UBIFS (ubi1:0): FS size: 19808256 bytes (18 MiB, 156 LEBs), journal size 1015809 bytes (0 MiB, 8 LEBs)
[   95.529727] UBIFS (ubi1:0): reserved for root: 935592 bytes (913 KiB)
[   95.529733] UBIFS (ubi1:0): media format: w4/r0 (latest is w4/r0), UUID EEB7779D-F419-4CA9-811B-831CAC7233D4, small LPT model

[  954.264767] UBIFS error (ubi1:0 pid 756): ubifs_read_node: bad node type (255 but expected 6)
[  954.367030] UBIFS error (ubi1:0 pid 756): ubifs_read_node: bad node at LEB 0:0, LEB mapping status 1

Signed-off-by: Sheng Yong <shengyong1@huawei.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
2015-03-25 11:08:41 +02:00

3105 lines
84 KiB
C

/*
* This file is part of UBIFS.
*
* Copyright (C) 2006-2008 Nokia Corporation
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 51
* Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* Authors: Artem Bityutskiy (Битюцкий Артём)
* Adrian Hunter
*/
/*
* This file implements most of the debugging stuff which is compiled in only
* when it is enabled. But some debugging check functions are implemented in
* corresponding subsystem, just because they are closely related and utilize
* various local functions of those subsystems.
*/
#include <linux/module.h>
#include <linux/debugfs.h>
#include <linux/math64.h>
#include <linux/uaccess.h>
#include <linux/random.h>
#include "ubifs.h"
static DEFINE_SPINLOCK(dbg_lock);
static const char *get_key_fmt(int fmt)
{
switch (fmt) {
case UBIFS_SIMPLE_KEY_FMT:
return "simple";
default:
return "unknown/invalid format";
}
}
static const char *get_key_hash(int hash)
{
switch (hash) {
case UBIFS_KEY_HASH_R5:
return "R5";
case UBIFS_KEY_HASH_TEST:
return "test";
default:
return "unknown/invalid name hash";
}
}
static const char *get_key_type(int type)
{
switch (type) {
case UBIFS_INO_KEY:
return "inode";
case UBIFS_DENT_KEY:
return "direntry";
case UBIFS_XENT_KEY:
return "xentry";
case UBIFS_DATA_KEY:
return "data";
case UBIFS_TRUN_KEY:
return "truncate";
default:
return "unknown/invalid key";
}
}
static const char *get_dent_type(int type)
{
switch (type) {
case UBIFS_ITYPE_REG:
return "file";
case UBIFS_ITYPE_DIR:
return "dir";
case UBIFS_ITYPE_LNK:
return "symlink";
case UBIFS_ITYPE_BLK:
return "blkdev";
case UBIFS_ITYPE_CHR:
return "char dev";
case UBIFS_ITYPE_FIFO:
return "fifo";
case UBIFS_ITYPE_SOCK:
return "socket";
default:
return "unknown/invalid type";
}
}
const char *dbg_snprintf_key(const struct ubifs_info *c,
const union ubifs_key *key, char *buffer, int len)
{
char *p = buffer;
int type = key_type(c, key);
if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
switch (type) {
case UBIFS_INO_KEY:
len -= snprintf(p, len, "(%lu, %s)",
(unsigned long)key_inum(c, key),
get_key_type(type));
break;
case UBIFS_DENT_KEY:
case UBIFS_XENT_KEY:
len -= snprintf(p, len, "(%lu, %s, %#08x)",
(unsigned long)key_inum(c, key),
get_key_type(type), key_hash(c, key));
break;
case UBIFS_DATA_KEY:
len -= snprintf(p, len, "(%lu, %s, %u)",
(unsigned long)key_inum(c, key),
get_key_type(type), key_block(c, key));
break;
case UBIFS_TRUN_KEY:
len -= snprintf(p, len, "(%lu, %s)",
(unsigned long)key_inum(c, key),
get_key_type(type));
break;
default:
len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
key->u32[0], key->u32[1]);
}
} else
len -= snprintf(p, len, "bad key format %d", c->key_fmt);
ubifs_assert(len > 0);
return p;
}
const char *dbg_ntype(int type)
{
switch (type) {
case UBIFS_PAD_NODE:
return "padding node";
case UBIFS_SB_NODE:
return "superblock node";
case UBIFS_MST_NODE:
return "master node";
case UBIFS_REF_NODE:
return "reference node";
case UBIFS_INO_NODE:
return "inode node";
case UBIFS_DENT_NODE:
return "direntry node";
case UBIFS_XENT_NODE:
return "xentry node";
case UBIFS_DATA_NODE:
return "data node";
case UBIFS_TRUN_NODE:
return "truncate node";
case UBIFS_IDX_NODE:
return "indexing node";
case UBIFS_CS_NODE:
return "commit start node";
case UBIFS_ORPH_NODE:
return "orphan node";
default:
return "unknown node";
}
}
static const char *dbg_gtype(int type)
{
switch (type) {
case UBIFS_NO_NODE_GROUP:
return "no node group";
case UBIFS_IN_NODE_GROUP:
return "in node group";
case UBIFS_LAST_OF_NODE_GROUP:
return "last of node group";
default:
return "unknown";
}
}
const char *dbg_cstate(int cmt_state)
{
switch (cmt_state) {
case COMMIT_RESTING:
return "commit resting";
case COMMIT_BACKGROUND:
return "background commit requested";
case COMMIT_REQUIRED:
return "commit required";
case COMMIT_RUNNING_BACKGROUND:
return "BACKGROUND commit running";
case COMMIT_RUNNING_REQUIRED:
return "commit running and required";
case COMMIT_BROKEN:
return "broken commit";
default:
return "unknown commit state";
}
}
const char *dbg_jhead(int jhead)
{
switch (jhead) {
case GCHD:
return "0 (GC)";
case BASEHD:
return "1 (base)";
case DATAHD:
return "2 (data)";
default:
return "unknown journal head";
}
}
static void dump_ch(const struct ubifs_ch *ch)
{
pr_err("\tmagic %#x\n", le32_to_cpu(ch->magic));
pr_err("\tcrc %#x\n", le32_to_cpu(ch->crc));
pr_err("\tnode_type %d (%s)\n", ch->node_type,
dbg_ntype(ch->node_type));
pr_err("\tgroup_type %d (%s)\n", ch->group_type,
dbg_gtype(ch->group_type));
pr_err("\tsqnum %llu\n",
(unsigned long long)le64_to_cpu(ch->sqnum));
pr_err("\tlen %u\n", le32_to_cpu(ch->len));
}
void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
{
const struct ubifs_inode *ui = ubifs_inode(inode);
struct qstr nm = { .name = NULL };
union ubifs_key key;
struct ubifs_dent_node *dent, *pdent = NULL;
int count = 2;
pr_err("Dump in-memory inode:");
pr_err("\tinode %lu\n", inode->i_ino);
pr_err("\tsize %llu\n",
(unsigned long long)i_size_read(inode));
pr_err("\tnlink %u\n", inode->i_nlink);
pr_err("\tuid %u\n", (unsigned int)i_uid_read(inode));
pr_err("\tgid %u\n", (unsigned int)i_gid_read(inode));
pr_err("\tatime %u.%u\n",
(unsigned int)inode->i_atime.tv_sec,
(unsigned int)inode->i_atime.tv_nsec);
pr_err("\tmtime %u.%u\n",
(unsigned int)inode->i_mtime.tv_sec,
(unsigned int)inode->i_mtime.tv_nsec);
pr_err("\tctime %u.%u\n",
(unsigned int)inode->i_ctime.tv_sec,
(unsigned int)inode->i_ctime.tv_nsec);
pr_err("\tcreat_sqnum %llu\n", ui->creat_sqnum);
pr_err("\txattr_size %u\n", ui->xattr_size);
pr_err("\txattr_cnt %u\n", ui->xattr_cnt);
pr_err("\txattr_names %u\n", ui->xattr_names);
pr_err("\tdirty %u\n", ui->dirty);
pr_err("\txattr %u\n", ui->xattr);
pr_err("\tbulk_read %u\n", ui->xattr);
pr_err("\tsynced_i_size %llu\n",
(unsigned long long)ui->synced_i_size);
pr_err("\tui_size %llu\n",
(unsigned long long)ui->ui_size);
pr_err("\tflags %d\n", ui->flags);
pr_err("\tcompr_type %d\n", ui->compr_type);
pr_err("\tlast_page_read %lu\n", ui->last_page_read);
pr_err("\tread_in_a_row %lu\n", ui->read_in_a_row);
pr_err("\tdata_len %d\n", ui->data_len);
if (!S_ISDIR(inode->i_mode))
return;
pr_err("List of directory entries:\n");
ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
lowest_dent_key(c, &key, inode->i_ino);
while (1) {
dent = ubifs_tnc_next_ent(c, &key, &nm);
if (IS_ERR(dent)) {
if (PTR_ERR(dent) != -ENOENT)
pr_err("error %ld\n", PTR_ERR(dent));
break;
}
pr_err("\t%d: %s (%s)\n",
count++, dent->name, get_dent_type(dent->type));
nm.name = dent->name;
nm.len = le16_to_cpu(dent->nlen);
kfree(pdent);
pdent = dent;
key_read(c, &dent->key, &key);
}
kfree(pdent);
}
void ubifs_dump_node(const struct ubifs_info *c, const void *node)
{
int i, n;
union ubifs_key key;
const struct ubifs_ch *ch = node;
char key_buf[DBG_KEY_BUF_LEN];
/* If the magic is incorrect, just hexdump the first bytes */
if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
(void *)node, UBIFS_CH_SZ, 1);
return;
}
spin_lock(&dbg_lock);
dump_ch(node);
switch (ch->node_type) {
case UBIFS_PAD_NODE:
{
const struct ubifs_pad_node *pad = node;
pr_err("\tpad_len %u\n", le32_to_cpu(pad->pad_len));
break;
}
case UBIFS_SB_NODE:
{
const struct ubifs_sb_node *sup = node;
unsigned int sup_flags = le32_to_cpu(sup->flags);
pr_err("\tkey_hash %d (%s)\n",
(int)sup->key_hash, get_key_hash(sup->key_hash));
pr_err("\tkey_fmt %d (%s)\n",
(int)sup->key_fmt, get_key_fmt(sup->key_fmt));
pr_err("\tflags %#x\n", sup_flags);
pr_err("\tbig_lpt %u\n",
!!(sup_flags & UBIFS_FLG_BIGLPT));
pr_err("\tspace_fixup %u\n",
!!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
pr_err("\tmin_io_size %u\n", le32_to_cpu(sup->min_io_size));
pr_err("\tleb_size %u\n", le32_to_cpu(sup->leb_size));
pr_err("\tleb_cnt %u\n", le32_to_cpu(sup->leb_cnt));
pr_err("\tmax_leb_cnt %u\n", le32_to_cpu(sup->max_leb_cnt));
pr_err("\tmax_bud_bytes %llu\n",
(unsigned long long)le64_to_cpu(sup->max_bud_bytes));
pr_err("\tlog_lebs %u\n", le32_to_cpu(sup->log_lebs));
pr_err("\tlpt_lebs %u\n", le32_to_cpu(sup->lpt_lebs));
pr_err("\torph_lebs %u\n", le32_to_cpu(sup->orph_lebs));
pr_err("\tjhead_cnt %u\n", le32_to_cpu(sup->jhead_cnt));
pr_err("\tfanout %u\n", le32_to_cpu(sup->fanout));
pr_err("\tlsave_cnt %u\n", le32_to_cpu(sup->lsave_cnt));
pr_err("\tdefault_compr %u\n",
(int)le16_to_cpu(sup->default_compr));
pr_err("\trp_size %llu\n",
(unsigned long long)le64_to_cpu(sup->rp_size));
pr_err("\trp_uid %u\n", le32_to_cpu(sup->rp_uid));
pr_err("\trp_gid %u\n", le32_to_cpu(sup->rp_gid));
pr_err("\tfmt_version %u\n", le32_to_cpu(sup->fmt_version));
pr_err("\ttime_gran %u\n", le32_to_cpu(sup->time_gran));
pr_err("\tUUID %pUB\n", sup->uuid);
break;
}
case UBIFS_MST_NODE:
{
const struct ubifs_mst_node *mst = node;
pr_err("\thighest_inum %llu\n",
(unsigned long long)le64_to_cpu(mst->highest_inum));
pr_err("\tcommit number %llu\n",
(unsigned long long)le64_to_cpu(mst->cmt_no));
pr_err("\tflags %#x\n", le32_to_cpu(mst->flags));
pr_err("\tlog_lnum %u\n", le32_to_cpu(mst->log_lnum));
pr_err("\troot_lnum %u\n", le32_to_cpu(mst->root_lnum));
pr_err("\troot_offs %u\n", le32_to_cpu(mst->root_offs));
pr_err("\troot_len %u\n", le32_to_cpu(mst->root_len));
pr_err("\tgc_lnum %u\n", le32_to_cpu(mst->gc_lnum));
pr_err("\tihead_lnum %u\n", le32_to_cpu(mst->ihead_lnum));
pr_err("\tihead_offs %u\n", le32_to_cpu(mst->ihead_offs));
pr_err("\tindex_size %llu\n",
(unsigned long long)le64_to_cpu(mst->index_size));
pr_err("\tlpt_lnum %u\n", le32_to_cpu(mst->lpt_lnum));
pr_err("\tlpt_offs %u\n", le32_to_cpu(mst->lpt_offs));
pr_err("\tnhead_lnum %u\n", le32_to_cpu(mst->nhead_lnum));
pr_err("\tnhead_offs %u\n", le32_to_cpu(mst->nhead_offs));
pr_err("\tltab_lnum %u\n", le32_to_cpu(mst->ltab_lnum));
pr_err("\tltab_offs %u\n", le32_to_cpu(mst->ltab_offs));
pr_err("\tlsave_lnum %u\n", le32_to_cpu(mst->lsave_lnum));
pr_err("\tlsave_offs %u\n", le32_to_cpu(mst->lsave_offs));
pr_err("\tlscan_lnum %u\n", le32_to_cpu(mst->lscan_lnum));
pr_err("\tleb_cnt %u\n", le32_to_cpu(mst->leb_cnt));
pr_err("\tempty_lebs %u\n", le32_to_cpu(mst->empty_lebs));
pr_err("\tidx_lebs %u\n", le32_to_cpu(mst->idx_lebs));
pr_err("\ttotal_free %llu\n",
(unsigned long long)le64_to_cpu(mst->total_free));
pr_err("\ttotal_dirty %llu\n",
(unsigned long long)le64_to_cpu(mst->total_dirty));
pr_err("\ttotal_used %llu\n",
(unsigned long long)le64_to_cpu(mst->total_used));
pr_err("\ttotal_dead %llu\n",
(unsigned long long)le64_to_cpu(mst->total_dead));
pr_err("\ttotal_dark %llu\n",
(unsigned long long)le64_to_cpu(mst->total_dark));
break;
}
case UBIFS_REF_NODE:
{
const struct ubifs_ref_node *ref = node;
pr_err("\tlnum %u\n", le32_to_cpu(ref->lnum));
pr_err("\toffs %u\n", le32_to_cpu(ref->offs));
pr_err("\tjhead %u\n", le32_to_cpu(ref->jhead));
break;
}
case UBIFS_INO_NODE:
{
const struct ubifs_ino_node *ino = node;
key_read(c, &ino->key, &key);
pr_err("\tkey %s\n",
dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
pr_err("\tcreat_sqnum %llu\n",
(unsigned long long)le64_to_cpu(ino->creat_sqnum));
pr_err("\tsize %llu\n",
(unsigned long long)le64_to_cpu(ino->size));
pr_err("\tnlink %u\n", le32_to_cpu(ino->nlink));
pr_err("\tatime %lld.%u\n",
(long long)le64_to_cpu(ino->atime_sec),
le32_to_cpu(ino->atime_nsec));
pr_err("\tmtime %lld.%u\n",
(long long)le64_to_cpu(ino->mtime_sec),
le32_to_cpu(ino->mtime_nsec));
pr_err("\tctime %lld.%u\n",
(long long)le64_to_cpu(ino->ctime_sec),
le32_to_cpu(ino->ctime_nsec));
pr_err("\tuid %u\n", le32_to_cpu(ino->uid));
pr_err("\tgid %u\n", le32_to_cpu(ino->gid));
pr_err("\tmode %u\n", le32_to_cpu(ino->mode));
pr_err("\tflags %#x\n", le32_to_cpu(ino->flags));
pr_err("\txattr_cnt %u\n", le32_to_cpu(ino->xattr_cnt));
pr_err("\txattr_size %u\n", le32_to_cpu(ino->xattr_size));
pr_err("\txattr_names %u\n", le32_to_cpu(ino->xattr_names));
pr_err("\tcompr_type %#x\n",
(int)le16_to_cpu(ino->compr_type));
pr_err("\tdata len %u\n", le32_to_cpu(ino->data_len));
break;
}
case UBIFS_DENT_NODE:
case UBIFS_XENT_NODE:
{
const struct ubifs_dent_node *dent = node;
int nlen = le16_to_cpu(dent->nlen);
key_read(c, &dent->key, &key);
pr_err("\tkey %s\n",
dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
pr_err("\tinum %llu\n",
(unsigned long long)le64_to_cpu(dent->inum));
pr_err("\ttype %d\n", (int)dent->type);
pr_err("\tnlen %d\n", nlen);
pr_err("\tname ");
if (nlen > UBIFS_MAX_NLEN)
pr_err("(bad name length, not printing, bad or corrupted node)");
else {
for (i = 0; i < nlen && dent->name[i]; i++)
pr_cont("%c", dent->name[i]);
}
pr_cont("\n");
break;
}
case UBIFS_DATA_NODE:
{
const struct ubifs_data_node *dn = node;
int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
key_read(c, &dn->key, &key);
pr_err("\tkey %s\n",
dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
pr_err("\tsize %u\n", le32_to_cpu(dn->size));
pr_err("\tcompr_typ %d\n",
(int)le16_to_cpu(dn->compr_type));
pr_err("\tdata size %d\n", dlen);
pr_err("\tdata:\n");
print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
(void *)&dn->data, dlen, 0);
break;
}
case UBIFS_TRUN_NODE:
{
const struct ubifs_trun_node *trun = node;
pr_err("\tinum %u\n", le32_to_cpu(trun->inum));
pr_err("\told_size %llu\n",
(unsigned long long)le64_to_cpu(trun->old_size));
pr_err("\tnew_size %llu\n",
(unsigned long long)le64_to_cpu(trun->new_size));
break;
}
case UBIFS_IDX_NODE:
{
const struct ubifs_idx_node *idx = node;
n = le16_to_cpu(idx->child_cnt);
pr_err("\tchild_cnt %d\n", n);
pr_err("\tlevel %d\n", (int)le16_to_cpu(idx->level));
pr_err("\tBranches:\n");
for (i = 0; i < n && i < c->fanout - 1; i++) {
const struct ubifs_branch *br;
br = ubifs_idx_branch(c, idx, i);
key_read(c, &br->key, &key);
pr_err("\t%d: LEB %d:%d len %d key %s\n",
i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
le32_to_cpu(br->len),
dbg_snprintf_key(c, &key, key_buf,
DBG_KEY_BUF_LEN));
}
break;
}
case UBIFS_CS_NODE:
break;
case UBIFS_ORPH_NODE:
{
const struct ubifs_orph_node *orph = node;
pr_err("\tcommit number %llu\n",
(unsigned long long)
le64_to_cpu(orph->cmt_no) & LLONG_MAX);
pr_err("\tlast node flag %llu\n",
(unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
pr_err("\t%d orphan inode numbers:\n", n);
for (i = 0; i < n; i++)
pr_err("\t ino %llu\n",
(unsigned long long)le64_to_cpu(orph->inos[i]));
break;
}
default:
pr_err("node type %d was not recognized\n",
(int)ch->node_type);
}
spin_unlock(&dbg_lock);
}
void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
{
spin_lock(&dbg_lock);
pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
req->new_ino, req->dirtied_ino);
pr_err("\tnew_ino_d %d, dirtied_ino_d %d\n",
req->new_ino_d, req->dirtied_ino_d);
pr_err("\tnew_page %d, dirtied_page %d\n",
req->new_page, req->dirtied_page);
pr_err("\tnew_dent %d, mod_dent %d\n",
req->new_dent, req->mod_dent);
pr_err("\tidx_growth %d\n", req->idx_growth);
pr_err("\tdata_growth %d dd_growth %d\n",
req->data_growth, req->dd_growth);
spin_unlock(&dbg_lock);
}
void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
{
spin_lock(&dbg_lock);
pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs %d\n",
current->pid, lst->empty_lebs, lst->idx_lebs);
pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
lst->total_used, lst->total_dark, lst->total_dead);
spin_unlock(&dbg_lock);
}
void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
{
int i;
struct rb_node *rb;
struct ubifs_bud *bud;
struct ubifs_gced_idx_leb *idx_gc;
long long available, outstanding, free;
spin_lock(&c->space_lock);
spin_lock(&dbg_lock);
pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
current->pid, bi->data_growth + bi->dd_growth,
bi->data_growth + bi->dd_growth + bi->idx_growth);
pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
bi->data_growth, bi->dd_growth, bi->idx_growth);
pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
bi->page_budget, bi->inode_budget, bi->dent_budget);
pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
c->dark_wm, c->dead_wm, c->max_idx_node_sz);
if (bi != &c->bi)
/*
* If we are dumping saved budgeting data, do not print
* additional information which is about the current state, not
* the old one which corresponded to the saved budgeting data.
*/
goto out_unlock;
pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
atomic_long_read(&c->dirty_pg_cnt),
atomic_long_read(&c->dirty_zn_cnt),
atomic_long_read(&c->clean_zn_cnt));
pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
/* If we are in R/O mode, journal heads do not exist */
if (c->jheads)
for (i = 0; i < c->jhead_cnt; i++)
pr_err("\tjhead %s\t LEB %d\n",
dbg_jhead(c->jheads[i].wbuf.jhead),
c->jheads[i].wbuf.lnum);
for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
bud = rb_entry(rb, struct ubifs_bud, rb);
pr_err("\tbud LEB %d\n", bud->lnum);
}
list_for_each_entry(bud, &c->old_buds, list)
pr_err("\told bud LEB %d\n", bud->lnum);
list_for_each_entry(idx_gc, &c->idx_gc, list)
pr_err("\tGC'ed idx LEB %d unmap %d\n",
idx_gc->lnum, idx_gc->unmap);
pr_err("\tcommit state %d\n", c->cmt_state);
/* Print budgeting predictions */
available = ubifs_calc_available(c, c->bi.min_idx_lebs);
outstanding = c->bi.data_growth + c->bi.dd_growth;
free = ubifs_get_free_space_nolock(c);
pr_err("Budgeting predictions:\n");
pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
available, outstanding, free);
out_unlock:
spin_unlock(&dbg_lock);
spin_unlock(&c->space_lock);
}
void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
{
int i, spc, dark = 0, dead = 0;
struct rb_node *rb;
struct ubifs_bud *bud;
spc = lp->free + lp->dirty;
if (spc < c->dead_wm)
dead = spc;
else
dark = ubifs_calc_dark(c, spc);
if (lp->flags & LPROPS_INDEX)
pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
lp->flags);
else
pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
if (lp->flags & LPROPS_TAKEN) {
if (lp->flags & LPROPS_INDEX)
pr_cont("index, taken");
else
pr_cont("taken");
} else {
const char *s;
if (lp->flags & LPROPS_INDEX) {
switch (lp->flags & LPROPS_CAT_MASK) {
case LPROPS_DIRTY_IDX:
s = "dirty index";
break;
case LPROPS_FRDI_IDX:
s = "freeable index";
break;
default:
s = "index";
}
} else {
switch (lp->flags & LPROPS_CAT_MASK) {
case LPROPS_UNCAT:
s = "not categorized";
break;
case LPROPS_DIRTY:
s = "dirty";
break;
case LPROPS_FREE:
s = "free";
break;
case LPROPS_EMPTY:
s = "empty";
break;
case LPROPS_FREEABLE:
s = "freeable";
break;
default:
s = NULL;
break;
}
}
pr_cont("%s", s);
}
for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
bud = rb_entry(rb, struct ubifs_bud, rb);
if (bud->lnum == lp->lnum) {
int head = 0;
for (i = 0; i < c->jhead_cnt; i++) {
/*
* Note, if we are in R/O mode or in the middle
* of mounting/re-mounting, the write-buffers do
* not exist.
*/
if (c->jheads &&
lp->lnum == c->jheads[i].wbuf.lnum) {
pr_cont(", jhead %s", dbg_jhead(i));
head = 1;
}
}
if (!head)
pr_cont(", bud of jhead %s",
dbg_jhead(bud->jhead));
}
}
if (lp->lnum == c->gc_lnum)
pr_cont(", GC LEB");
pr_cont(")\n");
}
void ubifs_dump_lprops(struct ubifs_info *c)
{
int lnum, err;
struct ubifs_lprops lp;
struct ubifs_lp_stats lst;
pr_err("(pid %d) start dumping LEB properties\n", current->pid);
ubifs_get_lp_stats(c, &lst);
ubifs_dump_lstats(&lst);
for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
err = ubifs_read_one_lp(c, lnum, &lp);
if (err) {
ubifs_err(c, "cannot read lprops for LEB %d", lnum);
continue;
}
ubifs_dump_lprop(c, &lp);
}
pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
}
void ubifs_dump_lpt_info(struct ubifs_info *c)
{
int i;
spin_lock(&dbg_lock);
pr_err("(pid %d) dumping LPT information\n", current->pid);
pr_err("\tlpt_sz: %lld\n", c->lpt_sz);
pr_err("\tpnode_sz: %d\n", c->pnode_sz);
pr_err("\tnnode_sz: %d\n", c->nnode_sz);
pr_err("\tltab_sz: %d\n", c->ltab_sz);
pr_err("\tlsave_sz: %d\n", c->lsave_sz);
pr_err("\tbig_lpt: %d\n", c->big_lpt);
pr_err("\tlpt_hght: %d\n", c->lpt_hght);
pr_err("\tpnode_cnt: %d\n", c->pnode_cnt);
pr_err("\tnnode_cnt: %d\n", c->nnode_cnt);
pr_err("\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt);
pr_err("\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt);
pr_err("\tlsave_cnt: %d\n", c->lsave_cnt);
pr_err("\tspace_bits: %d\n", c->space_bits);
pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
pr_err("\tlpt_spc_bits: %d\n", c->lpt_spc_bits);
pr_err("\tpcnt_bits: %d\n", c->pcnt_bits);
pr_err("\tlnum_bits: %d\n", c->lnum_bits);
pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
pr_err("\tLPT head is at %d:%d\n",
c->nhead_lnum, c->nhead_offs);
pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
if (c->big_lpt)
pr_err("\tLPT lsave is at %d:%d\n",
c->lsave_lnum, c->lsave_offs);
for (i = 0; i < c->lpt_lebs; i++)
pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
c->ltab[i].tgc, c->ltab[i].cmt);
spin_unlock(&dbg_lock);
}
void ubifs_dump_sleb(const struct ubifs_info *c,
const struct ubifs_scan_leb *sleb, int offs)
{
struct ubifs_scan_node *snod;
pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n",
current->pid, sleb->lnum, offs);
list_for_each_entry(snod, &sleb->nodes, list) {
cond_resched();
pr_err("Dumping node at LEB %d:%d len %d\n",
sleb->lnum, snod->offs, snod->len);
ubifs_dump_node(c, snod->node);
}
}
void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
{
struct ubifs_scan_leb *sleb;
struct ubifs_scan_node *snod;
void *buf;
pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
if (!buf) {
ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
return;
}
sleb = ubifs_scan(c, lnum, 0, buf, 0);
if (IS_ERR(sleb)) {
ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
goto out;
}
pr_err("LEB %d has %d nodes ending at %d\n", lnum,
sleb->nodes_cnt, sleb->endpt);
list_for_each_entry(snod, &sleb->nodes, list) {
cond_resched();
pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
snod->offs, snod->len);
ubifs_dump_node(c, snod->node);
}
pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
ubifs_scan_destroy(sleb);
out:
vfree(buf);
return;
}
void ubifs_dump_znode(const struct ubifs_info *c,
const struct ubifs_znode *znode)
{
int n;
const struct ubifs_zbranch *zbr;
char key_buf[DBG_KEY_BUF_LEN];
spin_lock(&dbg_lock);
if (znode->parent)
zbr = &znode->parent->zbranch[znode->iip];
else
zbr = &c->zroot;
pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
znode->level, znode->child_cnt, znode->flags);
if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
spin_unlock(&dbg_lock);
return;
}
pr_err("zbranches:\n");
for (n = 0; n < znode->child_cnt; n++) {
zbr = &znode->zbranch[n];
if (znode->level > 0)
pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
dbg_snprintf_key(c, &zbr->key, key_buf,
DBG_KEY_BUF_LEN));
else
pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
dbg_snprintf_key(c, &zbr->key, key_buf,
DBG_KEY_BUF_LEN));
}
spin_unlock(&dbg_lock);
}
void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
{
int i;
pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
current->pid, cat, heap->cnt);
for (i = 0; i < heap->cnt; i++) {
struct ubifs_lprops *lprops = heap->arr[i];
pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
i, lprops->lnum, lprops->hpos, lprops->free,
lprops->dirty, lprops->flags);
}
pr_err("(pid %d) finish dumping heap\n", current->pid);
}
void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
struct ubifs_nnode *parent, int iip)
{
int i;
pr_err("(pid %d) dumping pnode:\n", current->pid);
pr_err("\taddress %zx parent %zx cnext %zx\n",
(size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
pr_err("\tflags %lu iip %d level %d num %d\n",
pnode->flags, iip, pnode->level, pnode->num);
for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
struct ubifs_lprops *lp = &pnode->lprops[i];
pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
i, lp->free, lp->dirty, lp->flags, lp->lnum);
}
}
void ubifs_dump_tnc(struct ubifs_info *c)
{
struct ubifs_znode *znode;
int level;
pr_err("\n");
pr_err("(pid %d) start dumping TNC tree\n", current->pid);
znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
level = znode->level;
pr_err("== Level %d ==\n", level);
while (znode) {
if (level != znode->level) {
level = znode->level;
pr_err("== Level %d ==\n", level);
}
ubifs_dump_znode(c, znode);
znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
}
pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
}
static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
void *priv)
{
ubifs_dump_znode(c, znode);
return 0;
}
/**
* ubifs_dump_index - dump the on-flash index.
* @c: UBIFS file-system description object
*
* This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
* which dumps only in-memory znodes and does not read znodes which from flash.
*/
void ubifs_dump_index(struct ubifs_info *c)
{
dbg_walk_index(c, NULL, dump_znode, NULL);
}
/**
* dbg_save_space_info - save information about flash space.
* @c: UBIFS file-system description object
*
* This function saves information about UBIFS free space, dirty space, etc, in
* order to check it later.
*/
void dbg_save_space_info(struct ubifs_info *c)
{
struct ubifs_debug_info *d = c->dbg;
int freeable_cnt;
spin_lock(&c->space_lock);
memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
d->saved_idx_gc_cnt = c->idx_gc_cnt;
/*
* We use a dirty hack here and zero out @c->freeable_cnt, because it
* affects the free space calculations, and UBIFS might not know about
* all freeable eraseblocks. Indeed, we know about freeable eraseblocks
* only when we read their lprops, and we do this only lazily, upon the
* need. So at any given point of time @c->freeable_cnt might be not
* exactly accurate.
*
* Just one example about the issue we hit when we did not zero
* @c->freeable_cnt.
* 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
* amount of free space in @d->saved_free
* 2. We re-mount R/W, which makes UBIFS to read the "lsave"
* information from flash, where we cache LEBs from various
* categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
* -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
* -> 'ubifs_get_pnode()' -> 'update_cats()'
* -> 'ubifs_add_to_cat()').
* 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
* becomes %1.
* 4. We calculate the amount of free space when the re-mount is
* finished in 'dbg_check_space_info()' and it does not match
* @d->saved_free.
*/
freeable_cnt = c->freeable_cnt;
c->freeable_cnt = 0;
d->saved_free = ubifs_get_free_space_nolock(c);
c->freeable_cnt = freeable_cnt;
spin_unlock(&c->space_lock);
}
/**
* dbg_check_space_info - check flash space information.
* @c: UBIFS file-system description object
*
* This function compares current flash space information with the information
* which was saved when the 'dbg_save_space_info()' function was called.
* Returns zero if the information has not changed, and %-EINVAL it it has
* changed.
*/
int dbg_check_space_info(struct ubifs_info *c)
{
struct ubifs_debug_info *d = c->dbg;
struct ubifs_lp_stats lst;
long long free;
int freeable_cnt;
spin_lock(&c->space_lock);
freeable_cnt = c->freeable_cnt;
c->freeable_cnt = 0;
free = ubifs_get_free_space_nolock(c);
c->freeable_cnt = freeable_cnt;
spin_unlock(&c->space_lock);
if (free != d->saved_free) {
ubifs_err(c, "free space changed from %lld to %lld",
d->saved_free, free);
goto out;
}
return 0;
out:
ubifs_msg(c, "saved lprops statistics dump");
ubifs_dump_lstats(&d->saved_lst);
ubifs_msg(c, "saved budgeting info dump");
ubifs_dump_budg(c, &d->saved_bi);
ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
ubifs_msg(c, "current lprops statistics dump");
ubifs_get_lp_stats(c, &lst);
ubifs_dump_lstats(&lst);
ubifs_msg(c, "current budgeting info dump");
ubifs_dump_budg(c, &c->bi);
dump_stack();
return -EINVAL;
}
/**
* dbg_check_synced_i_size - check synchronized inode size.
* @c: UBIFS file-system description object
* @inode: inode to check
*
* If inode is clean, synchronized inode size has to be equivalent to current
* inode size. This function has to be called only for locked inodes (@i_mutex
* has to be locked). Returns %0 if synchronized inode size if correct, and
* %-EINVAL if not.
*/
int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
{
int err = 0;
struct ubifs_inode *ui = ubifs_inode(inode);
if (!dbg_is_chk_gen(c))
return 0;
if (!S_ISREG(inode->i_mode))
return 0;
mutex_lock(&ui->ui_mutex);
spin_lock(&ui->ui_lock);
if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
ui->ui_size, ui->synced_i_size);
ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
inode->i_mode, i_size_read(inode));
dump_stack();
err = -EINVAL;
}
spin_unlock(&ui->ui_lock);
mutex_unlock(&ui->ui_mutex);
return err;
}
/*
* dbg_check_dir - check directory inode size and link count.
* @c: UBIFS file-system description object
* @dir: the directory to calculate size for
* @size: the result is returned here
*
* This function makes sure that directory size and link count are correct.
* Returns zero in case of success and a negative error code in case of
* failure.
*
* Note, it is good idea to make sure the @dir->i_mutex is locked before
* calling this function.
*/
int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
{
unsigned int nlink = 2;
union ubifs_key key;
struct ubifs_dent_node *dent, *pdent = NULL;
struct qstr nm = { .name = NULL };
loff_t size = UBIFS_INO_NODE_SZ;
if (!dbg_is_chk_gen(c))
return 0;
if (!S_ISDIR(dir->i_mode))
return 0;
lowest_dent_key(c, &key, dir->i_ino);
while (1) {
int err;
dent = ubifs_tnc_next_ent(c, &key, &nm);
if (IS_ERR(dent)) {
err = PTR_ERR(dent);
if (err == -ENOENT)
break;
return err;
}
nm.name = dent->name;
nm.len = le16_to_cpu(dent->nlen);
size += CALC_DENT_SIZE(nm.len);
if (dent->type == UBIFS_ITYPE_DIR)
nlink += 1;
kfree(pdent);
pdent = dent;
key_read(c, &dent->key, &key);
}
kfree(pdent);
if (i_size_read(dir) != size) {
ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
dir->i_ino, (unsigned long long)i_size_read(dir),
(unsigned long long)size);
ubifs_dump_inode(c, dir);
dump_stack();
return -EINVAL;
}
if (dir->i_nlink != nlink) {
ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
dir->i_ino, dir->i_nlink, nlink);
ubifs_dump_inode(c, dir);
dump_stack();
return -EINVAL;
}
return 0;
}
/**
* dbg_check_key_order - make sure that colliding keys are properly ordered.
* @c: UBIFS file-system description object
* @zbr1: first zbranch
* @zbr2: following zbranch
*
* In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
* names of the direntries/xentries which are referred by the keys. This
* function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
* sure the name of direntry/xentry referred by @zbr1 is less than
* direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
* and a negative error code in case of failure.
*/
static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
struct ubifs_zbranch *zbr2)
{
int err, nlen1, nlen2, cmp;
struct ubifs_dent_node *dent1, *dent2;
union ubifs_key key;
char key_buf[DBG_KEY_BUF_LEN];
ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
if (!dent1)
return -ENOMEM;
dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
if (!dent2) {
err = -ENOMEM;
goto out_free;
}
err = ubifs_tnc_read_node(c, zbr1, dent1);
if (err)
goto out_free;
err = ubifs_validate_entry(c, dent1);
if (err)
goto out_free;
err = ubifs_tnc_read_node(c, zbr2, dent2);
if (err)
goto out_free;
err = ubifs_validate_entry(c, dent2);
if (err)
goto out_free;
/* Make sure node keys are the same as in zbranch */
err = 1;
key_read(c, &dent1->key, &key);
if (keys_cmp(c, &zbr1->key, &key)) {
ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
DBG_KEY_BUF_LEN));
ubifs_err(c, "but it should have key %s according to tnc",
dbg_snprintf_key(c, &zbr1->key, key_buf,
DBG_KEY_BUF_LEN));
ubifs_dump_node(c, dent1);
goto out_free;
}
key_read(c, &dent2->key, &key);
if (keys_cmp(c, &zbr2->key, &key)) {
ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
DBG_KEY_BUF_LEN));
ubifs_err(c, "but it should have key %s according to tnc",
dbg_snprintf_key(c, &zbr2->key, key_buf,
DBG_KEY_BUF_LEN));
ubifs_dump_node(c, dent2);
goto out_free;
}
nlen1 = le16_to_cpu(dent1->nlen);
nlen2 = le16_to_cpu(dent2->nlen);
cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
err = 0;
goto out_free;
}
if (cmp == 0 && nlen1 == nlen2)
ubifs_err(c, "2 xent/dent nodes with the same name");
else
ubifs_err(c, "bad order of colliding key %s",
dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
ubifs_dump_node(c, dent1);
ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
ubifs_dump_node(c, dent2);
out_free:
kfree(dent2);
kfree(dent1);
return err;
}
/**
* dbg_check_znode - check if znode is all right.
* @c: UBIFS file-system description object
* @zbr: zbranch which points to this znode
*
* This function makes sure that znode referred to by @zbr is all right.
* Returns zero if it is, and %-EINVAL if it is not.
*/
static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
{
struct ubifs_znode *znode = zbr->znode;
struct ubifs_znode *zp = znode->parent;
int n, err, cmp;
if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
err = 1;
goto out;
}
if (znode->level < 0) {
err = 2;
goto out;
}
if (znode->iip < 0 || znode->iip >= c->fanout) {
err = 3;
goto out;
}
if (zbr->len == 0)
/* Only dirty zbranch may have no on-flash nodes */
if (!ubifs_zn_dirty(znode)) {
err = 4;
goto out;
}
if (ubifs_zn_dirty(znode)) {
/*
* If znode is dirty, its parent has to be dirty as well. The
* order of the operation is important, so we have to have
* memory barriers.
*/
smp_mb();
if (zp && !ubifs_zn_dirty(zp)) {
/*
* The dirty flag is atomic and is cleared outside the
* TNC mutex, so znode's dirty flag may now have
* been cleared. The child is always cleared before the
* parent, so we just need to check again.
*/
smp_mb();
if (ubifs_zn_dirty(znode)) {
err = 5;
goto out;
}
}
}
if (zp) {
const union ubifs_key *min, *max;
if (znode->level != zp->level - 1) {
err = 6;
goto out;
}
/* Make sure the 'parent' pointer in our znode is correct */
err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
if (!err) {
/* This zbranch does not exist in the parent */
err = 7;
goto out;
}
if (znode->iip >= zp->child_cnt) {
err = 8;
goto out;
}
if (znode->iip != n) {
/* This may happen only in case of collisions */
if (keys_cmp(c, &zp->zbranch[n].key,
&zp->zbranch[znode->iip].key)) {
err = 9;
goto out;
}
n = znode->iip;
}
/*
* Make sure that the first key in our znode is greater than or
* equal to the key in the pointing zbranch.
*/
min = &zbr->key;
cmp = keys_cmp(c, min, &znode->zbranch[0].key);
if (cmp == 1) {
err = 10;
goto out;
}
if (n + 1 < zp->child_cnt) {
max = &zp->zbranch[n + 1].key;
/*
* Make sure the last key in our znode is less or
* equivalent than the key in the zbranch which goes
* after our pointing zbranch.
*/
cmp = keys_cmp(c, max,
&znode->zbranch[znode->child_cnt - 1].key);
if (cmp == -1) {
err = 11;
goto out;
}
}
} else {
/* This may only be root znode */
if (zbr != &c->zroot) {
err = 12;
goto out;
}
}
/*
* Make sure that next key is greater or equivalent then the previous
* one.
*/
for (n = 1; n < znode->child_cnt; n++) {
cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
&znode->zbranch[n].key);
if (cmp > 0) {
err = 13;
goto out;
}
if (cmp == 0) {
/* This can only be keys with colliding hash */
if (!is_hash_key(c, &znode->zbranch[n].key)) {
err = 14;
goto out;
}
if (znode->level != 0 || c->replaying)
continue;
/*
* Colliding keys should follow binary order of
* corresponding xentry/dentry names.
*/
err = dbg_check_key_order(c, &znode->zbranch[n - 1],
&znode->zbranch[n]);
if (err < 0)
return err;
if (err) {
err = 15;
goto out;
}
}
}
for (n = 0; n < znode->child_cnt; n++) {
if (!znode->zbranch[n].znode &&
(znode->zbranch[n].lnum == 0 ||
znode->zbranch[n].len == 0)) {
err = 16;
goto out;
}
if (znode->zbranch[n].lnum != 0 &&
znode->zbranch[n].len == 0) {
err = 17;
goto out;
}
if (znode->zbranch[n].lnum == 0 &&
znode->zbranch[n].len != 0) {
err = 18;
goto out;
}
if (znode->zbranch[n].lnum == 0 &&
znode->zbranch[n].offs != 0) {
err = 19;
goto out;
}
if (znode->level != 0 && znode->zbranch[n].znode)
if (znode->zbranch[n].znode->parent != znode) {
err = 20;
goto out;
}
}
return 0;
out:
ubifs_err(c, "failed, error %d", err);
ubifs_msg(c, "dump of the znode");
ubifs_dump_znode(c, znode);
if (zp) {
ubifs_msg(c, "dump of the parent znode");
ubifs_dump_znode(c, zp);
}
dump_stack();
return -EINVAL;
}
/**
* dbg_check_tnc - check TNC tree.
* @c: UBIFS file-system description object
* @extra: do extra checks that are possible at start commit
*
* This function traverses whole TNC tree and checks every znode. Returns zero
* if everything is all right and %-EINVAL if something is wrong with TNC.
*/
int dbg_check_tnc(struct ubifs_info *c, int extra)
{
struct ubifs_znode *znode;
long clean_cnt = 0, dirty_cnt = 0;
int err, last;
if (!dbg_is_chk_index(c))
return 0;
ubifs_assert(mutex_is_locked(&c->tnc_mutex));
if (!c->zroot.znode)
return 0;
znode = ubifs_tnc_postorder_first(c->zroot.znode);
while (1) {
struct ubifs_znode *prev;
struct ubifs_zbranch *zbr;
if (!znode->parent)
zbr = &c->zroot;
else
zbr = &znode->parent->zbranch[znode->iip];
err = dbg_check_znode(c, zbr);
if (err)
return err;
if (extra) {
if (ubifs_zn_dirty(znode))
dirty_cnt += 1;
else
clean_cnt += 1;
}
prev = znode;
znode = ubifs_tnc_postorder_next(znode);
if (!znode)
break;
/*
* If the last key of this znode is equivalent to the first key
* of the next znode (collision), then check order of the keys.
*/
last = prev->child_cnt - 1;
if (prev->level == 0 && znode->level == 0 && !c->replaying &&
!keys_cmp(c, &prev->zbranch[last].key,
&znode->zbranch[0].key)) {
err = dbg_check_key_order(c, &prev->zbranch[last],
&znode->zbranch[0]);
if (err < 0)
return err;
if (err) {
ubifs_msg(c, "first znode");
ubifs_dump_znode(c, prev);
ubifs_msg(c, "second znode");
ubifs_dump_znode(c, znode);
return -EINVAL;
}
}
}
if (extra) {
if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
atomic_long_read(&c->clean_zn_cnt),
clean_cnt);
return -EINVAL;
}
if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
atomic_long_read(&c->dirty_zn_cnt),
dirty_cnt);
return -EINVAL;
}
}
return 0;
}
/**
* dbg_walk_index - walk the on-flash index.
* @c: UBIFS file-system description object
* @leaf_cb: called for each leaf node
* @znode_cb: called for each indexing node
* @priv: private data which is passed to callbacks
*
* This function walks the UBIFS index and calls the @leaf_cb for each leaf
* node and @znode_cb for each indexing node. Returns zero in case of success
* and a negative error code in case of failure.
*
* It would be better if this function removed every znode it pulled to into
* the TNC, so that the behavior more closely matched the non-debugging
* behavior.
*/
int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
dbg_znode_callback znode_cb, void *priv)
{
int err;
struct ubifs_zbranch *zbr;
struct ubifs_znode *znode, *child;
mutex_lock(&c->tnc_mutex);
/* If the root indexing node is not in TNC - pull it */
if (!c->zroot.znode) {
c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
if (IS_ERR(c->zroot.znode)) {
err = PTR_ERR(c->zroot.znode);
c->zroot.znode = NULL;
goto out_unlock;
}
}
/*
* We are going to traverse the indexing tree in the postorder manner.
* Go down and find the leftmost indexing node where we are going to
* start from.
*/
znode = c->zroot.znode;
while (znode->level > 0) {
zbr = &znode->zbranch[0];
child = zbr->znode;
if (!child) {
child = ubifs_load_znode(c, zbr, znode, 0);
if (IS_ERR(child)) {
err = PTR_ERR(child);
goto out_unlock;
}
zbr->znode = child;
}
znode = child;
}
/* Iterate over all indexing nodes */
while (1) {
int idx;
cond_resched();
if (znode_cb) {
err = znode_cb(c, znode, priv);
if (err) {
ubifs_err(c, "znode checking function returned error %d",
err);
ubifs_dump_znode(c, znode);
goto out_dump;
}
}
if (leaf_cb && znode->level == 0) {
for (idx = 0; idx < znode->child_cnt; idx++) {
zbr = &znode->zbranch[idx];
err = leaf_cb(c, zbr, priv);
if (err) {
ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
err, zbr->lnum, zbr->offs);
goto out_dump;
}
}
}
if (!znode->parent)
break;
idx = znode->iip + 1;
znode = znode->parent;
if (idx < znode->child_cnt) {
/* Switch to the next index in the parent */
zbr = &znode->zbranch[idx];
child = zbr->znode;
if (!child) {
child = ubifs_load_znode(c, zbr, znode, idx);
if (IS_ERR(child)) {
err = PTR_ERR(child);
goto out_unlock;
}
zbr->znode = child;
}
znode = child;
} else
/*
* This is the last child, switch to the parent and
* continue.
*/
continue;
/* Go to the lowest leftmost znode in the new sub-tree */
while (znode->level > 0) {
zbr = &znode->zbranch[0];
child = zbr->znode;
if (!child) {
child = ubifs_load_znode(c, zbr, znode, 0);
if (IS_ERR(child)) {
err = PTR_ERR(child);
goto out_unlock;
}
zbr->znode = child;
}
znode = child;
}
}
mutex_unlock(&c->tnc_mutex);
return 0;
out_dump:
if (znode->parent)
zbr = &znode->parent->zbranch[znode->iip];
else
zbr = &c->zroot;
ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
ubifs_dump_znode(c, znode);
out_unlock:
mutex_unlock(&c->tnc_mutex);
return err;
}
/**
* add_size - add znode size to partially calculated index size.
* @c: UBIFS file-system description object
* @znode: znode to add size for
* @priv: partially calculated index size
*
* This is a helper function for 'dbg_check_idx_size()' which is called for
* every indexing node and adds its size to the 'long long' variable pointed to
* by @priv.
*/
static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
{
long long *idx_size = priv;
int add;
add = ubifs_idx_node_sz(c, znode->child_cnt);
add = ALIGN(add, 8);
*idx_size += add;
return 0;
}
/**
* dbg_check_idx_size - check index size.
* @c: UBIFS file-system description object
* @idx_size: size to check
*
* This function walks the UBIFS index, calculates its size and checks that the
* size is equivalent to @idx_size. Returns zero in case of success and a
* negative error code in case of failure.
*/
int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
{
int err;
long long calc = 0;
if (!dbg_is_chk_index(c))
return 0;
err = dbg_walk_index(c, NULL, add_size, &calc);
if (err) {
ubifs_err(c, "error %d while walking the index", err);
return err;
}
if (calc != idx_size) {
ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
calc, idx_size);
dump_stack();
return -EINVAL;
}
return 0;
}
/**
* struct fsck_inode - information about an inode used when checking the file-system.
* @rb: link in the RB-tree of inodes
* @inum: inode number
* @mode: inode type, permissions, etc
* @nlink: inode link count
* @xattr_cnt: count of extended attributes
* @references: how many directory/xattr entries refer this inode (calculated
* while walking the index)
* @calc_cnt: for directory inode count of child directories
* @size: inode size (read from on-flash inode)
* @xattr_sz: summary size of all extended attributes (read from on-flash
* inode)
* @calc_sz: for directories calculated directory size
* @calc_xcnt: count of extended attributes
* @calc_xsz: calculated summary size of all extended attributes
* @xattr_nms: sum of lengths of all extended attribute names belonging to this
* inode (read from on-flash inode)
* @calc_xnms: calculated sum of lengths of all extended attribute names
*/
struct fsck_inode {
struct rb_node rb;
ino_t inum;
umode_t mode;
unsigned int nlink;
unsigned int xattr_cnt;
int references;
int calc_cnt;
long long size;
unsigned int xattr_sz;
long long calc_sz;
long long calc_xcnt;
long long calc_xsz;
unsigned int xattr_nms;
long long calc_xnms;
};
/**
* struct fsck_data - private FS checking information.
* @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
*/
struct fsck_data {
struct rb_root inodes;
};
/**
* add_inode - add inode information to RB-tree of inodes.
* @c: UBIFS file-system description object
* @fsckd: FS checking information
* @ino: raw UBIFS inode to add
*
* This is a helper function for 'check_leaf()' which adds information about
* inode @ino to the RB-tree of inodes. Returns inode information pointer in
* case of success and a negative error code in case of failure.
*/
static struct fsck_inode *add_inode(struct ubifs_info *c,
struct fsck_data *fsckd,
struct ubifs_ino_node *ino)
{
struct rb_node **p, *parent = NULL;
struct fsck_inode *fscki;
ino_t inum = key_inum_flash(c, &ino->key);
struct inode *inode;
struct ubifs_inode *ui;
p = &fsckd->inodes.rb_node;
while (*p) {
parent = *p;
fscki = rb_entry(parent, struct fsck_inode, rb);
if (inum < fscki->inum)
p = &(*p)->rb_left;
else if (inum > fscki->inum)
p = &(*p)->rb_right;
else
return fscki;
}
if (inum > c->highest_inum) {
ubifs_err(c, "too high inode number, max. is %lu",
(unsigned long)c->highest_inum);
return ERR_PTR(-EINVAL);
}
fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
if (!fscki)
return ERR_PTR(-ENOMEM);
inode = ilookup(c->vfs_sb, inum);
fscki->inum = inum;
/*
* If the inode is present in the VFS inode cache, use it instead of
* the on-flash inode which might be out-of-date. E.g., the size might
* be out-of-date. If we do not do this, the following may happen, for
* example:
* 1. A power cut happens
* 2. We mount the file-system R/O, the replay process fixes up the
* inode size in the VFS cache, but on on-flash.
* 3. 'check_leaf()' fails because it hits a data node beyond inode
* size.
*/
if (!inode) {
fscki->nlink = le32_to_cpu(ino->nlink);
fscki->size = le64_to_cpu(ino->size);
fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
fscki->mode = le32_to_cpu(ino->mode);
} else {
ui = ubifs_inode(inode);
fscki->nlink = inode->i_nlink;
fscki->size = inode->i_size;
fscki->xattr_cnt = ui->xattr_cnt;
fscki->xattr_sz = ui->xattr_size;
fscki->xattr_nms = ui->xattr_names;
fscki->mode = inode->i_mode;
iput(inode);
}
if (S_ISDIR(fscki->mode)) {
fscki->calc_sz = UBIFS_INO_NODE_SZ;
fscki->calc_cnt = 2;
}
rb_link_node(&fscki->rb, parent, p);
rb_insert_color(&fscki->rb, &fsckd->inodes);
return fscki;
}
/**
* search_inode - search inode in the RB-tree of inodes.
* @fsckd: FS checking information
* @inum: inode number to search
*
* This is a helper function for 'check_leaf()' which searches inode @inum in
* the RB-tree of inodes and returns an inode information pointer or %NULL if
* the inode was not found.
*/
static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
{
struct rb_node *p;
struct fsck_inode *fscki;
p = fsckd->inodes.rb_node;
while (p) {
fscki = rb_entry(p, struct fsck_inode, rb);
if (inum < fscki->inum)
p = p->rb_left;
else if (inum > fscki->inum)
p = p->rb_right;
else
return fscki;
}
return NULL;
}
/**
* read_add_inode - read inode node and add it to RB-tree of inodes.
* @c: UBIFS file-system description object
* @fsckd: FS checking information
* @inum: inode number to read
*
* This is a helper function for 'check_leaf()' which finds inode node @inum in
* the index, reads it, and adds it to the RB-tree of inodes. Returns inode
* information pointer in case of success and a negative error code in case of
* failure.
*/
static struct fsck_inode *read_add_inode(struct ubifs_info *c,
struct fsck_data *fsckd, ino_t inum)
{
int n, err;
union ubifs_key key;
struct ubifs_znode *znode;
struct ubifs_zbranch *zbr;
struct ubifs_ino_node *ino;
struct fsck_inode *fscki;
fscki = search_inode(fsckd, inum);
if (fscki)
return fscki;
ino_key_init(c, &key, inum);
err = ubifs_lookup_level0(c, &key, &znode, &n);
if (!err) {
ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
return ERR_PTR(-ENOENT);
} else if (err < 0) {
ubifs_err(c, "error %d while looking up inode %lu",
err, (unsigned long)inum);
return ERR_PTR(err);
}
zbr = &znode->zbranch[n];
if (zbr->len < UBIFS_INO_NODE_SZ) {
ubifs_err(c, "bad node %lu node length %d",
(unsigned long)inum, zbr->len);
return ERR_PTR(-EINVAL);
}
ino = kmalloc(zbr->len, GFP_NOFS);
if (!ino)
return ERR_PTR(-ENOMEM);
err = ubifs_tnc_read_node(c, zbr, ino);
if (err) {
ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
zbr->lnum, zbr->offs, err);
kfree(ino);
return ERR_PTR(err);
}
fscki = add_inode(c, fsckd, ino);
kfree(ino);
if (IS_ERR(fscki)) {
ubifs_err(c, "error %ld while adding inode %lu node",
PTR_ERR(fscki), (unsigned long)inum);
return fscki;
}
return fscki;
}
/**
* check_leaf - check leaf node.
* @c: UBIFS file-system description object
* @zbr: zbranch of the leaf node to check
* @priv: FS checking information
*
* This is a helper function for 'dbg_check_filesystem()' which is called for
* every single leaf node while walking the indexing tree. It checks that the
* leaf node referred from the indexing tree exists, has correct CRC, and does
* some other basic validation. This function is also responsible for building
* an RB-tree of inodes - it adds all inodes into the RB-tree. It also
* calculates reference count, size, etc for each inode in order to later
* compare them to the information stored inside the inodes and detect possible
* inconsistencies. Returns zero in case of success and a negative error code
* in case of failure.
*/
static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
void *priv)
{
ino_t inum;
void *node;
struct ubifs_ch *ch;
int err, type = key_type(c, &zbr->key);
struct fsck_inode *fscki;
if (zbr->len < UBIFS_CH_SZ) {
ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
zbr->len, zbr->lnum, zbr->offs);
return -EINVAL;
}
node = kmalloc(zbr->len, GFP_NOFS);
if (!node)
return -ENOMEM;
err = ubifs_tnc_read_node(c, zbr, node);
if (err) {
ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
zbr->lnum, zbr->offs, err);
goto out_free;
}
/* If this is an inode node, add it to RB-tree of inodes */
if (type == UBIFS_INO_KEY) {
fscki = add_inode(c, priv, node);
if (IS_ERR(fscki)) {
err = PTR_ERR(fscki);
ubifs_err(c, "error %d while adding inode node", err);
goto out_dump;
}
goto out;
}
if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
type != UBIFS_DATA_KEY) {
ubifs_err(c, "unexpected node type %d at LEB %d:%d",
type, zbr->lnum, zbr->offs);
err = -EINVAL;
goto out_free;
}
ch = node;
if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
ubifs_err(c, "too high sequence number, max. is %llu",
c->max_sqnum);
err = -EINVAL;
goto out_dump;
}
if (type == UBIFS_DATA_KEY) {
long long blk_offs;
struct ubifs_data_node *dn = node;
ubifs_assert(zbr->len >= UBIFS_DATA_NODE_SZ);
/*
* Search the inode node this data node belongs to and insert
* it to the RB-tree of inodes.
*/
inum = key_inum_flash(c, &dn->key);
fscki = read_add_inode(c, priv, inum);
if (IS_ERR(fscki)) {
err = PTR_ERR(fscki);
ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
err, (unsigned long)inum);
goto out_dump;
}
/* Make sure the data node is within inode size */
blk_offs = key_block_flash(c, &dn->key);
blk_offs <<= UBIFS_BLOCK_SHIFT;
blk_offs += le32_to_cpu(dn->size);
if (blk_offs > fscki->size) {
ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
zbr->lnum, zbr->offs, fscki->size);
err = -EINVAL;
goto out_dump;
}
} else {
int nlen;
struct ubifs_dent_node *dent = node;
struct fsck_inode *fscki1;
ubifs_assert(zbr->len >= UBIFS_DENT_NODE_SZ);
err = ubifs_validate_entry(c, dent);
if (err)
goto out_dump;
/*
* Search the inode node this entry refers to and the parent
* inode node and insert them to the RB-tree of inodes.
*/
inum = le64_to_cpu(dent->inum);
fscki = read_add_inode(c, priv, inum);
if (IS_ERR(fscki)) {
err = PTR_ERR(fscki);
ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
err, (unsigned long)inum);
goto out_dump;
}
/* Count how many direntries or xentries refers this inode */
fscki->references += 1;
inum = key_inum_flash(c, &dent->key);
fscki1 = read_add_inode(c, priv, inum);
if (IS_ERR(fscki1)) {
err = PTR_ERR(fscki1);
ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
err, (unsigned long)inum);
goto out_dump;
}
nlen = le16_to_cpu(dent->nlen);
if (type == UBIFS_XENT_KEY) {
fscki1->calc_xcnt += 1;
fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
fscki1->calc_xnms += nlen;
} else {
fscki1->calc_sz += CALC_DENT_SIZE(nlen);
if (dent->type == UBIFS_ITYPE_DIR)
fscki1->calc_cnt += 1;
}
}
out:
kfree(node);
return 0;
out_dump:
ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
ubifs_dump_node(c, node);
out_free:
kfree(node);
return err;
}
/**
* free_inodes - free RB-tree of inodes.
* @fsckd: FS checking information
*/
static void free_inodes(struct fsck_data *fsckd)
{
struct fsck_inode *fscki, *n;
rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
kfree(fscki);
}
/**
* check_inodes - checks all inodes.
* @c: UBIFS file-system description object
* @fsckd: FS checking information
*
* This is a helper function for 'dbg_check_filesystem()' which walks the
* RB-tree of inodes after the index scan has been finished, and checks that
* inode nlink, size, etc are correct. Returns zero if inodes are fine,
* %-EINVAL if not, and a negative error code in case of failure.
*/
static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
{
int n, err;
union ubifs_key key;
struct ubifs_znode *znode;
struct ubifs_zbranch *zbr;
struct ubifs_ino_node *ino;
struct fsck_inode *fscki;
struct rb_node *this = rb_first(&fsckd->inodes);
while (this) {
fscki = rb_entry(this, struct fsck_inode, rb);
this = rb_next(this);
if (S_ISDIR(fscki->mode)) {
/*
* Directories have to have exactly one reference (they
* cannot have hardlinks), although root inode is an
* exception.
*/
if (fscki->inum != UBIFS_ROOT_INO &&
fscki->references != 1) {
ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
(unsigned long)fscki->inum,
fscki->references);
goto out_dump;
}
if (fscki->inum == UBIFS_ROOT_INO &&
fscki->references != 0) {
ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
(unsigned long)fscki->inum,
fscki->references);
goto out_dump;
}
if (fscki->calc_sz != fscki->size) {
ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
(unsigned long)fscki->inum,
fscki->size, fscki->calc_sz);
goto out_dump;
}
if (fscki->calc_cnt != fscki->nlink) {
ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
(unsigned long)fscki->inum,
fscki->nlink, fscki->calc_cnt);
goto out_dump;
}
} else {
if (fscki->references != fscki->nlink) {
ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
(unsigned long)fscki->inum,
fscki->nlink, fscki->references);
goto out_dump;
}
}
if (fscki->xattr_sz != fscki->calc_xsz) {
ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
(unsigned long)fscki->inum, fscki->xattr_sz,
fscki->calc_xsz);
goto out_dump;
}
if (fscki->xattr_cnt != fscki->calc_xcnt) {
ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
(unsigned long)fscki->inum,
fscki->xattr_cnt, fscki->calc_xcnt);
goto out_dump;
}
if (fscki->xattr_nms != fscki->calc_xnms) {
ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
(unsigned long)fscki->inum, fscki->xattr_nms,
fscki->calc_xnms);
goto out_dump;
}
}
return 0;
out_dump:
/* Read the bad inode and dump it */
ino_key_init(c, &key, fscki->inum);
err = ubifs_lookup_level0(c, &key, &znode, &n);
if (!err) {
ubifs_err(c, "inode %lu not found in index",
(unsigned long)fscki->inum);
return -ENOENT;
} else if (err < 0) {
ubifs_err(c, "error %d while looking up inode %lu",
err, (unsigned long)fscki->inum);
return err;
}
zbr = &znode->zbranch[n];
ino = kmalloc(zbr->len, GFP_NOFS);
if (!ino)
return -ENOMEM;
err = ubifs_tnc_read_node(c, zbr, ino);
if (err) {
ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
zbr->lnum, zbr->offs, err);
kfree(ino);
return err;
}
ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
(unsigned long)fscki->inum, zbr->lnum, zbr->offs);
ubifs_dump_node(c, ino);
kfree(ino);
return -EINVAL;
}
/**
* dbg_check_filesystem - check the file-system.
* @c: UBIFS file-system description object
*
* This function checks the file system, namely:
* o makes sure that all leaf nodes exist and their CRCs are correct;
* o makes sure inode nlink, size, xattr size/count are correct (for all
* inodes).
*
* The function reads whole indexing tree and all nodes, so it is pretty
* heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
* not, and a negative error code in case of failure.
*/
int dbg_check_filesystem(struct ubifs_info *c)
{
int err;
struct fsck_data fsckd;
if (!dbg_is_chk_fs(c))
return 0;
fsckd.inodes = RB_ROOT;
err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
if (err)
goto out_free;
err = check_inodes(c, &fsckd);
if (err)
goto out_free;
free_inodes(&fsckd);
return 0;
out_free:
ubifs_err(c, "file-system check failed with error %d", err);
dump_stack();
free_inodes(&fsckd);
return err;
}
/**
* dbg_check_data_nodes_order - check that list of data nodes is sorted.
* @c: UBIFS file-system description object
* @head: the list of nodes ('struct ubifs_scan_node' objects)
*
* This function returns zero if the list of data nodes is sorted correctly,
* and %-EINVAL if not.
*/
int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
{
struct list_head *cur;
struct ubifs_scan_node *sa, *sb;
if (!dbg_is_chk_gen(c))
return 0;
for (cur = head->next; cur->next != head; cur = cur->next) {
ino_t inuma, inumb;
uint32_t blka, blkb;
cond_resched();
sa = container_of(cur, struct ubifs_scan_node, list);
sb = container_of(cur->next, struct ubifs_scan_node, list);
if (sa->type != UBIFS_DATA_NODE) {
ubifs_err(c, "bad node type %d", sa->type);
ubifs_dump_node(c, sa->node);
return -EINVAL;
}
if (sb->type != UBIFS_DATA_NODE) {
ubifs_err(c, "bad node type %d", sb->type);
ubifs_dump_node(c, sb->node);
return -EINVAL;
}
inuma = key_inum(c, &sa->key);
inumb = key_inum(c, &sb->key);
if (inuma < inumb)
continue;
if (inuma > inumb) {
ubifs_err(c, "larger inum %lu goes before inum %lu",
(unsigned long)inuma, (unsigned long)inumb);
goto error_dump;
}
blka = key_block(c, &sa->key);
blkb = key_block(c, &sb->key);
if (blka > blkb) {
ubifs_err(c, "larger block %u goes before %u", blka, blkb);
goto error_dump;
}
if (blka == blkb) {
ubifs_err(c, "two data nodes for the same block");
goto error_dump;
}
}
return 0;
error_dump:
ubifs_dump_node(c, sa->node);
ubifs_dump_node(c, sb->node);
return -EINVAL;
}
/**
* dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
* @c: UBIFS file-system description object
* @head: the list of nodes ('struct ubifs_scan_node' objects)
*
* This function returns zero if the list of non-data nodes is sorted correctly,
* and %-EINVAL if not.
*/
int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
{
struct list_head *cur;
struct ubifs_scan_node *sa, *sb;
if (!dbg_is_chk_gen(c))
return 0;
for (cur = head->next; cur->next != head; cur = cur->next) {
ino_t inuma, inumb;
uint32_t hasha, hashb;
cond_resched();
sa = container_of(cur, struct ubifs_scan_node, list);
sb = container_of(cur->next, struct ubifs_scan_node, list);
if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
sa->type != UBIFS_XENT_NODE) {
ubifs_err(c, "bad node type %d", sa->type);
ubifs_dump_node(c, sa->node);
return -EINVAL;
}
if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
sa->type != UBIFS_XENT_NODE) {
ubifs_err(c, "bad node type %d", sb->type);
ubifs_dump_node(c, sb->node);
return -EINVAL;
}
if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
ubifs_err(c, "non-inode node goes before inode node");
goto error_dump;
}
if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
continue;
if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
/* Inode nodes are sorted in descending size order */
if (sa->len < sb->len) {
ubifs_err(c, "smaller inode node goes first");
goto error_dump;
}
continue;
}
/*
* This is either a dentry or xentry, which should be sorted in
* ascending (parent ino, hash) order.
*/
inuma = key_inum(c, &sa->key);
inumb = key_inum(c, &sb->key);
if (inuma < inumb)
continue;
if (inuma > inumb) {
ubifs_err(c, "larger inum %lu goes before inum %lu",
(unsigned long)inuma, (unsigned long)inumb);
goto error_dump;
}
hasha = key_block(c, &sa->key);
hashb = key_block(c, &sb->key);
if (hasha > hashb) {
ubifs_err(c, "larger hash %u goes before %u",
hasha, hashb);
goto error_dump;
}
}
return 0;
error_dump:
ubifs_msg(c, "dumping first node");
ubifs_dump_node(c, sa->node);
ubifs_msg(c, "dumping second node");
ubifs_dump_node(c, sb->node);
return -EINVAL;
return 0;
}
static inline int chance(unsigned int n, unsigned int out_of)
{
return !!((prandom_u32() % out_of) + 1 <= n);
}
static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
{
struct ubifs_debug_info *d = c->dbg;
ubifs_assert(dbg_is_tst_rcvry(c));
if (!d->pc_cnt) {
/* First call - decide delay to the power cut */
if (chance(1, 2)) {
unsigned long delay;
if (chance(1, 2)) {
d->pc_delay = 1;
/* Fail within 1 minute */
delay = prandom_u32() % 60000;
d->pc_timeout = jiffies;
d->pc_timeout += msecs_to_jiffies(delay);
ubifs_warn(c, "failing after %lums", delay);
} else {
d->pc_delay = 2;
delay = prandom_u32() % 10000;
/* Fail within 10000 operations */
d->pc_cnt_max = delay;
ubifs_warn(c, "failing after %lu calls", delay);
}
}
d->pc_cnt += 1;
}
/* Determine if failure delay has expired */
if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
return 0;
if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
return 0;
if (lnum == UBIFS_SB_LNUM) {
if (write && chance(1, 2))
return 0;
if (chance(19, 20))
return 0;
ubifs_warn(c, "failing in super block LEB %d", lnum);
} else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
if (chance(19, 20))
return 0;
ubifs_warn(c, "failing in master LEB %d", lnum);
} else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
if (write && chance(99, 100))
return 0;
if (chance(399, 400))
return 0;
ubifs_warn(c, "failing in log LEB %d", lnum);
} else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
if (write && chance(7, 8))
return 0;
if (chance(19, 20))
return 0;
ubifs_warn(c, "failing in LPT LEB %d", lnum);
} else if (lnum >= c->orph_first && lnum <= c->orph_last) {
if (write && chance(1, 2))
return 0;
if (chance(9, 10))
return 0;
ubifs_warn(c, "failing in orphan LEB %d", lnum);
} else if (lnum == c->ihead_lnum) {
if (chance(99, 100))
return 0;
ubifs_warn(c, "failing in index head LEB %d", lnum);
} else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
if (chance(9, 10))
return 0;
ubifs_warn(c, "failing in GC head LEB %d", lnum);
} else if (write && !RB_EMPTY_ROOT(&c->buds) &&
!ubifs_search_bud(c, lnum)) {
if (chance(19, 20))
return 0;
ubifs_warn(c, "failing in non-bud LEB %d", lnum);
} else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
c->cmt_state == COMMIT_RUNNING_REQUIRED) {
if (chance(999, 1000))
return 0;
ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
} else {
if (chance(9999, 10000))
return 0;
ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
}
d->pc_happened = 1;
ubifs_warn(c, "========== Power cut emulated ==========");
dump_stack();
return 1;
}
static int corrupt_data(const struct ubifs_info *c, const void *buf,
unsigned int len)
{
unsigned int from, to, ffs = chance(1, 2);
unsigned char *p = (void *)buf;
from = prandom_u32() % len;
/* Corruption span max to end of write unit */
to = min(len, ALIGN(from + 1, c->max_write_size));
ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
ffs ? "0xFFs" : "random data");
if (ffs)
memset(p + from, 0xFF, to - from);
else
prandom_bytes(p + from, to - from);
return to;
}
int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
int offs, int len)
{
int err, failing;
if (c->dbg->pc_happened)
return -EROFS;
failing = power_cut_emulated(c, lnum, 1);
if (failing) {
len = corrupt_data(c, buf, len);
ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
len, lnum, offs);
}
err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
if (err)
return err;
if (failing)
return -EROFS;
return 0;
}
int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
int len)
{
int err;
if (c->dbg->pc_happened)
return -EROFS;
if (power_cut_emulated(c, lnum, 1))
return -EROFS;
err = ubi_leb_change(c->ubi, lnum, buf, len);
if (err)
return err;
if (power_cut_emulated(c, lnum, 1))
return -EROFS;
return 0;
}
int dbg_leb_unmap(struct ubifs_info *c, int lnum)
{
int err;
if (c->dbg->pc_happened)
return -EROFS;
if (power_cut_emulated(c, lnum, 0))
return -EROFS;
err = ubi_leb_unmap(c->ubi, lnum);
if (err)
return err;
if (power_cut_emulated(c, lnum, 0))
return -EROFS;
return 0;
}
int dbg_leb_map(struct ubifs_info *c, int lnum)
{
int err;
if (c->dbg->pc_happened)
return -EROFS;
if (power_cut_emulated(c, lnum, 0))
return -EROFS;
err = ubi_leb_map(c->ubi, lnum);
if (err)
return err;
if (power_cut_emulated(c, lnum, 0))
return -EROFS;
return 0;
}
/*
* Root directory for UBIFS stuff in debugfs. Contains sub-directories which
* contain the stuff specific to particular file-system mounts.
*/
static struct dentry *dfs_rootdir;
static int dfs_file_open(struct inode *inode, struct file *file)
{
file->private_data = inode->i_private;
return nonseekable_open(inode, file);
}
/**
* provide_user_output - provide output to the user reading a debugfs file.
* @val: boolean value for the answer
* @u: the buffer to store the answer at
* @count: size of the buffer
* @ppos: position in the @u output buffer
*
* This is a simple helper function which stores @val boolean value in the user
* buffer when the user reads one of UBIFS debugfs files. Returns amount of
* bytes written to @u in case of success and a negative error code in case of
* failure.
*/
static int provide_user_output(int val, char __user *u, size_t count,
loff_t *ppos)
{
char buf[3];
if (val)
buf[0] = '1';
else
buf[0] = '0';
buf[1] = '\n';
buf[2] = 0x00;
return simple_read_from_buffer(u, count, ppos, buf, 2);
}
static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
loff_t *ppos)
{
struct dentry *dent = file->f_path.dentry;
struct ubifs_info *c = file->private_data;
struct ubifs_debug_info *d = c->dbg;
int val;
if (dent == d->dfs_chk_gen)
val = d->chk_gen;
else if (dent == d->dfs_chk_index)
val = d->chk_index;
else if (dent == d->dfs_chk_orph)
val = d->chk_orph;
else if (dent == d->dfs_chk_lprops)
val = d->chk_lprops;
else if (dent == d->dfs_chk_fs)
val = d->chk_fs;
else if (dent == d->dfs_tst_rcvry)
val = d->tst_rcvry;
else if (dent == d->dfs_ro_error)
val = c->ro_error;
else
return -EINVAL;
return provide_user_output(val, u, count, ppos);
}
/**
* interpret_user_input - interpret user debugfs file input.
* @u: user-provided buffer with the input
* @count: buffer size
*
* This is a helper function which interpret user input to a boolean UBIFS
* debugfs file. Returns %0 or %1 in case of success and a negative error code
* in case of failure.
*/
static int interpret_user_input(const char __user *u, size_t count)
{
size_t buf_size;
char buf[8];
buf_size = min_t(size_t, count, (sizeof(buf) - 1));
if (copy_from_user(buf, u, buf_size))
return -EFAULT;
if (buf[0] == '1')
return 1;
else if (buf[0] == '0')
return 0;
return -EINVAL;
}
static ssize_t dfs_file_write(struct file *file, const char __user *u,
size_t count, loff_t *ppos)
{
struct ubifs_info *c = file->private_data;
struct ubifs_debug_info *d = c->dbg;
struct dentry *dent = file->f_path.dentry;
int val;
/*
* TODO: this is racy - the file-system might have already been
* unmounted and we'd oops in this case. The plan is to fix it with
* help of 'iterate_supers_type()' which we should have in v3.0: when
* a debugfs opened, we rember FS's UUID in file->private_data. Then
* whenever we access the FS via a debugfs file, we iterate all UBIFS
* superblocks and fine the one with the same UUID, and take the
* locking right.
*
* The other way to go suggested by Al Viro is to create a separate
* 'ubifs-debug' file-system instead.
*/
if (file->f_path.dentry == d->dfs_dump_lprops) {
ubifs_dump_lprops(c);
return count;
}
if (file->f_path.dentry == d->dfs_dump_budg) {
ubifs_dump_budg(c, &c->bi);
return count;
}
if (file->f_path.dentry == d->dfs_dump_tnc) {
mutex_lock(&c->tnc_mutex);
ubifs_dump_tnc(c);
mutex_unlock(&c->tnc_mutex);
return count;
}
val = interpret_user_input(u, count);
if (val < 0)
return val;
if (dent == d->dfs_chk_gen)
d->chk_gen = val;
else if (dent == d->dfs_chk_index)
d->chk_index = val;
else if (dent == d->dfs_chk_orph)
d->chk_orph = val;
else if (dent == d->dfs_chk_lprops)
d->chk_lprops = val;
else if (dent == d->dfs_chk_fs)
d->chk_fs = val;
else if (dent == d->dfs_tst_rcvry)
d->tst_rcvry = val;
else if (dent == d->dfs_ro_error)
c->ro_error = !!val;
else
return -EINVAL;
return count;
}
static const struct file_operations dfs_fops = {
.open = dfs_file_open,
.read = dfs_file_read,
.write = dfs_file_write,
.owner = THIS_MODULE,
.llseek = no_llseek,
};
/**
* dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
* @c: UBIFS file-system description object
*
* This function creates all debugfs files for this instance of UBIFS. Returns
* zero in case of success and a negative error code in case of failure.
*
* Note, the only reason we have not merged this function with the
* 'ubifs_debugging_init()' function is because it is better to initialize
* debugfs interfaces at the very end of the mount process, and remove them at
* the very beginning of the mount process.
*/
int dbg_debugfs_init_fs(struct ubifs_info *c)
{
int err, n;
const char *fname;
struct dentry *dent;
struct ubifs_debug_info *d = c->dbg;
if (!IS_ENABLED(CONFIG_DEBUG_FS))
return 0;
n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
c->vi.ubi_num, c->vi.vol_id);
if (n == UBIFS_DFS_DIR_LEN) {
/* The array size is too small */
fname = UBIFS_DFS_DIR_NAME;
dent = ERR_PTR(-EINVAL);
goto out;
}
fname = d->dfs_dir_name;
dent = debugfs_create_dir(fname, dfs_rootdir);
if (IS_ERR_OR_NULL(dent))
goto out;
d->dfs_dir = dent;
fname = "dump_lprops";
dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
if (IS_ERR_OR_NULL(dent))
goto out_remove;
d->dfs_dump_lprops = dent;
fname = "dump_budg";
dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
if (IS_ERR_OR_NULL(dent))
goto out_remove;
d->dfs_dump_budg = dent;
fname = "dump_tnc";
dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
if (IS_ERR_OR_NULL(dent))
goto out_remove;
d->dfs_dump_tnc = dent;
fname = "chk_general";
dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
&dfs_fops);
if (IS_ERR_OR_NULL(dent))
goto out_remove;
d->dfs_chk_gen = dent;
fname = "chk_index";
dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
&dfs_fops);
if (IS_ERR_OR_NULL(dent))
goto out_remove;
d->dfs_chk_index = dent;
fname = "chk_orphans";
dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
&dfs_fops);
if (IS_ERR_OR_NULL(dent))
goto out_remove;
d->dfs_chk_orph = dent;
fname = "chk_lprops";
dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
&dfs_fops);
if (IS_ERR_OR_NULL(dent))
goto out_remove;
d->dfs_chk_lprops = dent;
fname = "chk_fs";
dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
&dfs_fops);
if (IS_ERR_OR_NULL(dent))
goto out_remove;
d->dfs_chk_fs = dent;
fname = "tst_recovery";
dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
&dfs_fops);
if (IS_ERR_OR_NULL(dent))
goto out_remove;
d->dfs_tst_rcvry = dent;
fname = "ro_error";
dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
&dfs_fops);
if (IS_ERR_OR_NULL(dent))
goto out_remove;
d->dfs_ro_error = dent;
return 0;
out_remove:
debugfs_remove_recursive(d->dfs_dir);
out:
err = dent ? PTR_ERR(dent) : -ENODEV;
ubifs_err(c, "cannot create \"%s\" debugfs file or directory, error %d\n",
fname, err);
return err;
}
/**
* dbg_debugfs_exit_fs - remove all debugfs files.
* @c: UBIFS file-system description object
*/
void dbg_debugfs_exit_fs(struct ubifs_info *c)
{
if (IS_ENABLED(CONFIG_DEBUG_FS))
debugfs_remove_recursive(c->dbg->dfs_dir);
}
struct ubifs_global_debug_info ubifs_dbg;
static struct dentry *dfs_chk_gen;
static struct dentry *dfs_chk_index;
static struct dentry *dfs_chk_orph;
static struct dentry *dfs_chk_lprops;
static struct dentry *dfs_chk_fs;
static struct dentry *dfs_tst_rcvry;
static ssize_t dfs_global_file_read(struct file *file, char __user *u,
size_t count, loff_t *ppos)
{
struct dentry *dent = file->f_path.dentry;
int val;
if (dent == dfs_chk_gen)
val = ubifs_dbg.chk_gen;
else if (dent == dfs_chk_index)
val = ubifs_dbg.chk_index;
else if (dent == dfs_chk_orph)
val = ubifs_dbg.chk_orph;
else if (dent == dfs_chk_lprops)
val = ubifs_dbg.chk_lprops;
else if (dent == dfs_chk_fs)
val = ubifs_dbg.chk_fs;
else if (dent == dfs_tst_rcvry)
val = ubifs_dbg.tst_rcvry;
else
return -EINVAL;
return provide_user_output(val, u, count, ppos);
}
static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
size_t count, loff_t *ppos)
{
struct dentry *dent = file->f_path.dentry;
int val;
val = interpret_user_input(u, count);
if (val < 0)
return val;
if (dent == dfs_chk_gen)
ubifs_dbg.chk_gen = val;
else if (dent == dfs_chk_index)
ubifs_dbg.chk_index = val;
else if (dent == dfs_chk_orph)
ubifs_dbg.chk_orph = val;
else if (dent == dfs_chk_lprops)
ubifs_dbg.chk_lprops = val;
else if (dent == dfs_chk_fs)
ubifs_dbg.chk_fs = val;
else if (dent == dfs_tst_rcvry)
ubifs_dbg.tst_rcvry = val;
else
return -EINVAL;
return count;
}
static const struct file_operations dfs_global_fops = {
.read = dfs_global_file_read,
.write = dfs_global_file_write,
.owner = THIS_MODULE,
.llseek = no_llseek,
};
/**
* dbg_debugfs_init - initialize debugfs file-system.
*
* UBIFS uses debugfs file-system to expose various debugging knobs to
* user-space. This function creates "ubifs" directory in the debugfs
* file-system. Returns zero in case of success and a negative error code in
* case of failure.
*/
int dbg_debugfs_init(void)
{
int err;
const char *fname;
struct dentry *dent;
if (!IS_ENABLED(CONFIG_DEBUG_FS))
return 0;
fname = "ubifs";
dent = debugfs_create_dir(fname, NULL);
if (IS_ERR_OR_NULL(dent))
goto out;
dfs_rootdir = dent;
fname = "chk_general";
dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
&dfs_global_fops);
if (IS_ERR_OR_NULL(dent))
goto out_remove;
dfs_chk_gen = dent;
fname = "chk_index";
dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
&dfs_global_fops);
if (IS_ERR_OR_NULL(dent))
goto out_remove;
dfs_chk_index = dent;
fname = "chk_orphans";
dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
&dfs_global_fops);
if (IS_ERR_OR_NULL(dent))
goto out_remove;
dfs_chk_orph = dent;
fname = "chk_lprops";
dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
&dfs_global_fops);
if (IS_ERR_OR_NULL(dent))
goto out_remove;
dfs_chk_lprops = dent;
fname = "chk_fs";
dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
&dfs_global_fops);
if (IS_ERR_OR_NULL(dent))
goto out_remove;
dfs_chk_fs = dent;
fname = "tst_recovery";
dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
&dfs_global_fops);
if (IS_ERR_OR_NULL(dent))
goto out_remove;
dfs_tst_rcvry = dent;
return 0;
out_remove:
debugfs_remove_recursive(dfs_rootdir);
out:
err = dent ? PTR_ERR(dent) : -ENODEV;
pr_err("UBIFS error (pid %d): cannot create \"%s\" debugfs file or directory, error %d\n",
current->pid, fname, err);
return err;
}
/**
* dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
*/
void dbg_debugfs_exit(void)
{
if (IS_ENABLED(CONFIG_DEBUG_FS))
debugfs_remove_recursive(dfs_rootdir);
}
/**
* ubifs_debugging_init - initialize UBIFS debugging.
* @c: UBIFS file-system description object
*
* This function initializes debugging-related data for the file system.
* Returns zero in case of success and a negative error code in case of
* failure.
*/
int ubifs_debugging_init(struct ubifs_info *c)
{
c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
if (!c->dbg)
return -ENOMEM;
return 0;
}
/**
* ubifs_debugging_exit - free debugging data.
* @c: UBIFS file-system description object
*/
void ubifs_debugging_exit(struct ubifs_info *c)
{
kfree(c->dbg);
}