linux/sound/isa/sb/sb8_main.c

556 lines
16 KiB
C

/*
* Copyright (c) by Jaroslav Kysela <perex@perex.cz>
* Uros Bizjak <uros@kss-loka.si>
*
* Routines for control of 8-bit SoundBlaster cards and clones
* Please note: I don't have access to old SB8 soundcards.
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* --
*
* Thu Apr 29 20:36:17 BST 1999 George David Morrison <gdm@gedamo.demon.co.uk>
* DSP can't respond to commands whilst in "high speed" mode. Caused
* glitching during playback. Fixed.
*
* Wed Jul 12 22:02:55 CEST 2000 Uros Bizjak <uros@kss-loka.si>
* Cleaned up and rewrote lowlevel routines.
*/
#include <asm/io.h>
#include <asm/dma.h>
#include <linux/init.h>
#include <linux/time.h>
#include <sound/core.h>
#include <sound/sb.h>
MODULE_AUTHOR("Jaroslav Kysela <perex@perex.cz>, Uros Bizjak <uros@kss-loka.si>");
MODULE_DESCRIPTION("Routines for control of 8-bit SoundBlaster cards and clones");
MODULE_LICENSE("GPL");
#define SB8_CLOCK 1000000
#define SB8_DEN(v) ((SB8_CLOCK + (v) / 2) / (v))
#define SB8_RATE(v) (SB8_CLOCK / SB8_DEN(v))
static struct snd_ratnum clock = {
.num = SB8_CLOCK,
.den_min = 1,
.den_max = 256,
.den_step = 1,
};
static struct snd_pcm_hw_constraint_ratnums hw_constraints_clock = {
.nrats = 1,
.rats = &clock,
};
static struct snd_ratnum stereo_clocks[] = {
{
.num = SB8_CLOCK,
.den_min = SB8_DEN(22050),
.den_max = SB8_DEN(22050),
.den_step = 1,
},
{
.num = SB8_CLOCK,
.den_min = SB8_DEN(11025),
.den_max = SB8_DEN(11025),
.den_step = 1,
}
};
static int snd_sb8_hw_constraint_rate_channels(struct snd_pcm_hw_params *params,
struct snd_pcm_hw_rule *rule)
{
struct snd_interval *c = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
if (c->min > 1) {
unsigned int num = 0, den = 0;
int err = snd_interval_ratnum(hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE),
2, stereo_clocks, &num, &den);
if (err >= 0 && den) {
params->rate_num = num;
params->rate_den = den;
}
return err;
}
return 0;
}
static int snd_sb8_hw_constraint_channels_rate(struct snd_pcm_hw_params *params,
struct snd_pcm_hw_rule *rule)
{
struct snd_interval *r = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
if (r->min > SB8_RATE(22050) || r->max <= SB8_RATE(11025)) {
struct snd_interval t = { .min = 1, .max = 1 };
return snd_interval_refine(hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS), &t);
}
return 0;
}
static int snd_sb8_playback_prepare(struct snd_pcm_substream *substream)
{
unsigned long flags;
struct snd_sb *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
unsigned int mixreg, rate, size, count;
rate = runtime->rate;
switch (chip->hardware) {
case SB_HW_PRO:
if (runtime->channels > 1) {
snd_assert(rate == SB8_RATE(11025) || rate == SB8_RATE(22050), return -EINVAL);
chip->playback_format = SB_DSP_HI_OUTPUT_AUTO;
break;
}
/* fallthru */
case SB_HW_201:
if (rate > 23000) {
chip->playback_format = SB_DSP_HI_OUTPUT_AUTO;
break;
}
/* fallthru */
case SB_HW_20:
chip->playback_format = SB_DSP_LO_OUTPUT_AUTO;
break;
case SB_HW_10:
chip->playback_format = SB_DSP_OUTPUT;
break;
default:
return -EINVAL;
}
size = chip->p_dma_size = snd_pcm_lib_buffer_bytes(substream);
count = chip->p_period_size = snd_pcm_lib_period_bytes(substream);
spin_lock_irqsave(&chip->reg_lock, flags);
snd_sbdsp_command(chip, SB_DSP_SPEAKER_ON);
if (runtime->channels > 1) {
/* set playback stereo mode */
spin_lock(&chip->mixer_lock);
mixreg = snd_sbmixer_read(chip, SB_DSP_STEREO_SW);
snd_sbmixer_write(chip, SB_DSP_STEREO_SW, mixreg | 0x02);
spin_unlock(&chip->mixer_lock);
/* Soundblaster hardware programming reference guide, 3-23 */
snd_sbdsp_command(chip, SB_DSP_DMA8_EXIT);
runtime->dma_area[0] = 0x80;
snd_dma_program(chip->dma8, runtime->dma_addr, 1, DMA_MODE_WRITE);
/* force interrupt */
chip->mode = SB_MODE_HALT;
snd_sbdsp_command(chip, SB_DSP_OUTPUT);
snd_sbdsp_command(chip, 0);
snd_sbdsp_command(chip, 0);
}
snd_sbdsp_command(chip, SB_DSP_SAMPLE_RATE);
if (runtime->channels > 1) {
snd_sbdsp_command(chip, 256 - runtime->rate_den / 2);
spin_lock(&chip->mixer_lock);
/* save output filter status and turn it off */
mixreg = snd_sbmixer_read(chip, SB_DSP_PLAYBACK_FILT);
snd_sbmixer_write(chip, SB_DSP_PLAYBACK_FILT, mixreg | 0x20);
spin_unlock(&chip->mixer_lock);
/* just use force_mode16 for temporary storate... */
chip->force_mode16 = mixreg;
} else {
snd_sbdsp_command(chip, 256 - runtime->rate_den);
}
if (chip->playback_format != SB_DSP_OUTPUT) {
count--;
snd_sbdsp_command(chip, SB_DSP_BLOCK_SIZE);
snd_sbdsp_command(chip, count & 0xff);
snd_sbdsp_command(chip, count >> 8);
}
spin_unlock_irqrestore(&chip->reg_lock, flags);
snd_dma_program(chip->dma8, runtime->dma_addr,
size, DMA_MODE_WRITE | DMA_AUTOINIT);
return 0;
}
static int snd_sb8_playback_trigger(struct snd_pcm_substream *substream,
int cmd)
{
unsigned long flags;
struct snd_sb *chip = snd_pcm_substream_chip(substream);
unsigned int count;
spin_lock_irqsave(&chip->reg_lock, flags);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
snd_sbdsp_command(chip, chip->playback_format);
if (chip->playback_format == SB_DSP_OUTPUT) {
count = chip->p_period_size - 1;
snd_sbdsp_command(chip, count & 0xff);
snd_sbdsp_command(chip, count >> 8);
}
break;
case SNDRV_PCM_TRIGGER_STOP:
if (chip->playback_format == SB_DSP_HI_OUTPUT_AUTO) {
struct snd_pcm_runtime *runtime = substream->runtime;
snd_sbdsp_reset(chip);
if (runtime->channels > 1) {
spin_lock(&chip->mixer_lock);
/* restore output filter and set hardware to mono mode */
snd_sbmixer_write(chip, SB_DSP_STEREO_SW, chip->force_mode16 & ~0x02);
spin_unlock(&chip->mixer_lock);
}
} else {
snd_sbdsp_command(chip, SB_DSP_DMA8_OFF);
}
snd_sbdsp_command(chip, SB_DSP_SPEAKER_OFF);
}
spin_unlock_irqrestore(&chip->reg_lock, flags);
chip->mode = (cmd == SNDRV_PCM_TRIGGER_START) ? SB_MODE_PLAYBACK_8 : SB_MODE_HALT;
return 0;
}
static int snd_sb8_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
}
static int snd_sb8_hw_free(struct snd_pcm_substream *substream)
{
snd_pcm_lib_free_pages(substream);
return 0;
}
static int snd_sb8_capture_prepare(struct snd_pcm_substream *substream)
{
unsigned long flags;
struct snd_sb *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
unsigned int mixreg, rate, size, count;
rate = runtime->rate;
switch (chip->hardware) {
case SB_HW_PRO:
if (runtime->channels > 1) {
snd_assert(rate == SB8_RATE(11025) || rate == SB8_RATE(22050), return -EINVAL);
chip->capture_format = SB_DSP_HI_INPUT_AUTO;
break;
}
chip->capture_format = (rate > 23000) ? SB_DSP_HI_INPUT_AUTO : SB_DSP_LO_INPUT_AUTO;
break;
case SB_HW_201:
if (rate > 13000) {
chip->capture_format = SB_DSP_HI_INPUT_AUTO;
break;
}
/* fallthru */
case SB_HW_20:
chip->capture_format = SB_DSP_LO_INPUT_AUTO;
break;
case SB_HW_10:
chip->capture_format = SB_DSP_INPUT;
break;
default:
return -EINVAL;
}
size = chip->c_dma_size = snd_pcm_lib_buffer_bytes(substream);
count = chip->c_period_size = snd_pcm_lib_period_bytes(substream);
spin_lock_irqsave(&chip->reg_lock, flags);
snd_sbdsp_command(chip, SB_DSP_SPEAKER_OFF);
if (runtime->channels > 1)
snd_sbdsp_command(chip, SB_DSP_STEREO_8BIT);
snd_sbdsp_command(chip, SB_DSP_SAMPLE_RATE);
if (runtime->channels > 1) {
snd_sbdsp_command(chip, 256 - runtime->rate_den / 2);
spin_lock(&chip->mixer_lock);
/* save input filter status and turn it off */
mixreg = snd_sbmixer_read(chip, SB_DSP_CAPTURE_FILT);
snd_sbmixer_write(chip, SB_DSP_CAPTURE_FILT, mixreg | 0x20);
spin_unlock(&chip->mixer_lock);
/* just use force_mode16 for temporary storate... */
chip->force_mode16 = mixreg;
} else {
snd_sbdsp_command(chip, 256 - runtime->rate_den);
}
if (chip->capture_format != SB_DSP_INPUT) {
count--;
snd_sbdsp_command(chip, SB_DSP_BLOCK_SIZE);
snd_sbdsp_command(chip, count & 0xff);
snd_sbdsp_command(chip, count >> 8);
}
spin_unlock_irqrestore(&chip->reg_lock, flags);
snd_dma_program(chip->dma8, runtime->dma_addr,
size, DMA_MODE_READ | DMA_AUTOINIT);
return 0;
}
static int snd_sb8_capture_trigger(struct snd_pcm_substream *substream,
int cmd)
{
unsigned long flags;
struct snd_sb *chip = snd_pcm_substream_chip(substream);
unsigned int count;
spin_lock_irqsave(&chip->reg_lock, flags);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
snd_sbdsp_command(chip, chip->capture_format);
if (chip->capture_format == SB_DSP_INPUT) {
count = chip->c_period_size - 1;
snd_sbdsp_command(chip, count & 0xff);
snd_sbdsp_command(chip, count >> 8);
}
break;
case SNDRV_PCM_TRIGGER_STOP:
if (chip->capture_format == SB_DSP_HI_INPUT_AUTO) {
struct snd_pcm_runtime *runtime = substream->runtime;
snd_sbdsp_reset(chip);
if (runtime->channels > 1) {
/* restore input filter status */
spin_lock(&chip->mixer_lock);
snd_sbmixer_write(chip, SB_DSP_CAPTURE_FILT, chip->force_mode16);
spin_unlock(&chip->mixer_lock);
/* set hardware to mono mode */
snd_sbdsp_command(chip, SB_DSP_MONO_8BIT);
}
} else {
snd_sbdsp_command(chip, SB_DSP_DMA8_OFF);
}
snd_sbdsp_command(chip, SB_DSP_SPEAKER_OFF);
}
spin_unlock_irqrestore(&chip->reg_lock, flags);
chip->mode = (cmd == SNDRV_PCM_TRIGGER_START) ? SB_MODE_CAPTURE_8 : SB_MODE_HALT;
return 0;
}
irqreturn_t snd_sb8dsp_interrupt(struct snd_sb *chip)
{
struct snd_pcm_substream *substream;
struct snd_pcm_runtime *runtime;
snd_sb_ack_8bit(chip);
switch (chip->mode) {
case SB_MODE_PLAYBACK_8: /* ok.. playback is active */
substream = chip->playback_substream;
runtime = substream->runtime;
if (chip->playback_format == SB_DSP_OUTPUT)
snd_sb8_playback_trigger(substream, SNDRV_PCM_TRIGGER_START);
snd_pcm_period_elapsed(substream);
break;
case SB_MODE_CAPTURE_8:
substream = chip->capture_substream;
runtime = substream->runtime;
if (chip->capture_format == SB_DSP_INPUT)
snd_sb8_capture_trigger(substream, SNDRV_PCM_TRIGGER_START);
snd_pcm_period_elapsed(substream);
break;
}
return IRQ_HANDLED;
}
static snd_pcm_uframes_t snd_sb8_playback_pointer(struct snd_pcm_substream *substream)
{
struct snd_sb *chip = snd_pcm_substream_chip(substream);
size_t ptr;
if (chip->mode != SB_MODE_PLAYBACK_8)
return 0;
ptr = snd_dma_pointer(chip->dma8, chip->p_dma_size);
return bytes_to_frames(substream->runtime, ptr);
}
static snd_pcm_uframes_t snd_sb8_capture_pointer(struct snd_pcm_substream *substream)
{
struct snd_sb *chip = snd_pcm_substream_chip(substream);
size_t ptr;
if (chip->mode != SB_MODE_CAPTURE_8)
return 0;
ptr = snd_dma_pointer(chip->dma8, chip->c_dma_size);
return bytes_to_frames(substream->runtime, ptr);
}
/*
*/
static struct snd_pcm_hardware snd_sb8_playback =
{
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_MMAP_VALID),
.formats = SNDRV_PCM_FMTBIT_U8,
.rates = (SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000 |
SNDRV_PCM_RATE_11025 | SNDRV_PCM_RATE_22050),
.rate_min = 4000,
.rate_max = 23000,
.channels_min = 1,
.channels_max = 1,
.buffer_bytes_max = 65536,
.period_bytes_min = 64,
.period_bytes_max = 65536,
.periods_min = 1,
.periods_max = 1024,
.fifo_size = 0,
};
static struct snd_pcm_hardware snd_sb8_capture =
{
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_MMAP_VALID),
.formats = SNDRV_PCM_FMTBIT_U8,
.rates = (SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000 |
SNDRV_PCM_RATE_11025),
.rate_min = 4000,
.rate_max = 13000,
.channels_min = 1,
.channels_max = 1,
.buffer_bytes_max = 65536,
.period_bytes_min = 64,
.period_bytes_max = 65536,
.periods_min = 1,
.periods_max = 1024,
.fifo_size = 0,
};
/*
*
*/
static int snd_sb8_open(struct snd_pcm_substream *substream)
{
struct snd_sb *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
unsigned long flags;
spin_lock_irqsave(&chip->open_lock, flags);
if (chip->open) {
spin_unlock_irqrestore(&chip->open_lock, flags);
return -EAGAIN;
}
chip->open |= SB_OPEN_PCM;
spin_unlock_irqrestore(&chip->open_lock, flags);
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
chip->playback_substream = substream;
runtime->hw = snd_sb8_playback;
} else {
chip->capture_substream = substream;
runtime->hw = snd_sb8_capture;
}
switch (chip->hardware) {
case SB_HW_PRO:
runtime->hw.rate_max = 44100;
runtime->hw.channels_max = 2;
snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
snd_sb8_hw_constraint_rate_channels, NULL,
SNDRV_PCM_HW_PARAM_CHANNELS,
SNDRV_PCM_HW_PARAM_RATE, -1);
snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
snd_sb8_hw_constraint_channels_rate, NULL,
SNDRV_PCM_HW_PARAM_RATE, -1);
break;
case SB_HW_201:
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
runtime->hw.rate_max = 44100;
} else {
runtime->hw.rate_max = 15000;
}
default:
break;
}
snd_pcm_hw_constraint_ratnums(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
&hw_constraints_clock);
return 0;
}
static int snd_sb8_close(struct snd_pcm_substream *substream)
{
unsigned long flags;
struct snd_sb *chip = snd_pcm_substream_chip(substream);
chip->playback_substream = NULL;
chip->capture_substream = NULL;
spin_lock_irqsave(&chip->open_lock, flags);
chip->open &= ~SB_OPEN_PCM;
spin_unlock_irqrestore(&chip->open_lock, flags);
return 0;
}
/*
* Initialization part
*/
static struct snd_pcm_ops snd_sb8_playback_ops = {
.open = snd_sb8_open,
.close = snd_sb8_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_sb8_hw_params,
.hw_free = snd_sb8_hw_free,
.prepare = snd_sb8_playback_prepare,
.trigger = snd_sb8_playback_trigger,
.pointer = snd_sb8_playback_pointer,
};
static struct snd_pcm_ops snd_sb8_capture_ops = {
.open = snd_sb8_open,
.close = snd_sb8_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_sb8_hw_params,
.hw_free = snd_sb8_hw_free,
.prepare = snd_sb8_capture_prepare,
.trigger = snd_sb8_capture_trigger,
.pointer = snd_sb8_capture_pointer,
};
int snd_sb8dsp_pcm(struct snd_sb *chip, int device, struct snd_pcm ** rpcm)
{
struct snd_card *card = chip->card;
struct snd_pcm *pcm;
int err;
if (rpcm)
*rpcm = NULL;
if ((err = snd_pcm_new(card, "SB8 DSP", device, 1, 1, &pcm)) < 0)
return err;
sprintf(pcm->name, "DSP v%i.%i", chip->version >> 8, chip->version & 0xff);
pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX;
pcm->private_data = chip;
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_sb8_playback_ops);
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_sb8_capture_ops);
snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
snd_dma_isa_data(),
64*1024, 64*1024);
if (rpcm)
*rpcm = pcm;
return 0;
}
EXPORT_SYMBOL(snd_sb8dsp_pcm);
EXPORT_SYMBOL(snd_sb8dsp_interrupt);
/* sb8_midi.c */
EXPORT_SYMBOL(snd_sb8dsp_midi_interrupt);
EXPORT_SYMBOL(snd_sb8dsp_midi);
/*
* INIT part
*/
static int __init alsa_sb8_init(void)
{
return 0;
}
static void __exit alsa_sb8_exit(void)
{
}
module_init(alsa_sb8_init)
module_exit(alsa_sb8_exit)