linux/net/ipv4/devinet.c
WANG Cong 32a4be4890 ipv4: remove inet_addr_hash_lock in devinet.c
All the callers hold RTNL lock, so there is no need to use inet_addr_hash_lock
to protect the hash list.

Cc: David S. Miller <davem@davemloft.net>
Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-08 22:56:56 -04:00

2336 lines
58 KiB
C

/*
* NET3 IP device support routines.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Derived from the IP parts of dev.c 1.0.19
* Authors: Ross Biro
* Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
* Mark Evans, <evansmp@uhura.aston.ac.uk>
*
* Additional Authors:
* Alan Cox, <gw4pts@gw4pts.ampr.org>
* Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
*
* Changes:
* Alexey Kuznetsov: pa_* fields are replaced with ifaddr
* lists.
* Cyrus Durgin: updated for kmod
* Matthias Andree: in devinet_ioctl, compare label and
* address (4.4BSD alias style support),
* fall back to comparing just the label
* if no match found.
*/
#include <asm/uaccess.h>
#include <linux/bitops.h>
#include <linux/capability.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/in.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/if_addr.h>
#include <linux/if_ether.h>
#include <linux/inet.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/init.h>
#include <linux/notifier.h>
#include <linux/inetdevice.h>
#include <linux/igmp.h>
#include <linux/slab.h>
#include <linux/hash.h>
#ifdef CONFIG_SYSCTL
#include <linux/sysctl.h>
#endif
#include <linux/kmod.h>
#include <linux/netconf.h>
#include <net/arp.h>
#include <net/ip.h>
#include <net/route.h>
#include <net/ip_fib.h>
#include <net/rtnetlink.h>
#include <net/net_namespace.h>
#include <net/addrconf.h>
#include "fib_lookup.h"
static struct ipv4_devconf ipv4_devconf = {
.data = {
[IPV4_DEVCONF_ACCEPT_REDIRECTS - 1] = 1,
[IPV4_DEVCONF_SEND_REDIRECTS - 1] = 1,
[IPV4_DEVCONF_SECURE_REDIRECTS - 1] = 1,
[IPV4_DEVCONF_SHARED_MEDIA - 1] = 1,
[IPV4_DEVCONF_IGMPV2_UNSOLICITED_REPORT_INTERVAL - 1] = 10000 /*ms*/,
[IPV4_DEVCONF_IGMPV3_UNSOLICITED_REPORT_INTERVAL - 1] = 1000 /*ms*/,
},
};
static struct ipv4_devconf ipv4_devconf_dflt = {
.data = {
[IPV4_DEVCONF_ACCEPT_REDIRECTS - 1] = 1,
[IPV4_DEVCONF_SEND_REDIRECTS - 1] = 1,
[IPV4_DEVCONF_SECURE_REDIRECTS - 1] = 1,
[IPV4_DEVCONF_SHARED_MEDIA - 1] = 1,
[IPV4_DEVCONF_ACCEPT_SOURCE_ROUTE - 1] = 1,
[IPV4_DEVCONF_IGMPV2_UNSOLICITED_REPORT_INTERVAL - 1] = 10000 /*ms*/,
[IPV4_DEVCONF_IGMPV3_UNSOLICITED_REPORT_INTERVAL - 1] = 1000 /*ms*/,
},
};
#define IPV4_DEVCONF_DFLT(net, attr) \
IPV4_DEVCONF((*net->ipv4.devconf_dflt), attr)
static const struct nla_policy ifa_ipv4_policy[IFA_MAX+1] = {
[IFA_LOCAL] = { .type = NLA_U32 },
[IFA_ADDRESS] = { .type = NLA_U32 },
[IFA_BROADCAST] = { .type = NLA_U32 },
[IFA_LABEL] = { .type = NLA_STRING, .len = IFNAMSIZ - 1 },
[IFA_CACHEINFO] = { .len = sizeof(struct ifa_cacheinfo) },
[IFA_FLAGS] = { .type = NLA_U32 },
};
#define IN4_ADDR_HSIZE_SHIFT 8
#define IN4_ADDR_HSIZE (1U << IN4_ADDR_HSIZE_SHIFT)
static struct hlist_head inet_addr_lst[IN4_ADDR_HSIZE];
static u32 inet_addr_hash(struct net *net, __be32 addr)
{
u32 val = (__force u32) addr ^ net_hash_mix(net);
return hash_32(val, IN4_ADDR_HSIZE_SHIFT);
}
static void inet_hash_insert(struct net *net, struct in_ifaddr *ifa)
{
u32 hash = inet_addr_hash(net, ifa->ifa_local);
ASSERT_RTNL();
hlist_add_head_rcu(&ifa->hash, &inet_addr_lst[hash]);
}
static void inet_hash_remove(struct in_ifaddr *ifa)
{
ASSERT_RTNL();
hlist_del_init_rcu(&ifa->hash);
}
/**
* __ip_dev_find - find the first device with a given source address.
* @net: the net namespace
* @addr: the source address
* @devref: if true, take a reference on the found device
*
* If a caller uses devref=false, it should be protected by RCU, or RTNL
*/
struct net_device *__ip_dev_find(struct net *net, __be32 addr, bool devref)
{
u32 hash = inet_addr_hash(net, addr);
struct net_device *result = NULL;
struct in_ifaddr *ifa;
rcu_read_lock();
hlist_for_each_entry_rcu(ifa, &inet_addr_lst[hash], hash) {
if (ifa->ifa_local == addr) {
struct net_device *dev = ifa->ifa_dev->dev;
if (!net_eq(dev_net(dev), net))
continue;
result = dev;
break;
}
}
if (!result) {
struct flowi4 fl4 = { .daddr = addr };
struct fib_result res = { 0 };
struct fib_table *local;
/* Fallback to FIB local table so that communication
* over loopback subnets work.
*/
local = fib_get_table(net, RT_TABLE_LOCAL);
if (local &&
!fib_table_lookup(local, &fl4, &res, FIB_LOOKUP_NOREF) &&
res.type == RTN_LOCAL)
result = FIB_RES_DEV(res);
}
if (result && devref)
dev_hold(result);
rcu_read_unlock();
return result;
}
EXPORT_SYMBOL(__ip_dev_find);
static void rtmsg_ifa(int event, struct in_ifaddr *, struct nlmsghdr *, u32);
static BLOCKING_NOTIFIER_HEAD(inetaddr_chain);
static void inet_del_ifa(struct in_device *in_dev, struct in_ifaddr **ifap,
int destroy);
#ifdef CONFIG_SYSCTL
static void devinet_sysctl_register(struct in_device *idev);
static void devinet_sysctl_unregister(struct in_device *idev);
#else
static void devinet_sysctl_register(struct in_device *idev)
{
}
static void devinet_sysctl_unregister(struct in_device *idev)
{
}
#endif
/* Locks all the inet devices. */
static struct in_ifaddr *inet_alloc_ifa(void)
{
return kzalloc(sizeof(struct in_ifaddr), GFP_KERNEL);
}
static void inet_rcu_free_ifa(struct rcu_head *head)
{
struct in_ifaddr *ifa = container_of(head, struct in_ifaddr, rcu_head);
if (ifa->ifa_dev)
in_dev_put(ifa->ifa_dev);
kfree(ifa);
}
static void inet_free_ifa(struct in_ifaddr *ifa)
{
call_rcu(&ifa->rcu_head, inet_rcu_free_ifa);
}
void in_dev_finish_destroy(struct in_device *idev)
{
struct net_device *dev = idev->dev;
WARN_ON(idev->ifa_list);
WARN_ON(idev->mc_list);
kfree(rcu_dereference_protected(idev->mc_hash, 1));
#ifdef NET_REFCNT_DEBUG
pr_debug("%s: %p=%s\n", __func__, idev, dev ? dev->name : "NIL");
#endif
dev_put(dev);
if (!idev->dead)
pr_err("Freeing alive in_device %p\n", idev);
else
kfree(idev);
}
EXPORT_SYMBOL(in_dev_finish_destroy);
static struct in_device *inetdev_init(struct net_device *dev)
{
struct in_device *in_dev;
ASSERT_RTNL();
in_dev = kzalloc(sizeof(*in_dev), GFP_KERNEL);
if (!in_dev)
goto out;
memcpy(&in_dev->cnf, dev_net(dev)->ipv4.devconf_dflt,
sizeof(in_dev->cnf));
in_dev->cnf.sysctl = NULL;
in_dev->dev = dev;
in_dev->arp_parms = neigh_parms_alloc(dev, &arp_tbl);
if (!in_dev->arp_parms)
goto out_kfree;
if (IPV4_DEVCONF(in_dev->cnf, FORWARDING))
dev_disable_lro(dev);
/* Reference in_dev->dev */
dev_hold(dev);
/* Account for reference dev->ip_ptr (below) */
in_dev_hold(in_dev);
devinet_sysctl_register(in_dev);
ip_mc_init_dev(in_dev);
if (dev->flags & IFF_UP)
ip_mc_up(in_dev);
/* we can receive as soon as ip_ptr is set -- do this last */
rcu_assign_pointer(dev->ip_ptr, in_dev);
out:
return in_dev;
out_kfree:
kfree(in_dev);
in_dev = NULL;
goto out;
}
static void in_dev_rcu_put(struct rcu_head *head)
{
struct in_device *idev = container_of(head, struct in_device, rcu_head);
in_dev_put(idev);
}
static void inetdev_destroy(struct in_device *in_dev)
{
struct in_ifaddr *ifa;
struct net_device *dev;
ASSERT_RTNL();
dev = in_dev->dev;
in_dev->dead = 1;
ip_mc_destroy_dev(in_dev);
while ((ifa = in_dev->ifa_list) != NULL) {
inet_del_ifa(in_dev, &in_dev->ifa_list, 0);
inet_free_ifa(ifa);
}
RCU_INIT_POINTER(dev->ip_ptr, NULL);
devinet_sysctl_unregister(in_dev);
neigh_parms_release(&arp_tbl, in_dev->arp_parms);
arp_ifdown(dev);
call_rcu(&in_dev->rcu_head, in_dev_rcu_put);
}
int inet_addr_onlink(struct in_device *in_dev, __be32 a, __be32 b)
{
rcu_read_lock();
for_primary_ifa(in_dev) {
if (inet_ifa_match(a, ifa)) {
if (!b || inet_ifa_match(b, ifa)) {
rcu_read_unlock();
return 1;
}
}
} endfor_ifa(in_dev);
rcu_read_unlock();
return 0;
}
static void __inet_del_ifa(struct in_device *in_dev, struct in_ifaddr **ifap,
int destroy, struct nlmsghdr *nlh, u32 portid)
{
struct in_ifaddr *promote = NULL;
struct in_ifaddr *ifa, *ifa1 = *ifap;
struct in_ifaddr *last_prim = in_dev->ifa_list;
struct in_ifaddr *prev_prom = NULL;
int do_promote = IN_DEV_PROMOTE_SECONDARIES(in_dev);
ASSERT_RTNL();
/* 1. Deleting primary ifaddr forces deletion all secondaries
* unless alias promotion is set
**/
if (!(ifa1->ifa_flags & IFA_F_SECONDARY)) {
struct in_ifaddr **ifap1 = &ifa1->ifa_next;
while ((ifa = *ifap1) != NULL) {
if (!(ifa->ifa_flags & IFA_F_SECONDARY) &&
ifa1->ifa_scope <= ifa->ifa_scope)
last_prim = ifa;
if (!(ifa->ifa_flags & IFA_F_SECONDARY) ||
ifa1->ifa_mask != ifa->ifa_mask ||
!inet_ifa_match(ifa1->ifa_address, ifa)) {
ifap1 = &ifa->ifa_next;
prev_prom = ifa;
continue;
}
if (!do_promote) {
inet_hash_remove(ifa);
*ifap1 = ifa->ifa_next;
rtmsg_ifa(RTM_DELADDR, ifa, nlh, portid);
blocking_notifier_call_chain(&inetaddr_chain,
NETDEV_DOWN, ifa);
inet_free_ifa(ifa);
} else {
promote = ifa;
break;
}
}
}
/* On promotion all secondaries from subnet are changing
* the primary IP, we must remove all their routes silently
* and later to add them back with new prefsrc. Do this
* while all addresses are on the device list.
*/
for (ifa = promote; ifa; ifa = ifa->ifa_next) {
if (ifa1->ifa_mask == ifa->ifa_mask &&
inet_ifa_match(ifa1->ifa_address, ifa))
fib_del_ifaddr(ifa, ifa1);
}
/* 2. Unlink it */
*ifap = ifa1->ifa_next;
inet_hash_remove(ifa1);
/* 3. Announce address deletion */
/* Send message first, then call notifier.
At first sight, FIB update triggered by notifier
will refer to already deleted ifaddr, that could confuse
netlink listeners. It is not true: look, gated sees
that route deleted and if it still thinks that ifaddr
is valid, it will try to restore deleted routes... Grr.
So that, this order is correct.
*/
rtmsg_ifa(RTM_DELADDR, ifa1, nlh, portid);
blocking_notifier_call_chain(&inetaddr_chain, NETDEV_DOWN, ifa1);
if (promote) {
struct in_ifaddr *next_sec = promote->ifa_next;
if (prev_prom) {
prev_prom->ifa_next = promote->ifa_next;
promote->ifa_next = last_prim->ifa_next;
last_prim->ifa_next = promote;
}
promote->ifa_flags &= ~IFA_F_SECONDARY;
rtmsg_ifa(RTM_NEWADDR, promote, nlh, portid);
blocking_notifier_call_chain(&inetaddr_chain,
NETDEV_UP, promote);
for (ifa = next_sec; ifa; ifa = ifa->ifa_next) {
if (ifa1->ifa_mask != ifa->ifa_mask ||
!inet_ifa_match(ifa1->ifa_address, ifa))
continue;
fib_add_ifaddr(ifa);
}
}
if (destroy)
inet_free_ifa(ifa1);
}
static void inet_del_ifa(struct in_device *in_dev, struct in_ifaddr **ifap,
int destroy)
{
__inet_del_ifa(in_dev, ifap, destroy, NULL, 0);
}
static void check_lifetime(struct work_struct *work);
static DECLARE_DELAYED_WORK(check_lifetime_work, check_lifetime);
static int __inet_insert_ifa(struct in_ifaddr *ifa, struct nlmsghdr *nlh,
u32 portid)
{
struct in_device *in_dev = ifa->ifa_dev;
struct in_ifaddr *ifa1, **ifap, **last_primary;
ASSERT_RTNL();
if (!ifa->ifa_local) {
inet_free_ifa(ifa);
return 0;
}
ifa->ifa_flags &= ~IFA_F_SECONDARY;
last_primary = &in_dev->ifa_list;
for (ifap = &in_dev->ifa_list; (ifa1 = *ifap) != NULL;
ifap = &ifa1->ifa_next) {
if (!(ifa1->ifa_flags & IFA_F_SECONDARY) &&
ifa->ifa_scope <= ifa1->ifa_scope)
last_primary = &ifa1->ifa_next;
if (ifa1->ifa_mask == ifa->ifa_mask &&
inet_ifa_match(ifa1->ifa_address, ifa)) {
if (ifa1->ifa_local == ifa->ifa_local) {
inet_free_ifa(ifa);
return -EEXIST;
}
if (ifa1->ifa_scope != ifa->ifa_scope) {
inet_free_ifa(ifa);
return -EINVAL;
}
ifa->ifa_flags |= IFA_F_SECONDARY;
}
}
if (!(ifa->ifa_flags & IFA_F_SECONDARY)) {
prandom_seed((__force u32) ifa->ifa_local);
ifap = last_primary;
}
ifa->ifa_next = *ifap;
*ifap = ifa;
inet_hash_insert(dev_net(in_dev->dev), ifa);
cancel_delayed_work(&check_lifetime_work);
queue_delayed_work(system_power_efficient_wq, &check_lifetime_work, 0);
/* Send message first, then call notifier.
Notifier will trigger FIB update, so that
listeners of netlink will know about new ifaddr */
rtmsg_ifa(RTM_NEWADDR, ifa, nlh, portid);
blocking_notifier_call_chain(&inetaddr_chain, NETDEV_UP, ifa);
return 0;
}
static int inet_insert_ifa(struct in_ifaddr *ifa)
{
return __inet_insert_ifa(ifa, NULL, 0);
}
static int inet_set_ifa(struct net_device *dev, struct in_ifaddr *ifa)
{
struct in_device *in_dev = __in_dev_get_rtnl(dev);
ASSERT_RTNL();
if (!in_dev) {
inet_free_ifa(ifa);
return -ENOBUFS;
}
ipv4_devconf_setall(in_dev);
neigh_parms_data_state_setall(in_dev->arp_parms);
if (ifa->ifa_dev != in_dev) {
WARN_ON(ifa->ifa_dev);
in_dev_hold(in_dev);
ifa->ifa_dev = in_dev;
}
if (ipv4_is_loopback(ifa->ifa_local))
ifa->ifa_scope = RT_SCOPE_HOST;
return inet_insert_ifa(ifa);
}
/* Caller must hold RCU or RTNL :
* We dont take a reference on found in_device
*/
struct in_device *inetdev_by_index(struct net *net, int ifindex)
{
struct net_device *dev;
struct in_device *in_dev = NULL;
rcu_read_lock();
dev = dev_get_by_index_rcu(net, ifindex);
if (dev)
in_dev = rcu_dereference_rtnl(dev->ip_ptr);
rcu_read_unlock();
return in_dev;
}
EXPORT_SYMBOL(inetdev_by_index);
/* Called only from RTNL semaphored context. No locks. */
struct in_ifaddr *inet_ifa_byprefix(struct in_device *in_dev, __be32 prefix,
__be32 mask)
{
ASSERT_RTNL();
for_primary_ifa(in_dev) {
if (ifa->ifa_mask == mask && inet_ifa_match(prefix, ifa))
return ifa;
} endfor_ifa(in_dev);
return NULL;
}
static int inet_rtm_deladdr(struct sk_buff *skb, struct nlmsghdr *nlh)
{
struct net *net = sock_net(skb->sk);
struct nlattr *tb[IFA_MAX+1];
struct in_device *in_dev;
struct ifaddrmsg *ifm;
struct in_ifaddr *ifa, **ifap;
int err = -EINVAL;
ASSERT_RTNL();
err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFA_MAX, ifa_ipv4_policy);
if (err < 0)
goto errout;
ifm = nlmsg_data(nlh);
in_dev = inetdev_by_index(net, ifm->ifa_index);
if (in_dev == NULL) {
err = -ENODEV;
goto errout;
}
for (ifap = &in_dev->ifa_list; (ifa = *ifap) != NULL;
ifap = &ifa->ifa_next) {
if (tb[IFA_LOCAL] &&
ifa->ifa_local != nla_get_be32(tb[IFA_LOCAL]))
continue;
if (tb[IFA_LABEL] && nla_strcmp(tb[IFA_LABEL], ifa->ifa_label))
continue;
if (tb[IFA_ADDRESS] &&
(ifm->ifa_prefixlen != ifa->ifa_prefixlen ||
!inet_ifa_match(nla_get_be32(tb[IFA_ADDRESS]), ifa)))
continue;
__inet_del_ifa(in_dev, ifap, 1, nlh, NETLINK_CB(skb).portid);
return 0;
}
err = -EADDRNOTAVAIL;
errout:
return err;
}
#define INFINITY_LIFE_TIME 0xFFFFFFFF
static void check_lifetime(struct work_struct *work)
{
unsigned long now, next, next_sec, next_sched;
struct in_ifaddr *ifa;
struct hlist_node *n;
int i;
now = jiffies;
next = round_jiffies_up(now + ADDR_CHECK_FREQUENCY);
for (i = 0; i < IN4_ADDR_HSIZE; i++) {
bool change_needed = false;
rcu_read_lock();
hlist_for_each_entry_rcu(ifa, &inet_addr_lst[i], hash) {
unsigned long age;
if (ifa->ifa_flags & IFA_F_PERMANENT)
continue;
/* We try to batch several events at once. */
age = (now - ifa->ifa_tstamp +
ADDRCONF_TIMER_FUZZ_MINUS) / HZ;
if (ifa->ifa_valid_lft != INFINITY_LIFE_TIME &&
age >= ifa->ifa_valid_lft) {
change_needed = true;
} else if (ifa->ifa_preferred_lft ==
INFINITY_LIFE_TIME) {
continue;
} else if (age >= ifa->ifa_preferred_lft) {
if (time_before(ifa->ifa_tstamp +
ifa->ifa_valid_lft * HZ, next))
next = ifa->ifa_tstamp +
ifa->ifa_valid_lft * HZ;
if (!(ifa->ifa_flags & IFA_F_DEPRECATED))
change_needed = true;
} else if (time_before(ifa->ifa_tstamp +
ifa->ifa_preferred_lft * HZ,
next)) {
next = ifa->ifa_tstamp +
ifa->ifa_preferred_lft * HZ;
}
}
rcu_read_unlock();
if (!change_needed)
continue;
rtnl_lock();
hlist_for_each_entry_safe(ifa, n, &inet_addr_lst[i], hash) {
unsigned long age;
if (ifa->ifa_flags & IFA_F_PERMANENT)
continue;
/* We try to batch several events at once. */
age = (now - ifa->ifa_tstamp +
ADDRCONF_TIMER_FUZZ_MINUS) / HZ;
if (ifa->ifa_valid_lft != INFINITY_LIFE_TIME &&
age >= ifa->ifa_valid_lft) {
struct in_ifaddr **ifap;
for (ifap = &ifa->ifa_dev->ifa_list;
*ifap != NULL; ifap = &(*ifap)->ifa_next) {
if (*ifap == ifa) {
inet_del_ifa(ifa->ifa_dev,
ifap, 1);
break;
}
}
} else if (ifa->ifa_preferred_lft !=
INFINITY_LIFE_TIME &&
age >= ifa->ifa_preferred_lft &&
!(ifa->ifa_flags & IFA_F_DEPRECATED)) {
ifa->ifa_flags |= IFA_F_DEPRECATED;
rtmsg_ifa(RTM_NEWADDR, ifa, NULL, 0);
}
}
rtnl_unlock();
}
next_sec = round_jiffies_up(next);
next_sched = next;
/* If rounded timeout is accurate enough, accept it. */
if (time_before(next_sec, next + ADDRCONF_TIMER_FUZZ))
next_sched = next_sec;
now = jiffies;
/* And minimum interval is ADDRCONF_TIMER_FUZZ_MAX. */
if (time_before(next_sched, now + ADDRCONF_TIMER_FUZZ_MAX))
next_sched = now + ADDRCONF_TIMER_FUZZ_MAX;
queue_delayed_work(system_power_efficient_wq, &check_lifetime_work,
next_sched - now);
}
static void set_ifa_lifetime(struct in_ifaddr *ifa, __u32 valid_lft,
__u32 prefered_lft)
{
unsigned long timeout;
ifa->ifa_flags &= ~(IFA_F_PERMANENT | IFA_F_DEPRECATED);
timeout = addrconf_timeout_fixup(valid_lft, HZ);
if (addrconf_finite_timeout(timeout))
ifa->ifa_valid_lft = timeout;
else
ifa->ifa_flags |= IFA_F_PERMANENT;
timeout = addrconf_timeout_fixup(prefered_lft, HZ);
if (addrconf_finite_timeout(timeout)) {
if (timeout == 0)
ifa->ifa_flags |= IFA_F_DEPRECATED;
ifa->ifa_preferred_lft = timeout;
}
ifa->ifa_tstamp = jiffies;
if (!ifa->ifa_cstamp)
ifa->ifa_cstamp = ifa->ifa_tstamp;
}
static struct in_ifaddr *rtm_to_ifaddr(struct net *net, struct nlmsghdr *nlh,
__u32 *pvalid_lft, __u32 *pprefered_lft)
{
struct nlattr *tb[IFA_MAX+1];
struct in_ifaddr *ifa;
struct ifaddrmsg *ifm;
struct net_device *dev;
struct in_device *in_dev;
int err;
err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFA_MAX, ifa_ipv4_policy);
if (err < 0)
goto errout;
ifm = nlmsg_data(nlh);
err = -EINVAL;
if (ifm->ifa_prefixlen > 32 || tb[IFA_LOCAL] == NULL)
goto errout;
dev = __dev_get_by_index(net, ifm->ifa_index);
err = -ENODEV;
if (dev == NULL)
goto errout;
in_dev = __in_dev_get_rtnl(dev);
err = -ENOBUFS;
if (in_dev == NULL)
goto errout;
ifa = inet_alloc_ifa();
if (ifa == NULL)
/*
* A potential indev allocation can be left alive, it stays
* assigned to its device and is destroy with it.
*/
goto errout;
ipv4_devconf_setall(in_dev);
neigh_parms_data_state_setall(in_dev->arp_parms);
in_dev_hold(in_dev);
if (tb[IFA_ADDRESS] == NULL)
tb[IFA_ADDRESS] = tb[IFA_LOCAL];
INIT_HLIST_NODE(&ifa->hash);
ifa->ifa_prefixlen = ifm->ifa_prefixlen;
ifa->ifa_mask = inet_make_mask(ifm->ifa_prefixlen);
ifa->ifa_flags = tb[IFA_FLAGS] ? nla_get_u32(tb[IFA_FLAGS]) :
ifm->ifa_flags;
ifa->ifa_scope = ifm->ifa_scope;
ifa->ifa_dev = in_dev;
ifa->ifa_local = nla_get_be32(tb[IFA_LOCAL]);
ifa->ifa_address = nla_get_be32(tb[IFA_ADDRESS]);
if (tb[IFA_BROADCAST])
ifa->ifa_broadcast = nla_get_be32(tb[IFA_BROADCAST]);
if (tb[IFA_LABEL])
nla_strlcpy(ifa->ifa_label, tb[IFA_LABEL], IFNAMSIZ);
else
memcpy(ifa->ifa_label, dev->name, IFNAMSIZ);
if (tb[IFA_CACHEINFO]) {
struct ifa_cacheinfo *ci;
ci = nla_data(tb[IFA_CACHEINFO]);
if (!ci->ifa_valid || ci->ifa_prefered > ci->ifa_valid) {
err = -EINVAL;
goto errout_free;
}
*pvalid_lft = ci->ifa_valid;
*pprefered_lft = ci->ifa_prefered;
}
return ifa;
errout_free:
inet_free_ifa(ifa);
errout:
return ERR_PTR(err);
}
static struct in_ifaddr *find_matching_ifa(struct in_ifaddr *ifa)
{
struct in_device *in_dev = ifa->ifa_dev;
struct in_ifaddr *ifa1, **ifap;
if (!ifa->ifa_local)
return NULL;
for (ifap = &in_dev->ifa_list; (ifa1 = *ifap) != NULL;
ifap = &ifa1->ifa_next) {
if (ifa1->ifa_mask == ifa->ifa_mask &&
inet_ifa_match(ifa1->ifa_address, ifa) &&
ifa1->ifa_local == ifa->ifa_local)
return ifa1;
}
return NULL;
}
static int inet_rtm_newaddr(struct sk_buff *skb, struct nlmsghdr *nlh)
{
struct net *net = sock_net(skb->sk);
struct in_ifaddr *ifa;
struct in_ifaddr *ifa_existing;
__u32 valid_lft = INFINITY_LIFE_TIME;
__u32 prefered_lft = INFINITY_LIFE_TIME;
ASSERT_RTNL();
ifa = rtm_to_ifaddr(net, nlh, &valid_lft, &prefered_lft);
if (IS_ERR(ifa))
return PTR_ERR(ifa);
ifa_existing = find_matching_ifa(ifa);
if (!ifa_existing) {
/* It would be best to check for !NLM_F_CREATE here but
* userspace alreay relies on not having to provide this.
*/
set_ifa_lifetime(ifa, valid_lft, prefered_lft);
return __inet_insert_ifa(ifa, nlh, NETLINK_CB(skb).portid);
} else {
inet_free_ifa(ifa);
if (nlh->nlmsg_flags & NLM_F_EXCL ||
!(nlh->nlmsg_flags & NLM_F_REPLACE))
return -EEXIST;
ifa = ifa_existing;
set_ifa_lifetime(ifa, valid_lft, prefered_lft);
cancel_delayed_work(&check_lifetime_work);
queue_delayed_work(system_power_efficient_wq,
&check_lifetime_work, 0);
rtmsg_ifa(RTM_NEWADDR, ifa, nlh, NETLINK_CB(skb).portid);
blocking_notifier_call_chain(&inetaddr_chain, NETDEV_UP, ifa);
}
return 0;
}
/*
* Determine a default network mask, based on the IP address.
*/
static int inet_abc_len(__be32 addr)
{
int rc = -1; /* Something else, probably a multicast. */
if (ipv4_is_zeronet(addr))
rc = 0;
else {
__u32 haddr = ntohl(addr);
if (IN_CLASSA(haddr))
rc = 8;
else if (IN_CLASSB(haddr))
rc = 16;
else if (IN_CLASSC(haddr))
rc = 24;
}
return rc;
}
int devinet_ioctl(struct net *net, unsigned int cmd, void __user *arg)
{
struct ifreq ifr;
struct sockaddr_in sin_orig;
struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr;
struct in_device *in_dev;
struct in_ifaddr **ifap = NULL;
struct in_ifaddr *ifa = NULL;
struct net_device *dev;
char *colon;
int ret = -EFAULT;
int tryaddrmatch = 0;
/*
* Fetch the caller's info block into kernel space
*/
if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
goto out;
ifr.ifr_name[IFNAMSIZ - 1] = 0;
/* save original address for comparison */
memcpy(&sin_orig, sin, sizeof(*sin));
colon = strchr(ifr.ifr_name, ':');
if (colon)
*colon = 0;
dev_load(net, ifr.ifr_name);
switch (cmd) {
case SIOCGIFADDR: /* Get interface address */
case SIOCGIFBRDADDR: /* Get the broadcast address */
case SIOCGIFDSTADDR: /* Get the destination address */
case SIOCGIFNETMASK: /* Get the netmask for the interface */
/* Note that these ioctls will not sleep,
so that we do not impose a lock.
One day we will be forced to put shlock here (I mean SMP)
*/
tryaddrmatch = (sin_orig.sin_family == AF_INET);
memset(sin, 0, sizeof(*sin));
sin->sin_family = AF_INET;
break;
case SIOCSIFFLAGS:
ret = -EPERM;
if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
goto out;
break;
case SIOCSIFADDR: /* Set interface address (and family) */
case SIOCSIFBRDADDR: /* Set the broadcast address */
case SIOCSIFDSTADDR: /* Set the destination address */
case SIOCSIFNETMASK: /* Set the netmask for the interface */
ret = -EPERM;
if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
goto out;
ret = -EINVAL;
if (sin->sin_family != AF_INET)
goto out;
break;
default:
ret = -EINVAL;
goto out;
}
rtnl_lock();
ret = -ENODEV;
dev = __dev_get_by_name(net, ifr.ifr_name);
if (!dev)
goto done;
if (colon)
*colon = ':';
in_dev = __in_dev_get_rtnl(dev);
if (in_dev) {
if (tryaddrmatch) {
/* Matthias Andree */
/* compare label and address (4.4BSD style) */
/* note: we only do this for a limited set of ioctls
and only if the original address family was AF_INET.
This is checked above. */
for (ifap = &in_dev->ifa_list; (ifa = *ifap) != NULL;
ifap = &ifa->ifa_next) {
if (!strcmp(ifr.ifr_name, ifa->ifa_label) &&
sin_orig.sin_addr.s_addr ==
ifa->ifa_local) {
break; /* found */
}
}
}
/* we didn't get a match, maybe the application is
4.3BSD-style and passed in junk so we fall back to
comparing just the label */
if (!ifa) {
for (ifap = &in_dev->ifa_list; (ifa = *ifap) != NULL;
ifap = &ifa->ifa_next)
if (!strcmp(ifr.ifr_name, ifa->ifa_label))
break;
}
}
ret = -EADDRNOTAVAIL;
if (!ifa && cmd != SIOCSIFADDR && cmd != SIOCSIFFLAGS)
goto done;
switch (cmd) {
case SIOCGIFADDR: /* Get interface address */
sin->sin_addr.s_addr = ifa->ifa_local;
goto rarok;
case SIOCGIFBRDADDR: /* Get the broadcast address */
sin->sin_addr.s_addr = ifa->ifa_broadcast;
goto rarok;
case SIOCGIFDSTADDR: /* Get the destination address */
sin->sin_addr.s_addr = ifa->ifa_address;
goto rarok;
case SIOCGIFNETMASK: /* Get the netmask for the interface */
sin->sin_addr.s_addr = ifa->ifa_mask;
goto rarok;
case SIOCSIFFLAGS:
if (colon) {
ret = -EADDRNOTAVAIL;
if (!ifa)
break;
ret = 0;
if (!(ifr.ifr_flags & IFF_UP))
inet_del_ifa(in_dev, ifap, 1);
break;
}
ret = dev_change_flags(dev, ifr.ifr_flags);
break;
case SIOCSIFADDR: /* Set interface address (and family) */
ret = -EINVAL;
if (inet_abc_len(sin->sin_addr.s_addr) < 0)
break;
if (!ifa) {
ret = -ENOBUFS;
ifa = inet_alloc_ifa();
if (!ifa)
break;
INIT_HLIST_NODE(&ifa->hash);
if (colon)
memcpy(ifa->ifa_label, ifr.ifr_name, IFNAMSIZ);
else
memcpy(ifa->ifa_label, dev->name, IFNAMSIZ);
} else {
ret = 0;
if (ifa->ifa_local == sin->sin_addr.s_addr)
break;
inet_del_ifa(in_dev, ifap, 0);
ifa->ifa_broadcast = 0;
ifa->ifa_scope = 0;
}
ifa->ifa_address = ifa->ifa_local = sin->sin_addr.s_addr;
if (!(dev->flags & IFF_POINTOPOINT)) {
ifa->ifa_prefixlen = inet_abc_len(ifa->ifa_address);
ifa->ifa_mask = inet_make_mask(ifa->ifa_prefixlen);
if ((dev->flags & IFF_BROADCAST) &&
ifa->ifa_prefixlen < 31)
ifa->ifa_broadcast = ifa->ifa_address |
~ifa->ifa_mask;
} else {
ifa->ifa_prefixlen = 32;
ifa->ifa_mask = inet_make_mask(32);
}
set_ifa_lifetime(ifa, INFINITY_LIFE_TIME, INFINITY_LIFE_TIME);
ret = inet_set_ifa(dev, ifa);
break;
case SIOCSIFBRDADDR: /* Set the broadcast address */
ret = 0;
if (ifa->ifa_broadcast != sin->sin_addr.s_addr) {
inet_del_ifa(in_dev, ifap, 0);
ifa->ifa_broadcast = sin->sin_addr.s_addr;
inet_insert_ifa(ifa);
}
break;
case SIOCSIFDSTADDR: /* Set the destination address */
ret = 0;
if (ifa->ifa_address == sin->sin_addr.s_addr)
break;
ret = -EINVAL;
if (inet_abc_len(sin->sin_addr.s_addr) < 0)
break;
ret = 0;
inet_del_ifa(in_dev, ifap, 0);
ifa->ifa_address = sin->sin_addr.s_addr;
inet_insert_ifa(ifa);
break;
case SIOCSIFNETMASK: /* Set the netmask for the interface */
/*
* The mask we set must be legal.
*/
ret = -EINVAL;
if (bad_mask(sin->sin_addr.s_addr, 0))
break;
ret = 0;
if (ifa->ifa_mask != sin->sin_addr.s_addr) {
__be32 old_mask = ifa->ifa_mask;
inet_del_ifa(in_dev, ifap, 0);
ifa->ifa_mask = sin->sin_addr.s_addr;
ifa->ifa_prefixlen = inet_mask_len(ifa->ifa_mask);
/* See if current broadcast address matches
* with current netmask, then recalculate
* the broadcast address. Otherwise it's a
* funny address, so don't touch it since
* the user seems to know what (s)he's doing...
*/
if ((dev->flags & IFF_BROADCAST) &&
(ifa->ifa_prefixlen < 31) &&
(ifa->ifa_broadcast ==
(ifa->ifa_local|~old_mask))) {
ifa->ifa_broadcast = (ifa->ifa_local |
~sin->sin_addr.s_addr);
}
inet_insert_ifa(ifa);
}
break;
}
done:
rtnl_unlock();
out:
return ret;
rarok:
rtnl_unlock();
ret = copy_to_user(arg, &ifr, sizeof(struct ifreq)) ? -EFAULT : 0;
goto out;
}
static int inet_gifconf(struct net_device *dev, char __user *buf, int len)
{
struct in_device *in_dev = __in_dev_get_rtnl(dev);
struct in_ifaddr *ifa;
struct ifreq ifr;
int done = 0;
if (!in_dev)
goto out;
for (ifa = in_dev->ifa_list; ifa; ifa = ifa->ifa_next) {
if (!buf) {
done += sizeof(ifr);
continue;
}
if (len < (int) sizeof(ifr))
break;
memset(&ifr, 0, sizeof(struct ifreq));
strcpy(ifr.ifr_name, ifa->ifa_label);
(*(struct sockaddr_in *)&ifr.ifr_addr).sin_family = AF_INET;
(*(struct sockaddr_in *)&ifr.ifr_addr).sin_addr.s_addr =
ifa->ifa_local;
if (copy_to_user(buf, &ifr, sizeof(struct ifreq))) {
done = -EFAULT;
break;
}
buf += sizeof(struct ifreq);
len -= sizeof(struct ifreq);
done += sizeof(struct ifreq);
}
out:
return done;
}
__be32 inet_select_addr(const struct net_device *dev, __be32 dst, int scope)
{
__be32 addr = 0;
struct in_device *in_dev;
struct net *net = dev_net(dev);
rcu_read_lock();
in_dev = __in_dev_get_rcu(dev);
if (!in_dev)
goto no_in_dev;
for_primary_ifa(in_dev) {
if (ifa->ifa_scope > scope)
continue;
if (!dst || inet_ifa_match(dst, ifa)) {
addr = ifa->ifa_local;
break;
}
if (!addr)
addr = ifa->ifa_local;
} endfor_ifa(in_dev);
if (addr)
goto out_unlock;
no_in_dev:
/* Not loopback addresses on loopback should be preferred
in this case. It is importnat that lo is the first interface
in dev_base list.
*/
for_each_netdev_rcu(net, dev) {
in_dev = __in_dev_get_rcu(dev);
if (!in_dev)
continue;
for_primary_ifa(in_dev) {
if (ifa->ifa_scope != RT_SCOPE_LINK &&
ifa->ifa_scope <= scope) {
addr = ifa->ifa_local;
goto out_unlock;
}
} endfor_ifa(in_dev);
}
out_unlock:
rcu_read_unlock();
return addr;
}
EXPORT_SYMBOL(inet_select_addr);
static __be32 confirm_addr_indev(struct in_device *in_dev, __be32 dst,
__be32 local, int scope)
{
int same = 0;
__be32 addr = 0;
for_ifa(in_dev) {
if (!addr &&
(local == ifa->ifa_local || !local) &&
ifa->ifa_scope <= scope) {
addr = ifa->ifa_local;
if (same)
break;
}
if (!same) {
same = (!local || inet_ifa_match(local, ifa)) &&
(!dst || inet_ifa_match(dst, ifa));
if (same && addr) {
if (local || !dst)
break;
/* Is the selected addr into dst subnet? */
if (inet_ifa_match(addr, ifa))
break;
/* No, then can we use new local src? */
if (ifa->ifa_scope <= scope) {
addr = ifa->ifa_local;
break;
}
/* search for large dst subnet for addr */
same = 0;
}
}
} endfor_ifa(in_dev);
return same ? addr : 0;
}
/*
* Confirm that local IP address exists using wildcards:
* - net: netns to check, cannot be NULL
* - in_dev: only on this interface, NULL=any interface
* - dst: only in the same subnet as dst, 0=any dst
* - local: address, 0=autoselect the local address
* - scope: maximum allowed scope value for the local address
*/
__be32 inet_confirm_addr(struct net *net, struct in_device *in_dev,
__be32 dst, __be32 local, int scope)
{
__be32 addr = 0;
struct net_device *dev;
if (in_dev != NULL)
return confirm_addr_indev(in_dev, dst, local, scope);
rcu_read_lock();
for_each_netdev_rcu(net, dev) {
in_dev = __in_dev_get_rcu(dev);
if (in_dev) {
addr = confirm_addr_indev(in_dev, dst, local, scope);
if (addr)
break;
}
}
rcu_read_unlock();
return addr;
}
EXPORT_SYMBOL(inet_confirm_addr);
/*
* Device notifier
*/
int register_inetaddr_notifier(struct notifier_block *nb)
{
return blocking_notifier_chain_register(&inetaddr_chain, nb);
}
EXPORT_SYMBOL(register_inetaddr_notifier);
int unregister_inetaddr_notifier(struct notifier_block *nb)
{
return blocking_notifier_chain_unregister(&inetaddr_chain, nb);
}
EXPORT_SYMBOL(unregister_inetaddr_notifier);
/* Rename ifa_labels for a device name change. Make some effort to preserve
* existing alias numbering and to create unique labels if possible.
*/
static void inetdev_changename(struct net_device *dev, struct in_device *in_dev)
{
struct in_ifaddr *ifa;
int named = 0;
for (ifa = in_dev->ifa_list; ifa; ifa = ifa->ifa_next) {
char old[IFNAMSIZ], *dot;
memcpy(old, ifa->ifa_label, IFNAMSIZ);
memcpy(ifa->ifa_label, dev->name, IFNAMSIZ);
if (named++ == 0)
goto skip;
dot = strchr(old, ':');
if (dot == NULL) {
sprintf(old, ":%d", named);
dot = old;
}
if (strlen(dot) + strlen(dev->name) < IFNAMSIZ)
strcat(ifa->ifa_label, dot);
else
strcpy(ifa->ifa_label + (IFNAMSIZ - strlen(dot) - 1), dot);
skip:
rtmsg_ifa(RTM_NEWADDR, ifa, NULL, 0);
}
}
static bool inetdev_valid_mtu(unsigned int mtu)
{
return mtu >= 68;
}
static void inetdev_send_gratuitous_arp(struct net_device *dev,
struct in_device *in_dev)
{
struct in_ifaddr *ifa;
for (ifa = in_dev->ifa_list; ifa;
ifa = ifa->ifa_next) {
arp_send(ARPOP_REQUEST, ETH_P_ARP,
ifa->ifa_local, dev,
ifa->ifa_local, NULL,
dev->dev_addr, NULL);
}
}
/* Called only under RTNL semaphore */
static int inetdev_event(struct notifier_block *this, unsigned long event,
void *ptr)
{
struct net_device *dev = netdev_notifier_info_to_dev(ptr);
struct in_device *in_dev = __in_dev_get_rtnl(dev);
ASSERT_RTNL();
if (!in_dev) {
if (event == NETDEV_REGISTER) {
in_dev = inetdev_init(dev);
if (!in_dev)
return notifier_from_errno(-ENOMEM);
if (dev->flags & IFF_LOOPBACK) {
IN_DEV_CONF_SET(in_dev, NOXFRM, 1);
IN_DEV_CONF_SET(in_dev, NOPOLICY, 1);
}
} else if (event == NETDEV_CHANGEMTU) {
/* Re-enabling IP */
if (inetdev_valid_mtu(dev->mtu))
in_dev = inetdev_init(dev);
}
goto out;
}
switch (event) {
case NETDEV_REGISTER:
pr_debug("%s: bug\n", __func__);
RCU_INIT_POINTER(dev->ip_ptr, NULL);
break;
case NETDEV_UP:
if (!inetdev_valid_mtu(dev->mtu))
break;
if (dev->flags & IFF_LOOPBACK) {
struct in_ifaddr *ifa = inet_alloc_ifa();
if (ifa) {
INIT_HLIST_NODE(&ifa->hash);
ifa->ifa_local =
ifa->ifa_address = htonl(INADDR_LOOPBACK);
ifa->ifa_prefixlen = 8;
ifa->ifa_mask = inet_make_mask(8);
in_dev_hold(in_dev);
ifa->ifa_dev = in_dev;
ifa->ifa_scope = RT_SCOPE_HOST;
memcpy(ifa->ifa_label, dev->name, IFNAMSIZ);
set_ifa_lifetime(ifa, INFINITY_LIFE_TIME,
INFINITY_LIFE_TIME);
ipv4_devconf_setall(in_dev);
neigh_parms_data_state_setall(in_dev->arp_parms);
inet_insert_ifa(ifa);
}
}
ip_mc_up(in_dev);
/* fall through */
case NETDEV_CHANGEADDR:
if (!IN_DEV_ARP_NOTIFY(in_dev))
break;
/* fall through */
case NETDEV_NOTIFY_PEERS:
/* Send gratuitous ARP to notify of link change */
inetdev_send_gratuitous_arp(dev, in_dev);
break;
case NETDEV_DOWN:
ip_mc_down(in_dev);
break;
case NETDEV_PRE_TYPE_CHANGE:
ip_mc_unmap(in_dev);
break;
case NETDEV_POST_TYPE_CHANGE:
ip_mc_remap(in_dev);
break;
case NETDEV_CHANGEMTU:
if (inetdev_valid_mtu(dev->mtu))
break;
/* disable IP when MTU is not enough */
case NETDEV_UNREGISTER:
inetdev_destroy(in_dev);
break;
case NETDEV_CHANGENAME:
/* Do not notify about label change, this event is
* not interesting to applications using netlink.
*/
inetdev_changename(dev, in_dev);
devinet_sysctl_unregister(in_dev);
devinet_sysctl_register(in_dev);
break;
}
out:
return NOTIFY_DONE;
}
static struct notifier_block ip_netdev_notifier = {
.notifier_call = inetdev_event,
};
static size_t inet_nlmsg_size(void)
{
return NLMSG_ALIGN(sizeof(struct ifaddrmsg))
+ nla_total_size(4) /* IFA_ADDRESS */
+ nla_total_size(4) /* IFA_LOCAL */
+ nla_total_size(4) /* IFA_BROADCAST */
+ nla_total_size(IFNAMSIZ) /* IFA_LABEL */
+ nla_total_size(4) /* IFA_FLAGS */
+ nla_total_size(sizeof(struct ifa_cacheinfo)); /* IFA_CACHEINFO */
}
static inline u32 cstamp_delta(unsigned long cstamp)
{
return (cstamp - INITIAL_JIFFIES) * 100UL / HZ;
}
static int put_cacheinfo(struct sk_buff *skb, unsigned long cstamp,
unsigned long tstamp, u32 preferred, u32 valid)
{
struct ifa_cacheinfo ci;
ci.cstamp = cstamp_delta(cstamp);
ci.tstamp = cstamp_delta(tstamp);
ci.ifa_prefered = preferred;
ci.ifa_valid = valid;
return nla_put(skb, IFA_CACHEINFO, sizeof(ci), &ci);
}
static int inet_fill_ifaddr(struct sk_buff *skb, struct in_ifaddr *ifa,
u32 portid, u32 seq, int event, unsigned int flags)
{
struct ifaddrmsg *ifm;
struct nlmsghdr *nlh;
u32 preferred, valid;
nlh = nlmsg_put(skb, portid, seq, event, sizeof(*ifm), flags);
if (nlh == NULL)
return -EMSGSIZE;
ifm = nlmsg_data(nlh);
ifm->ifa_family = AF_INET;
ifm->ifa_prefixlen = ifa->ifa_prefixlen;
ifm->ifa_flags = ifa->ifa_flags;
ifm->ifa_scope = ifa->ifa_scope;
ifm->ifa_index = ifa->ifa_dev->dev->ifindex;
if (!(ifm->ifa_flags & IFA_F_PERMANENT)) {
preferred = ifa->ifa_preferred_lft;
valid = ifa->ifa_valid_lft;
if (preferred != INFINITY_LIFE_TIME) {
long tval = (jiffies - ifa->ifa_tstamp) / HZ;
if (preferred > tval)
preferred -= tval;
else
preferred = 0;
if (valid != INFINITY_LIFE_TIME) {
if (valid > tval)
valid -= tval;
else
valid = 0;
}
}
} else {
preferred = INFINITY_LIFE_TIME;
valid = INFINITY_LIFE_TIME;
}
if ((ifa->ifa_address &&
nla_put_be32(skb, IFA_ADDRESS, ifa->ifa_address)) ||
(ifa->ifa_local &&
nla_put_be32(skb, IFA_LOCAL, ifa->ifa_local)) ||
(ifa->ifa_broadcast &&
nla_put_be32(skb, IFA_BROADCAST, ifa->ifa_broadcast)) ||
(ifa->ifa_label[0] &&
nla_put_string(skb, IFA_LABEL, ifa->ifa_label)) ||
nla_put_u32(skb, IFA_FLAGS, ifa->ifa_flags) ||
put_cacheinfo(skb, ifa->ifa_cstamp, ifa->ifa_tstamp,
preferred, valid))
goto nla_put_failure;
return nlmsg_end(skb, nlh);
nla_put_failure:
nlmsg_cancel(skb, nlh);
return -EMSGSIZE;
}
static int inet_dump_ifaddr(struct sk_buff *skb, struct netlink_callback *cb)
{
struct net *net = sock_net(skb->sk);
int h, s_h;
int idx, s_idx;
int ip_idx, s_ip_idx;
struct net_device *dev;
struct in_device *in_dev;
struct in_ifaddr *ifa;
struct hlist_head *head;
s_h = cb->args[0];
s_idx = idx = cb->args[1];
s_ip_idx = ip_idx = cb->args[2];
for (h = s_h; h < NETDEV_HASHENTRIES; h++, s_idx = 0) {
idx = 0;
head = &net->dev_index_head[h];
rcu_read_lock();
cb->seq = atomic_read(&net->ipv4.dev_addr_genid) ^
net->dev_base_seq;
hlist_for_each_entry_rcu(dev, head, index_hlist) {
if (idx < s_idx)
goto cont;
if (h > s_h || idx > s_idx)
s_ip_idx = 0;
in_dev = __in_dev_get_rcu(dev);
if (!in_dev)
goto cont;
for (ifa = in_dev->ifa_list, ip_idx = 0; ifa;
ifa = ifa->ifa_next, ip_idx++) {
if (ip_idx < s_ip_idx)
continue;
if (inet_fill_ifaddr(skb, ifa,
NETLINK_CB(cb->skb).portid,
cb->nlh->nlmsg_seq,
RTM_NEWADDR, NLM_F_MULTI) <= 0) {
rcu_read_unlock();
goto done;
}
nl_dump_check_consistent(cb, nlmsg_hdr(skb));
}
cont:
idx++;
}
rcu_read_unlock();
}
done:
cb->args[0] = h;
cb->args[1] = idx;
cb->args[2] = ip_idx;
return skb->len;
}
static void rtmsg_ifa(int event, struct in_ifaddr *ifa, struct nlmsghdr *nlh,
u32 portid)
{
struct sk_buff *skb;
u32 seq = nlh ? nlh->nlmsg_seq : 0;
int err = -ENOBUFS;
struct net *net;
net = dev_net(ifa->ifa_dev->dev);
skb = nlmsg_new(inet_nlmsg_size(), GFP_KERNEL);
if (skb == NULL)
goto errout;
err = inet_fill_ifaddr(skb, ifa, portid, seq, event, 0);
if (err < 0) {
/* -EMSGSIZE implies BUG in inet_nlmsg_size() */
WARN_ON(err == -EMSGSIZE);
kfree_skb(skb);
goto errout;
}
rtnl_notify(skb, net, portid, RTNLGRP_IPV4_IFADDR, nlh, GFP_KERNEL);
return;
errout:
if (err < 0)
rtnl_set_sk_err(net, RTNLGRP_IPV4_IFADDR, err);
}
static size_t inet_get_link_af_size(const struct net_device *dev)
{
struct in_device *in_dev = rcu_dereference_rtnl(dev->ip_ptr);
if (!in_dev)
return 0;
return nla_total_size(IPV4_DEVCONF_MAX * 4); /* IFLA_INET_CONF */
}
static int inet_fill_link_af(struct sk_buff *skb, const struct net_device *dev)
{
struct in_device *in_dev = rcu_dereference_rtnl(dev->ip_ptr);
struct nlattr *nla;
int i;
if (!in_dev)
return -ENODATA;
nla = nla_reserve(skb, IFLA_INET_CONF, IPV4_DEVCONF_MAX * 4);
if (nla == NULL)
return -EMSGSIZE;
for (i = 0; i < IPV4_DEVCONF_MAX; i++)
((u32 *) nla_data(nla))[i] = in_dev->cnf.data[i];
return 0;
}
static const struct nla_policy inet_af_policy[IFLA_INET_MAX+1] = {
[IFLA_INET_CONF] = { .type = NLA_NESTED },
};
static int inet_validate_link_af(const struct net_device *dev,
const struct nlattr *nla)
{
struct nlattr *a, *tb[IFLA_INET_MAX+1];
int err, rem;
if (dev && !__in_dev_get_rtnl(dev))
return -EAFNOSUPPORT;
err = nla_parse_nested(tb, IFLA_INET_MAX, nla, inet_af_policy);
if (err < 0)
return err;
if (tb[IFLA_INET_CONF]) {
nla_for_each_nested(a, tb[IFLA_INET_CONF], rem) {
int cfgid = nla_type(a);
if (nla_len(a) < 4)
return -EINVAL;
if (cfgid <= 0 || cfgid > IPV4_DEVCONF_MAX)
return -EINVAL;
}
}
return 0;
}
static int inet_set_link_af(struct net_device *dev, const struct nlattr *nla)
{
struct in_device *in_dev = __in_dev_get_rtnl(dev);
struct nlattr *a, *tb[IFLA_INET_MAX+1];
int rem;
if (!in_dev)
return -EAFNOSUPPORT;
if (nla_parse_nested(tb, IFLA_INET_MAX, nla, NULL) < 0)
BUG();
if (tb[IFLA_INET_CONF]) {
nla_for_each_nested(a, tb[IFLA_INET_CONF], rem)
ipv4_devconf_set(in_dev, nla_type(a), nla_get_u32(a));
}
return 0;
}
static int inet_netconf_msgsize_devconf(int type)
{
int size = NLMSG_ALIGN(sizeof(struct netconfmsg))
+ nla_total_size(4); /* NETCONFA_IFINDEX */
/* type -1 is used for ALL */
if (type == -1 || type == NETCONFA_FORWARDING)
size += nla_total_size(4);
if (type == -1 || type == NETCONFA_RP_FILTER)
size += nla_total_size(4);
if (type == -1 || type == NETCONFA_MC_FORWARDING)
size += nla_total_size(4);
if (type == -1 || type == NETCONFA_PROXY_NEIGH)
size += nla_total_size(4);
return size;
}
static int inet_netconf_fill_devconf(struct sk_buff *skb, int ifindex,
struct ipv4_devconf *devconf, u32 portid,
u32 seq, int event, unsigned int flags,
int type)
{
struct nlmsghdr *nlh;
struct netconfmsg *ncm;
nlh = nlmsg_put(skb, portid, seq, event, sizeof(struct netconfmsg),
flags);
if (nlh == NULL)
return -EMSGSIZE;
ncm = nlmsg_data(nlh);
ncm->ncm_family = AF_INET;
if (nla_put_s32(skb, NETCONFA_IFINDEX, ifindex) < 0)
goto nla_put_failure;
/* type -1 is used for ALL */
if ((type == -1 || type == NETCONFA_FORWARDING) &&
nla_put_s32(skb, NETCONFA_FORWARDING,
IPV4_DEVCONF(*devconf, FORWARDING)) < 0)
goto nla_put_failure;
if ((type == -1 || type == NETCONFA_RP_FILTER) &&
nla_put_s32(skb, NETCONFA_RP_FILTER,
IPV4_DEVCONF(*devconf, RP_FILTER)) < 0)
goto nla_put_failure;
if ((type == -1 || type == NETCONFA_MC_FORWARDING) &&
nla_put_s32(skb, NETCONFA_MC_FORWARDING,
IPV4_DEVCONF(*devconf, MC_FORWARDING)) < 0)
goto nla_put_failure;
if ((type == -1 || type == NETCONFA_PROXY_NEIGH) &&
nla_put_s32(skb, NETCONFA_PROXY_NEIGH,
IPV4_DEVCONF(*devconf, PROXY_ARP)) < 0)
goto nla_put_failure;
return nlmsg_end(skb, nlh);
nla_put_failure:
nlmsg_cancel(skb, nlh);
return -EMSGSIZE;
}
void inet_netconf_notify_devconf(struct net *net, int type, int ifindex,
struct ipv4_devconf *devconf)
{
struct sk_buff *skb;
int err = -ENOBUFS;
skb = nlmsg_new(inet_netconf_msgsize_devconf(type), GFP_ATOMIC);
if (skb == NULL)
goto errout;
err = inet_netconf_fill_devconf(skb, ifindex, devconf, 0, 0,
RTM_NEWNETCONF, 0, type);
if (err < 0) {
/* -EMSGSIZE implies BUG in inet_netconf_msgsize_devconf() */
WARN_ON(err == -EMSGSIZE);
kfree_skb(skb);
goto errout;
}
rtnl_notify(skb, net, 0, RTNLGRP_IPV4_NETCONF, NULL, GFP_ATOMIC);
return;
errout:
if (err < 0)
rtnl_set_sk_err(net, RTNLGRP_IPV4_NETCONF, err);
}
static const struct nla_policy devconf_ipv4_policy[NETCONFA_MAX+1] = {
[NETCONFA_IFINDEX] = { .len = sizeof(int) },
[NETCONFA_FORWARDING] = { .len = sizeof(int) },
[NETCONFA_RP_FILTER] = { .len = sizeof(int) },
[NETCONFA_PROXY_NEIGH] = { .len = sizeof(int) },
};
static int inet_netconf_get_devconf(struct sk_buff *in_skb,
struct nlmsghdr *nlh)
{
struct net *net = sock_net(in_skb->sk);
struct nlattr *tb[NETCONFA_MAX+1];
struct netconfmsg *ncm;
struct sk_buff *skb;
struct ipv4_devconf *devconf;
struct in_device *in_dev;
struct net_device *dev;
int ifindex;
int err;
err = nlmsg_parse(nlh, sizeof(*ncm), tb, NETCONFA_MAX,
devconf_ipv4_policy);
if (err < 0)
goto errout;
err = EINVAL;
if (!tb[NETCONFA_IFINDEX])
goto errout;
ifindex = nla_get_s32(tb[NETCONFA_IFINDEX]);
switch (ifindex) {
case NETCONFA_IFINDEX_ALL:
devconf = net->ipv4.devconf_all;
break;
case NETCONFA_IFINDEX_DEFAULT:
devconf = net->ipv4.devconf_dflt;
break;
default:
dev = __dev_get_by_index(net, ifindex);
if (dev == NULL)
goto errout;
in_dev = __in_dev_get_rtnl(dev);
if (in_dev == NULL)
goto errout;
devconf = &in_dev->cnf;
break;
}
err = -ENOBUFS;
skb = nlmsg_new(inet_netconf_msgsize_devconf(-1), GFP_ATOMIC);
if (skb == NULL)
goto errout;
err = inet_netconf_fill_devconf(skb, ifindex, devconf,
NETLINK_CB(in_skb).portid,
nlh->nlmsg_seq, RTM_NEWNETCONF, 0,
-1);
if (err < 0) {
/* -EMSGSIZE implies BUG in inet_netconf_msgsize_devconf() */
WARN_ON(err == -EMSGSIZE);
kfree_skb(skb);
goto errout;
}
err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);
errout:
return err;
}
static int inet_netconf_dump_devconf(struct sk_buff *skb,
struct netlink_callback *cb)
{
struct net *net = sock_net(skb->sk);
int h, s_h;
int idx, s_idx;
struct net_device *dev;
struct in_device *in_dev;
struct hlist_head *head;
s_h = cb->args[0];
s_idx = idx = cb->args[1];
for (h = s_h; h < NETDEV_HASHENTRIES; h++, s_idx = 0) {
idx = 0;
head = &net->dev_index_head[h];
rcu_read_lock();
cb->seq = atomic_read(&net->ipv4.dev_addr_genid) ^
net->dev_base_seq;
hlist_for_each_entry_rcu(dev, head, index_hlist) {
if (idx < s_idx)
goto cont;
in_dev = __in_dev_get_rcu(dev);
if (!in_dev)
goto cont;
if (inet_netconf_fill_devconf(skb, dev->ifindex,
&in_dev->cnf,
NETLINK_CB(cb->skb).portid,
cb->nlh->nlmsg_seq,
RTM_NEWNETCONF,
NLM_F_MULTI,
-1) <= 0) {
rcu_read_unlock();
goto done;
}
nl_dump_check_consistent(cb, nlmsg_hdr(skb));
cont:
idx++;
}
rcu_read_unlock();
}
if (h == NETDEV_HASHENTRIES) {
if (inet_netconf_fill_devconf(skb, NETCONFA_IFINDEX_ALL,
net->ipv4.devconf_all,
NETLINK_CB(cb->skb).portid,
cb->nlh->nlmsg_seq,
RTM_NEWNETCONF, NLM_F_MULTI,
-1) <= 0)
goto done;
else
h++;
}
if (h == NETDEV_HASHENTRIES + 1) {
if (inet_netconf_fill_devconf(skb, NETCONFA_IFINDEX_DEFAULT,
net->ipv4.devconf_dflt,
NETLINK_CB(cb->skb).portid,
cb->nlh->nlmsg_seq,
RTM_NEWNETCONF, NLM_F_MULTI,
-1) <= 0)
goto done;
else
h++;
}
done:
cb->args[0] = h;
cb->args[1] = idx;
return skb->len;
}
#ifdef CONFIG_SYSCTL
static void devinet_copy_dflt_conf(struct net *net, int i)
{
struct net_device *dev;
rcu_read_lock();
for_each_netdev_rcu(net, dev) {
struct in_device *in_dev;
in_dev = __in_dev_get_rcu(dev);
if (in_dev && !test_bit(i, in_dev->cnf.state))
in_dev->cnf.data[i] = net->ipv4.devconf_dflt->data[i];
}
rcu_read_unlock();
}
/* called with RTNL locked */
static void inet_forward_change(struct net *net)
{
struct net_device *dev;
int on = IPV4_DEVCONF_ALL(net, FORWARDING);
IPV4_DEVCONF_ALL(net, ACCEPT_REDIRECTS) = !on;
IPV4_DEVCONF_DFLT(net, FORWARDING) = on;
inet_netconf_notify_devconf(net, NETCONFA_FORWARDING,
NETCONFA_IFINDEX_ALL,
net->ipv4.devconf_all);
inet_netconf_notify_devconf(net, NETCONFA_FORWARDING,
NETCONFA_IFINDEX_DEFAULT,
net->ipv4.devconf_dflt);
for_each_netdev(net, dev) {
struct in_device *in_dev;
if (on)
dev_disable_lro(dev);
rcu_read_lock();
in_dev = __in_dev_get_rcu(dev);
if (in_dev) {
IN_DEV_CONF_SET(in_dev, FORWARDING, on);
inet_netconf_notify_devconf(net, NETCONFA_FORWARDING,
dev->ifindex, &in_dev->cnf);
}
rcu_read_unlock();
}
}
static int devinet_conf_ifindex(struct net *net, struct ipv4_devconf *cnf)
{
if (cnf == net->ipv4.devconf_dflt)
return NETCONFA_IFINDEX_DEFAULT;
else if (cnf == net->ipv4.devconf_all)
return NETCONFA_IFINDEX_ALL;
else {
struct in_device *idev
= container_of(cnf, struct in_device, cnf);
return idev->dev->ifindex;
}
}
static int devinet_conf_proc(struct ctl_table *ctl, int write,
void __user *buffer,
size_t *lenp, loff_t *ppos)
{
int old_value = *(int *)ctl->data;
int ret = proc_dointvec(ctl, write, buffer, lenp, ppos);
int new_value = *(int *)ctl->data;
if (write) {
struct ipv4_devconf *cnf = ctl->extra1;
struct net *net = ctl->extra2;
int i = (int *)ctl->data - cnf->data;
int ifindex;
set_bit(i, cnf->state);
if (cnf == net->ipv4.devconf_dflt)
devinet_copy_dflt_conf(net, i);
if (i == IPV4_DEVCONF_ACCEPT_LOCAL - 1 ||
i == IPV4_DEVCONF_ROUTE_LOCALNET - 1)
if ((new_value == 0) && (old_value != 0))
rt_cache_flush(net);
if (i == IPV4_DEVCONF_RP_FILTER - 1 &&
new_value != old_value) {
ifindex = devinet_conf_ifindex(net, cnf);
inet_netconf_notify_devconf(net, NETCONFA_RP_FILTER,
ifindex, cnf);
}
if (i == IPV4_DEVCONF_PROXY_ARP - 1 &&
new_value != old_value) {
ifindex = devinet_conf_ifindex(net, cnf);
inet_netconf_notify_devconf(net, NETCONFA_PROXY_NEIGH,
ifindex, cnf);
}
}
return ret;
}
static int devinet_sysctl_forward(struct ctl_table *ctl, int write,
void __user *buffer,
size_t *lenp, loff_t *ppos)
{
int *valp = ctl->data;
int val = *valp;
loff_t pos = *ppos;
int ret = proc_dointvec(ctl, write, buffer, lenp, ppos);
if (write && *valp != val) {
struct net *net = ctl->extra2;
if (valp != &IPV4_DEVCONF_DFLT(net, FORWARDING)) {
if (!rtnl_trylock()) {
/* Restore the original values before restarting */
*valp = val;
*ppos = pos;
return restart_syscall();
}
if (valp == &IPV4_DEVCONF_ALL(net, FORWARDING)) {
inet_forward_change(net);
} else {
struct ipv4_devconf *cnf = ctl->extra1;
struct in_device *idev =
container_of(cnf, struct in_device, cnf);
if (*valp)
dev_disable_lro(idev->dev);
inet_netconf_notify_devconf(net,
NETCONFA_FORWARDING,
idev->dev->ifindex,
cnf);
}
rtnl_unlock();
rt_cache_flush(net);
} else
inet_netconf_notify_devconf(net, NETCONFA_FORWARDING,
NETCONFA_IFINDEX_DEFAULT,
net->ipv4.devconf_dflt);
}
return ret;
}
static int ipv4_doint_and_flush(struct ctl_table *ctl, int write,
void __user *buffer,
size_t *lenp, loff_t *ppos)
{
int *valp = ctl->data;
int val = *valp;
int ret = proc_dointvec(ctl, write, buffer, lenp, ppos);
struct net *net = ctl->extra2;
if (write && *valp != val)
rt_cache_flush(net);
return ret;
}
#define DEVINET_SYSCTL_ENTRY(attr, name, mval, proc) \
{ \
.procname = name, \
.data = ipv4_devconf.data + \
IPV4_DEVCONF_ ## attr - 1, \
.maxlen = sizeof(int), \
.mode = mval, \
.proc_handler = proc, \
.extra1 = &ipv4_devconf, \
}
#define DEVINET_SYSCTL_RW_ENTRY(attr, name) \
DEVINET_SYSCTL_ENTRY(attr, name, 0644, devinet_conf_proc)
#define DEVINET_SYSCTL_RO_ENTRY(attr, name) \
DEVINET_SYSCTL_ENTRY(attr, name, 0444, devinet_conf_proc)
#define DEVINET_SYSCTL_COMPLEX_ENTRY(attr, name, proc) \
DEVINET_SYSCTL_ENTRY(attr, name, 0644, proc)
#define DEVINET_SYSCTL_FLUSHING_ENTRY(attr, name) \
DEVINET_SYSCTL_COMPLEX_ENTRY(attr, name, ipv4_doint_and_flush)
static struct devinet_sysctl_table {
struct ctl_table_header *sysctl_header;
struct ctl_table devinet_vars[__IPV4_DEVCONF_MAX];
} devinet_sysctl = {
.devinet_vars = {
DEVINET_SYSCTL_COMPLEX_ENTRY(FORWARDING, "forwarding",
devinet_sysctl_forward),
DEVINET_SYSCTL_RO_ENTRY(MC_FORWARDING, "mc_forwarding"),
DEVINET_SYSCTL_RW_ENTRY(ACCEPT_REDIRECTS, "accept_redirects"),
DEVINET_SYSCTL_RW_ENTRY(SECURE_REDIRECTS, "secure_redirects"),
DEVINET_SYSCTL_RW_ENTRY(SHARED_MEDIA, "shared_media"),
DEVINET_SYSCTL_RW_ENTRY(RP_FILTER, "rp_filter"),
DEVINET_SYSCTL_RW_ENTRY(SEND_REDIRECTS, "send_redirects"),
DEVINET_SYSCTL_RW_ENTRY(ACCEPT_SOURCE_ROUTE,
"accept_source_route"),
DEVINET_SYSCTL_RW_ENTRY(ACCEPT_LOCAL, "accept_local"),
DEVINET_SYSCTL_RW_ENTRY(SRC_VMARK, "src_valid_mark"),
DEVINET_SYSCTL_RW_ENTRY(PROXY_ARP, "proxy_arp"),
DEVINET_SYSCTL_RW_ENTRY(MEDIUM_ID, "medium_id"),
DEVINET_SYSCTL_RW_ENTRY(BOOTP_RELAY, "bootp_relay"),
DEVINET_SYSCTL_RW_ENTRY(LOG_MARTIANS, "log_martians"),
DEVINET_SYSCTL_RW_ENTRY(TAG, "tag"),
DEVINET_SYSCTL_RW_ENTRY(ARPFILTER, "arp_filter"),
DEVINET_SYSCTL_RW_ENTRY(ARP_ANNOUNCE, "arp_announce"),
DEVINET_SYSCTL_RW_ENTRY(ARP_IGNORE, "arp_ignore"),
DEVINET_SYSCTL_RW_ENTRY(ARP_ACCEPT, "arp_accept"),
DEVINET_SYSCTL_RW_ENTRY(ARP_NOTIFY, "arp_notify"),
DEVINET_SYSCTL_RW_ENTRY(PROXY_ARP_PVLAN, "proxy_arp_pvlan"),
DEVINET_SYSCTL_RW_ENTRY(FORCE_IGMP_VERSION,
"force_igmp_version"),
DEVINET_SYSCTL_RW_ENTRY(IGMPV2_UNSOLICITED_REPORT_INTERVAL,
"igmpv2_unsolicited_report_interval"),
DEVINET_SYSCTL_RW_ENTRY(IGMPV3_UNSOLICITED_REPORT_INTERVAL,
"igmpv3_unsolicited_report_interval"),
DEVINET_SYSCTL_FLUSHING_ENTRY(NOXFRM, "disable_xfrm"),
DEVINET_SYSCTL_FLUSHING_ENTRY(NOPOLICY, "disable_policy"),
DEVINET_SYSCTL_FLUSHING_ENTRY(PROMOTE_SECONDARIES,
"promote_secondaries"),
DEVINET_SYSCTL_FLUSHING_ENTRY(ROUTE_LOCALNET,
"route_localnet"),
},
};
static int __devinet_sysctl_register(struct net *net, char *dev_name,
struct ipv4_devconf *p)
{
int i;
struct devinet_sysctl_table *t;
char path[sizeof("net/ipv4/conf/") + IFNAMSIZ];
t = kmemdup(&devinet_sysctl, sizeof(*t), GFP_KERNEL);
if (!t)
goto out;
for (i = 0; i < ARRAY_SIZE(t->devinet_vars) - 1; i++) {
t->devinet_vars[i].data += (char *)p - (char *)&ipv4_devconf;
t->devinet_vars[i].extra1 = p;
t->devinet_vars[i].extra2 = net;
}
snprintf(path, sizeof(path), "net/ipv4/conf/%s", dev_name);
t->sysctl_header = register_net_sysctl(net, path, t->devinet_vars);
if (!t->sysctl_header)
goto free;
p->sysctl = t;
return 0;
free:
kfree(t);
out:
return -ENOBUFS;
}
static void __devinet_sysctl_unregister(struct ipv4_devconf *cnf)
{
struct devinet_sysctl_table *t = cnf->sysctl;
if (t == NULL)
return;
cnf->sysctl = NULL;
unregister_net_sysctl_table(t->sysctl_header);
kfree(t);
}
static void devinet_sysctl_register(struct in_device *idev)
{
neigh_sysctl_register(idev->dev, idev->arp_parms, NULL);
__devinet_sysctl_register(dev_net(idev->dev), idev->dev->name,
&idev->cnf);
}
static void devinet_sysctl_unregister(struct in_device *idev)
{
__devinet_sysctl_unregister(&idev->cnf);
neigh_sysctl_unregister(idev->arp_parms);
}
static struct ctl_table ctl_forward_entry[] = {
{
.procname = "ip_forward",
.data = &ipv4_devconf.data[
IPV4_DEVCONF_FORWARDING - 1],
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = devinet_sysctl_forward,
.extra1 = &ipv4_devconf,
.extra2 = &init_net,
},
{ },
};
#endif
static __net_init int devinet_init_net(struct net *net)
{
int err;
struct ipv4_devconf *all, *dflt;
#ifdef CONFIG_SYSCTL
struct ctl_table *tbl = ctl_forward_entry;
struct ctl_table_header *forw_hdr;
#endif
err = -ENOMEM;
all = &ipv4_devconf;
dflt = &ipv4_devconf_dflt;
if (!net_eq(net, &init_net)) {
all = kmemdup(all, sizeof(ipv4_devconf), GFP_KERNEL);
if (all == NULL)
goto err_alloc_all;
dflt = kmemdup(dflt, sizeof(ipv4_devconf_dflt), GFP_KERNEL);
if (dflt == NULL)
goto err_alloc_dflt;
#ifdef CONFIG_SYSCTL
tbl = kmemdup(tbl, sizeof(ctl_forward_entry), GFP_KERNEL);
if (tbl == NULL)
goto err_alloc_ctl;
tbl[0].data = &all->data[IPV4_DEVCONF_FORWARDING - 1];
tbl[0].extra1 = all;
tbl[0].extra2 = net;
#endif
}
#ifdef CONFIG_SYSCTL
err = __devinet_sysctl_register(net, "all", all);
if (err < 0)
goto err_reg_all;
err = __devinet_sysctl_register(net, "default", dflt);
if (err < 0)
goto err_reg_dflt;
err = -ENOMEM;
forw_hdr = register_net_sysctl(net, "net/ipv4", tbl);
if (forw_hdr == NULL)
goto err_reg_ctl;
net->ipv4.forw_hdr = forw_hdr;
#endif
net->ipv4.devconf_all = all;
net->ipv4.devconf_dflt = dflt;
return 0;
#ifdef CONFIG_SYSCTL
err_reg_ctl:
__devinet_sysctl_unregister(dflt);
err_reg_dflt:
__devinet_sysctl_unregister(all);
err_reg_all:
if (tbl != ctl_forward_entry)
kfree(tbl);
err_alloc_ctl:
#endif
if (dflt != &ipv4_devconf_dflt)
kfree(dflt);
err_alloc_dflt:
if (all != &ipv4_devconf)
kfree(all);
err_alloc_all:
return err;
}
static __net_exit void devinet_exit_net(struct net *net)
{
#ifdef CONFIG_SYSCTL
struct ctl_table *tbl;
tbl = net->ipv4.forw_hdr->ctl_table_arg;
unregister_net_sysctl_table(net->ipv4.forw_hdr);
__devinet_sysctl_unregister(net->ipv4.devconf_dflt);
__devinet_sysctl_unregister(net->ipv4.devconf_all);
kfree(tbl);
#endif
kfree(net->ipv4.devconf_dflt);
kfree(net->ipv4.devconf_all);
}
static __net_initdata struct pernet_operations devinet_ops = {
.init = devinet_init_net,
.exit = devinet_exit_net,
};
static struct rtnl_af_ops inet_af_ops = {
.family = AF_INET,
.fill_link_af = inet_fill_link_af,
.get_link_af_size = inet_get_link_af_size,
.validate_link_af = inet_validate_link_af,
.set_link_af = inet_set_link_af,
};
void __init devinet_init(void)
{
int i;
for (i = 0; i < IN4_ADDR_HSIZE; i++)
INIT_HLIST_HEAD(&inet_addr_lst[i]);
register_pernet_subsys(&devinet_ops);
register_gifconf(PF_INET, inet_gifconf);
register_netdevice_notifier(&ip_netdev_notifier);
queue_delayed_work(system_power_efficient_wq, &check_lifetime_work, 0);
rtnl_af_register(&inet_af_ops);
rtnl_register(PF_INET, RTM_NEWADDR, inet_rtm_newaddr, NULL, NULL);
rtnl_register(PF_INET, RTM_DELADDR, inet_rtm_deladdr, NULL, NULL);
rtnl_register(PF_INET, RTM_GETADDR, NULL, inet_dump_ifaddr, NULL);
rtnl_register(PF_INET, RTM_GETNETCONF, inet_netconf_get_devconf,
inet_netconf_dump_devconf, NULL);
}