313 lines
8.4 KiB
C
313 lines
8.4 KiB
C
#ifndef __ASM_AVR32_IO_H
|
|
#define __ASM_AVR32_IO_H
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/string.h>
|
|
#include <linux/types.h>
|
|
|
|
#include <asm/addrspace.h>
|
|
#include <asm/byteorder.h>
|
|
|
|
#include <asm/arch/io.h>
|
|
|
|
/* virt_to_phys will only work when address is in P1 or P2 */
|
|
static __inline__ unsigned long virt_to_phys(volatile void *address)
|
|
{
|
|
return PHYSADDR(address);
|
|
}
|
|
|
|
static __inline__ void * phys_to_virt(unsigned long address)
|
|
{
|
|
return (void *)P1SEGADDR(address);
|
|
}
|
|
|
|
#define cached_to_phys(addr) ((unsigned long)PHYSADDR(addr))
|
|
#define uncached_to_phys(addr) ((unsigned long)PHYSADDR(addr))
|
|
#define phys_to_cached(addr) ((void *)P1SEGADDR(addr))
|
|
#define phys_to_uncached(addr) ((void *)P2SEGADDR(addr))
|
|
|
|
/*
|
|
* Generic IO read/write. These perform native-endian accesses. Note
|
|
* that some architectures will want to re-define __raw_{read,write}w.
|
|
*/
|
|
extern void __raw_writesb(void __iomem *addr, const void *data, int bytelen);
|
|
extern void __raw_writesw(void __iomem *addr, const void *data, int wordlen);
|
|
extern void __raw_writesl(void __iomem *addr, const void *data, int longlen);
|
|
|
|
extern void __raw_readsb(const void __iomem *addr, void *data, int bytelen);
|
|
extern void __raw_readsw(const void __iomem *addr, void *data, int wordlen);
|
|
extern void __raw_readsl(const void __iomem *addr, void *data, int longlen);
|
|
|
|
static inline void __raw_writeb(u8 v, volatile void __iomem *addr)
|
|
{
|
|
*(volatile u8 __force *)addr = v;
|
|
}
|
|
static inline void __raw_writew(u16 v, volatile void __iomem *addr)
|
|
{
|
|
*(volatile u16 __force *)addr = v;
|
|
}
|
|
static inline void __raw_writel(u32 v, volatile void __iomem *addr)
|
|
{
|
|
*(volatile u32 __force *)addr = v;
|
|
}
|
|
|
|
static inline u8 __raw_readb(const volatile void __iomem *addr)
|
|
{
|
|
return *(const volatile u8 __force *)addr;
|
|
}
|
|
static inline u16 __raw_readw(const volatile void __iomem *addr)
|
|
{
|
|
return *(const volatile u16 __force *)addr;
|
|
}
|
|
static inline u32 __raw_readl(const volatile void __iomem *addr)
|
|
{
|
|
return *(const volatile u32 __force *)addr;
|
|
}
|
|
|
|
/* Convert I/O port address to virtual address */
|
|
#ifndef __io
|
|
# define __io(p) ((void *)phys_to_uncached(p))
|
|
#endif
|
|
|
|
/*
|
|
* Not really sure about the best way to slow down I/O on
|
|
* AVR32. Defining it as a no-op until we have an actual test case.
|
|
*/
|
|
#define SLOW_DOWN_IO do { } while (0)
|
|
|
|
#define __BUILD_MEMORY_SINGLE(pfx, bwl, type) \
|
|
static inline void \
|
|
pfx##write##bwl(type val, volatile void __iomem *addr) \
|
|
{ \
|
|
volatile type *__addr; \
|
|
type __val; \
|
|
\
|
|
__addr = (void *)__swizzle_addr_##bwl((unsigned long)(addr)); \
|
|
__val = pfx##ioswab##bwl(__addr, val); \
|
|
\
|
|
BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
|
|
\
|
|
*__addr = __val; \
|
|
} \
|
|
\
|
|
static inline type pfx##read##bwl(const volatile void __iomem *addr) \
|
|
{ \
|
|
volatile type *__addr; \
|
|
type __val; \
|
|
\
|
|
__addr = (void *)__swizzle_addr_##bwl((unsigned long)(addr)); \
|
|
\
|
|
BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
|
|
\
|
|
__val = *__addr; \
|
|
return pfx##ioswab##bwl(__addr, __val); \
|
|
}
|
|
|
|
#define __BUILD_IOPORT_SINGLE(pfx, bwl, type, p, slow) \
|
|
static inline void pfx##out##bwl##p(type val, unsigned long port) \
|
|
{ \
|
|
volatile type *__addr; \
|
|
type __val; \
|
|
\
|
|
__addr = __io(__swizzle_addr_##bwl(port)); \
|
|
__val = pfx##ioswab##bwl(__addr, val); \
|
|
\
|
|
BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
|
|
\
|
|
*__addr = __val; \
|
|
slow; \
|
|
} \
|
|
\
|
|
static inline type pfx##in##bwl##p(unsigned long port) \
|
|
{ \
|
|
volatile type *__addr; \
|
|
type __val; \
|
|
\
|
|
__addr = __io(__swizzle_addr_##bwl(port)); \
|
|
\
|
|
BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
|
|
\
|
|
__val = *__addr; \
|
|
slow; \
|
|
\
|
|
return pfx##ioswab##bwl(__addr, __val); \
|
|
}
|
|
|
|
#define __BUILD_MEMORY_PFX(bus, bwl, type) \
|
|
__BUILD_MEMORY_SINGLE(bus, bwl, type)
|
|
|
|
#define BUILDIO_MEM(bwl, type) \
|
|
__BUILD_MEMORY_PFX(, bwl, type) \
|
|
__BUILD_MEMORY_PFX(__mem_, bwl, type)
|
|
|
|
#define __BUILD_IOPORT_PFX(bus, bwl, type) \
|
|
__BUILD_IOPORT_SINGLE(bus, bwl, type, ,) \
|
|
__BUILD_IOPORT_SINGLE(bus, bwl, type, _p, SLOW_DOWN_IO)
|
|
|
|
#define BUILDIO_IOPORT(bwl, type) \
|
|
__BUILD_IOPORT_PFX(, bwl, type) \
|
|
__BUILD_IOPORT_PFX(__mem_, bwl, type)
|
|
|
|
BUILDIO_MEM(b, u8)
|
|
BUILDIO_MEM(w, u16)
|
|
BUILDIO_MEM(l, u32)
|
|
|
|
BUILDIO_IOPORT(b, u8)
|
|
BUILDIO_IOPORT(w, u16)
|
|
BUILDIO_IOPORT(l, u32)
|
|
|
|
#define readb_relaxed readb
|
|
#define readw_relaxed readw
|
|
#define readl_relaxed readl
|
|
|
|
#define __BUILD_MEMORY_STRING(bwl, type) \
|
|
static inline void writes##bwl(volatile void __iomem *addr, \
|
|
const void *data, unsigned int count) \
|
|
{ \
|
|
const type *__data = data; \
|
|
\
|
|
while (count--) \
|
|
__mem_write##bwl(*__data++, addr); \
|
|
} \
|
|
\
|
|
static inline void reads##bwl(const volatile void __iomem *addr, \
|
|
void *data, unsigned int count) \
|
|
{ \
|
|
type *__data = data; \
|
|
\
|
|
while (count--) \
|
|
*__data++ = __mem_read##bwl(addr); \
|
|
}
|
|
|
|
#define __BUILD_IOPORT_STRING(bwl, type) \
|
|
static inline void outs##bwl(unsigned long port, const void *data, \
|
|
unsigned int count) \
|
|
{ \
|
|
const type *__data = data; \
|
|
\
|
|
while (count--) \
|
|
__mem_out##bwl(*__data++, port); \
|
|
} \
|
|
\
|
|
static inline void ins##bwl(unsigned long port, void *data, \
|
|
unsigned int count) \
|
|
{ \
|
|
type *__data = data; \
|
|
\
|
|
while (count--) \
|
|
*__data++ = __mem_in##bwl(port); \
|
|
}
|
|
|
|
#define BUILDSTRING(bwl, type) \
|
|
__BUILD_MEMORY_STRING(bwl, type) \
|
|
__BUILD_IOPORT_STRING(bwl, type)
|
|
|
|
BUILDSTRING(b, u8)
|
|
BUILDSTRING(w, u16)
|
|
BUILDSTRING(l, u32)
|
|
|
|
/*
|
|
* io{read,write}{8,16,32} macros in both le (for PCI style consumers) and native be
|
|
*/
|
|
#ifndef ioread8
|
|
|
|
#define ioread8(p) ((unsigned int)readb(p))
|
|
|
|
#define ioread16(p) ((unsigned int)readw(p))
|
|
#define ioread16be(p) ((unsigned int)__raw_readw(p))
|
|
|
|
#define ioread32(p) ((unsigned int)readl(p))
|
|
#define ioread32be(p) ((unsigned int)__raw_readl(p))
|
|
|
|
#define iowrite8(v,p) writeb(v, p)
|
|
|
|
#define iowrite16(v,p) writew(v, p)
|
|
#define iowrite16be(v,p) __raw_writew(v, p)
|
|
|
|
#define iowrite32(v,p) writel(v, p)
|
|
#define iowrite32be(v,p) __raw_writel(v, p)
|
|
|
|
#define ioread8_rep(p,d,c) readsb(p,d,c)
|
|
#define ioread16_rep(p,d,c) readsw(p,d,c)
|
|
#define ioread32_rep(p,d,c) readsl(p,d,c)
|
|
|
|
#define iowrite8_rep(p,s,c) writesb(p,s,c)
|
|
#define iowrite16_rep(p,s,c) writesw(p,s,c)
|
|
#define iowrite32_rep(p,s,c) writesl(p,s,c)
|
|
|
|
#endif
|
|
|
|
static inline void memcpy_fromio(void * to, const volatile void __iomem *from,
|
|
unsigned long count)
|
|
{
|
|
memcpy(to, (const void __force *)from, count);
|
|
}
|
|
|
|
static inline void memcpy_toio(volatile void __iomem *to, const void * from,
|
|
unsigned long count)
|
|
{
|
|
memcpy((void __force *)to, from, count);
|
|
}
|
|
|
|
static inline void memset_io(volatile void __iomem *addr, unsigned char val,
|
|
unsigned long count)
|
|
{
|
|
memset((void __force *)addr, val, count);
|
|
}
|
|
|
|
#define mmiowb()
|
|
|
|
#define IO_SPACE_LIMIT 0xffffffff
|
|
|
|
extern void __iomem *__ioremap(unsigned long offset, size_t size,
|
|
unsigned long flags);
|
|
extern void __iounmap(void __iomem *addr);
|
|
|
|
/*
|
|
* ioremap - map bus memory into CPU space
|
|
* @offset bus address of the memory
|
|
* @size size of the resource to map
|
|
*
|
|
* ioremap performs a platform specific sequence of operations to make
|
|
* bus memory CPU accessible via the readb/.../writel functions and
|
|
* the other mmio helpers. The returned address is not guaranteed to
|
|
* be usable directly as a virtual address.
|
|
*/
|
|
#define ioremap(offset, size) \
|
|
__ioremap((offset), (size), 0)
|
|
|
|
#define ioremap_nocache(offset, size) \
|
|
__ioremap((offset), (size), 0)
|
|
|
|
#define iounmap(addr) \
|
|
__iounmap(addr)
|
|
|
|
#define cached(addr) P1SEGADDR(addr)
|
|
#define uncached(addr) P2SEGADDR(addr)
|
|
|
|
#define virt_to_bus virt_to_phys
|
|
#define bus_to_virt phys_to_virt
|
|
#define page_to_bus page_to_phys
|
|
#define bus_to_page phys_to_page
|
|
|
|
/*
|
|
* Create a virtual mapping cookie for an IO port range. There exists
|
|
* no such thing as port-based I/O on AVR32, so a regular ioremap()
|
|
* should do what we need.
|
|
*/
|
|
#define ioport_map(port, nr) ioremap(port, nr)
|
|
#define ioport_unmap(port) iounmap(port)
|
|
|
|
/*
|
|
* Convert a physical pointer to a virtual kernel pointer for /dev/mem
|
|
* access
|
|
*/
|
|
#define xlate_dev_mem_ptr(p) __va(p)
|
|
|
|
/*
|
|
* Convert a virtual cached pointer to an uncached pointer
|
|
*/
|
|
#define xlate_dev_kmem_ptr(p) p
|
|
|
|
#endif /* __ASM_AVR32_IO_H */
|