linux/arch/mips/netlogic/xlp/ahci-init-xlp2.c
Ganesan Ramalingam fedfcb1137 MIPS: Netlogic: XLP9XX on-chip SATA support
The XLP9XX SoC has an on-chip SATA controller with two ports. Add
ahci-init-xlp2.c to initialize the controller, setup the glue logic
registers, fixup PCI quirks and setup interrupt ack logic.

Signed-off-by: Ganesan Ramalingam <ganesanr@broadcom.com>
Signed-off-by: Jayachandran C <jchandra@broadcom.com>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/6913/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2014-05-30 16:51:47 +02:00

378 lines
12 KiB
C

/*
* Copyright (c) 2003-2014 Broadcom Corporation
* All Rights Reserved
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the Broadcom
* license below:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY BROADCOM ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL BROADCOM OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <linux/dma-mapping.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/irq.h>
#include <linux/bitops.h>
#include <linux/pci_ids.h>
#include <linux/nodemask.h>
#include <asm/cpu.h>
#include <asm/mipsregs.h>
#include <asm/netlogic/common.h>
#include <asm/netlogic/haldefs.h>
#include <asm/netlogic/mips-extns.h>
#include <asm/netlogic/xlp-hal/xlp.h>
#include <asm/netlogic/xlp-hal/iomap.h>
#define SATA_CTL 0x0
#define SATA_STATUS 0x1 /* Status Reg */
#define SATA_INT 0x2 /* Interrupt Reg */
#define SATA_INT_MASK 0x3 /* Interrupt Mask Reg */
#define SATA_BIU_TIMEOUT 0x4
#define AXIWRSPERRLOG 0x5
#define AXIRDSPERRLOG 0x6
#define BiuTimeoutLow 0x7
#define BiuTimeoutHi 0x8
#define BiuSlvErLow 0x9
#define BiuSlvErHi 0xa
#define IO_CONFIG_SWAP_DIS 0xb
#define CR_REG_TIMER 0xc
#define CORE_ID 0xd
#define AXI_SLAVE_OPT1 0xe
#define PHY_MEM_ACCESS 0xf
#define PHY0_CNTRL 0x10
#define PHY0_STAT 0x11
#define PHY0_RX_ALIGN 0x12
#define PHY0_RX_EQ_LO 0x13
#define PHY0_RX_EQ_HI 0x14
#define PHY0_BIST_LOOP 0x15
#define PHY1_CNTRL 0x16
#define PHY1_STAT 0x17
#define PHY1_RX_ALIGN 0x18
#define PHY1_RX_EQ_LO 0x19
#define PHY1_RX_EQ_HI 0x1a
#define PHY1_BIST_LOOP 0x1b
#define RdExBase 0x1c
#define RdExLimit 0x1d
#define CacheAllocBase 0x1e
#define CacheAllocLimit 0x1f
#define BiuSlaveCmdGstNum 0x20
/*SATA_CTL Bits */
#define SATA_RST_N BIT(0) /* Active low reset sata_core phy */
#define SataCtlReserve0 BIT(1)
#define M_CSYSREQ BIT(2) /* AXI master low power, not used */
#define S_CSYSREQ BIT(3) /* AXI slave low power, not used */
#define P0_CP_DET BIT(8) /* Reserved, bring in from pad */
#define P0_MP_SW BIT(9) /* Mech Switch */
#define P0_DISABLE BIT(10) /* disable p0 */
#define P0_ACT_LED_EN BIT(11) /* Active LED enable */
#define P0_IRST_HARD_SYNTH BIT(12) /* PHY hard synth reset */
#define P0_IRST_HARD_TXRX BIT(13) /* PHY lane hard reset */
#define P0_IRST_POR BIT(14) /* PHY power on reset*/
#define P0_IPDTXL BIT(15) /* PHY Tx lane dis/power down */
#define P0_IPDRXL BIT(16) /* PHY Rx lane dis/power down */
#define P0_IPDIPDMSYNTH BIT(17) /* PHY synthesizer dis/porwer down */
#define P0_CP_POD_EN BIT(18) /* CP_POD enable */
#define P0_AT_BYPASS BIT(19) /* P0 address translation by pass */
#define P1_CP_DET BIT(20) /* Reserved,Cold Detect */
#define P1_MP_SW BIT(21) /* Mech Switch */
#define P1_DISABLE BIT(22) /* disable p1 */
#define P1_ACT_LED_EN BIT(23) /* Active LED enable */
#define P1_IRST_HARD_SYNTH BIT(24) /* PHY hard synth reset */
#define P1_IRST_HARD_TXRX BIT(25) /* PHY lane hard reset */
#define P1_IRST_POR BIT(26) /* PHY power on reset*/
#define P1_IPDTXL BIT(27) /* PHY Tx lane dis/porwer down */
#define P1_IPDRXL BIT(28) /* PHY Rx lane dis/porwer down */
#define P1_IPDIPDMSYNTH BIT(29) /* PHY synthesizer dis/porwer down */
#define P1_CP_POD_EN BIT(30)
#define P1_AT_BYPASS BIT(31) /* P1 address translation by pass */
/* Status register */
#define M_CACTIVE BIT(0) /* m_cactive, not used */
#define S_CACTIVE BIT(1) /* s_cactive, not used */
#define P0_PHY_READY BIT(8) /* phy is ready */
#define P0_CP_POD BIT(9) /* Cold PowerOn */
#define P0_SLUMBER BIT(10) /* power mode slumber */
#define P0_PATIAL BIT(11) /* power mode patial */
#define P0_PHY_SIG_DET BIT(12) /* phy dignal detect */
#define P0_PHY_CALI BIT(13) /* phy calibration done */
#define P1_PHY_READY BIT(16) /* phy is ready */
#define P1_CP_POD BIT(17) /* Cold PowerOn */
#define P1_SLUMBER BIT(18) /* power mode slumber */
#define P1_PATIAL BIT(19) /* power mode patial */
#define P1_PHY_SIG_DET BIT(20) /* phy dignal detect */
#define P1_PHY_CALI BIT(21) /* phy calibration done */
/* SATA CR_REG_TIMER bits */
#define CR_TIME_SCALE (0x1000 << 0)
/* SATA PHY specific registers start and end address */
#define RXCDRCALFOSC0 0x0065
#define CALDUTY 0x006e
#define RXDPIF 0x8065
#define PPMDRIFTMAX_HI 0x80A4
#define nlm_read_sata_reg(b, r) nlm_read_reg(b, r)
#define nlm_write_sata_reg(b, r, v) nlm_write_reg(b, r, v)
#define nlm_get_sata_pcibase(node) \
nlm_pcicfg_base(XLP9XX_IO_SATA_OFFSET(node))
#define nlm_get_sata_regbase(node) \
(nlm_get_sata_pcibase(node) + 0x100)
/* SATA PHY config for register block 1 0x0065 .. 0x006e */
static const u8 sata_phy_config1[] = {
0xC9, 0xC9, 0x07, 0x07, 0x18, 0x18, 0x01, 0x01, 0x22, 0x00
};
/* SATA PHY config for register block 2 0x0x8065 .. 0x0x80A4 */
static const u8 sata_phy_config2[] = {
0xAA, 0x00, 0x4C, 0xC9, 0xC9, 0x07, 0x07, 0x18,
0x18, 0x05, 0x0C, 0x10, 0x00, 0x10, 0x00, 0xFF,
0xCF, 0xF7, 0xE1, 0xF5, 0xFD, 0xFD, 0xFF, 0xFF,
0xFF, 0xFF, 0xE3, 0xE7, 0xDB, 0xF5, 0xFD, 0xFD,
0xF5, 0xF5, 0xFF, 0xFF, 0xE3, 0xE7, 0xDB, 0xF5,
0xFD, 0xFD, 0xF5, 0xF5, 0xFF, 0xFF, 0xFF, 0xF5,
0x3F, 0x00, 0x32, 0x00, 0x03, 0x01, 0x05, 0x05,
0x04, 0x00, 0x00, 0x08, 0x04, 0x00, 0x00, 0x04,
};
const int sata_phy_debug = 0; /* set to verify PHY writes */
static void sata_clear_glue_reg(u64 regbase, u32 off, u32 bit)
{
u32 reg_val;
reg_val = nlm_read_sata_reg(regbase, off);
nlm_write_sata_reg(regbase, off, (reg_val & ~bit));
}
static void sata_set_glue_reg(u64 regbase, u32 off, u32 bit)
{
u32 reg_val;
reg_val = nlm_read_sata_reg(regbase, off);
nlm_write_sata_reg(regbase, off, (reg_val | bit));
}
static void write_phy_reg(u64 regbase, u32 addr, u32 physel, u8 data)
{
nlm_write_sata_reg(regbase, PHY_MEM_ACCESS,
(1u << 31) | (physel << 24) | (data << 16) | addr);
udelay(850);
}
static u8 read_phy_reg(u64 regbase, u32 addr, u32 physel)
{
u32 val;
nlm_write_sata_reg(regbase, PHY_MEM_ACCESS,
(0 << 31) | (physel << 24) | (0 << 16) | addr);
udelay(850);
val = nlm_read_sata_reg(regbase, PHY_MEM_ACCESS);
return (val >> 16) & 0xff;
}
static void config_sata_phy(u64 regbase)
{
u32 port, i, reg;
for (port = 0; port < 2; port++) {
for (i = 0, reg = RXCDRCALFOSC0; reg <= CALDUTY; reg++, i++)
write_phy_reg(regbase, reg, port, sata_phy_config1[i]);
for (i = 0, reg = RXDPIF; reg <= PPMDRIFTMAX_HI; reg++, i++)
write_phy_reg(regbase, reg, port, sata_phy_config2[i]);
}
}
static void check_phy_register(u64 regbase, u32 addr, u32 physel, u8 xdata)
{
u8 data;
data = read_phy_reg(regbase, addr, physel);
pr_info("PHY read addr = 0x%x physel = %d data = 0x%x %s\n",
addr, physel, data, data == xdata ? "TRUE" : "FALSE");
}
static void verify_sata_phy_config(u64 regbase)
{
u32 port, i, reg;
for (port = 0; port < 2; port++) {
for (i = 0, reg = RXCDRCALFOSC0; reg <= CALDUTY; reg++, i++)
check_phy_register(regbase, reg, port,
sata_phy_config1[i]);
for (i = 0, reg = RXDPIF; reg <= PPMDRIFTMAX_HI; reg++, i++)
check_phy_register(regbase, reg, port,
sata_phy_config2[i]);
}
}
static void nlm_sata_firmware_init(int node)
{
u32 reg_val;
u64 regbase;
int n;
pr_info("Initializing XLP9XX On-chip AHCI...\n");
regbase = nlm_get_sata_regbase(node);
/* Reset port0 */
sata_clear_glue_reg(regbase, SATA_CTL, P0_IRST_POR);
sata_clear_glue_reg(regbase, SATA_CTL, P0_IRST_HARD_TXRX);
sata_clear_glue_reg(regbase, SATA_CTL, P0_IRST_HARD_SYNTH);
sata_clear_glue_reg(regbase, SATA_CTL, P0_IPDTXL);
sata_clear_glue_reg(regbase, SATA_CTL, P0_IPDRXL);
sata_clear_glue_reg(regbase, SATA_CTL, P0_IPDIPDMSYNTH);
/* port1 */
sata_clear_glue_reg(regbase, SATA_CTL, P1_IRST_POR);
sata_clear_glue_reg(regbase, SATA_CTL, P1_IRST_HARD_TXRX);
sata_clear_glue_reg(regbase, SATA_CTL, P1_IRST_HARD_SYNTH);
sata_clear_glue_reg(regbase, SATA_CTL, P1_IPDTXL);
sata_clear_glue_reg(regbase, SATA_CTL, P1_IPDRXL);
sata_clear_glue_reg(regbase, SATA_CTL, P1_IPDIPDMSYNTH);
udelay(300);
/* Set PHY */
sata_set_glue_reg(regbase, SATA_CTL, P0_IPDTXL);
sata_set_glue_reg(regbase, SATA_CTL, P0_IPDRXL);
sata_set_glue_reg(regbase, SATA_CTL, P0_IPDIPDMSYNTH);
sata_set_glue_reg(regbase, SATA_CTL, P1_IPDTXL);
sata_set_glue_reg(regbase, SATA_CTL, P1_IPDRXL);
sata_set_glue_reg(regbase, SATA_CTL, P1_IPDIPDMSYNTH);
udelay(1000);
sata_set_glue_reg(regbase, SATA_CTL, P0_IRST_POR);
udelay(1000);
sata_set_glue_reg(regbase, SATA_CTL, P1_IRST_POR);
udelay(1000);
/* setup PHY */
config_sata_phy(regbase);
if (sata_phy_debug)
verify_sata_phy_config(regbase);
udelay(1000);
sata_set_glue_reg(regbase, SATA_CTL, P0_IRST_HARD_TXRX);
sata_set_glue_reg(regbase, SATA_CTL, P0_IRST_HARD_SYNTH);
sata_set_glue_reg(regbase, SATA_CTL, P1_IRST_HARD_TXRX);
sata_set_glue_reg(regbase, SATA_CTL, P1_IRST_HARD_SYNTH);
udelay(300);
/* Override reset in serial PHY mode */
sata_set_glue_reg(regbase, CR_REG_TIMER, CR_TIME_SCALE);
/* Set reset SATA */
sata_set_glue_reg(regbase, SATA_CTL, SATA_RST_N);
sata_set_glue_reg(regbase, SATA_CTL, M_CSYSREQ);
sata_set_glue_reg(regbase, SATA_CTL, S_CSYSREQ);
pr_debug("Waiting for PHYs to come up.\n");
n = 10000;
do {
reg_val = nlm_read_sata_reg(regbase, SATA_STATUS);
if ((reg_val & P1_PHY_READY) && (reg_val & P0_PHY_READY))
break;
udelay(10);
} while (--n > 0);
if (reg_val & P0_PHY_READY)
pr_info("PHY0 is up.\n");
else
pr_info("PHY0 is down.\n");
if (reg_val & P1_PHY_READY)
pr_info("PHY1 is up.\n");
else
pr_info("PHY1 is down.\n");
pr_info("XLP AHCI Init Done.\n");
}
static int __init nlm_ahci_init(void)
{
int node;
if (!cpu_is_xlp9xx())
return 0;
for (node = 0; node < NLM_NR_NODES; node++)
if (nlm_node_present(node))
nlm_sata_firmware_init(node);
return 0;
}
static void nlm_sata_intr_ack(struct irq_data *data)
{
u64 regbase;
u32 val;
int node;
node = data->irq / NLM_IRQS_PER_NODE;
regbase = nlm_get_sata_regbase(node);
val = nlm_read_sata_reg(regbase, SATA_INT);
sata_set_glue_reg(regbase, SATA_INT, val);
}
static void nlm_sata_fixup_bar(struct pci_dev *dev)
{
dev->resource[5] = dev->resource[0];
memset(&dev->resource[0], 0, sizeof(dev->resource[0]));
}
static void nlm_sata_fixup_final(struct pci_dev *dev)
{
u32 val;
u64 regbase;
int node;
/* Find end bridge function to find node */
node = xlp_socdev_to_node(dev);
regbase = nlm_get_sata_regbase(node);
/* clear pending interrupts and then enable them */
val = nlm_read_sata_reg(regbase, SATA_INT);
sata_set_glue_reg(regbase, SATA_INT, val);
/* Enable only the core interrupt */
sata_set_glue_reg(regbase, SATA_INT_MASK, 0x1);
dev->irq = nlm_irq_to_xirq(node, PIC_SATA_IRQ);
nlm_set_pic_extra_ack(node, PIC_SATA_IRQ, nlm_sata_intr_ack);
}
arch_initcall(nlm_ahci_init);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_XLP9XX_SATA,
nlm_sata_fixup_bar);
DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_XLP9XX_SATA,
nlm_sata_fixup_final);