1405 lines
40 KiB
C
1405 lines
40 KiB
C
/*
|
|
* Intel 7300 class Memory Controllers kernel module (Clarksboro)
|
|
*
|
|
* This file may be distributed under the terms of the
|
|
* GNU General Public License version 2 only.
|
|
*
|
|
* Copyright (c) 2010 by:
|
|
* Mauro Carvalho Chehab <mchehab@redhat.com>
|
|
*
|
|
* Red Hat Inc. http://www.redhat.com
|
|
*
|
|
* Intel 7300 Chipset Memory Controller Hub (MCH) - Datasheet
|
|
* http://www.intel.com/Assets/PDF/datasheet/318082.pdf
|
|
*
|
|
* TODO: The chipset allow checking for PCI Express errors also. Currently,
|
|
* the driver covers only memory error errors
|
|
*
|
|
* This driver uses "csrows" EDAC attribute to represent DIMM slot#
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/pci_ids.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/edac.h>
|
|
#include <linux/mmzone.h>
|
|
|
|
#include "edac_core.h"
|
|
|
|
/*
|
|
* Alter this version for the I7300 module when modifications are made
|
|
*/
|
|
#define I7300_REVISION " Ver: 1.0.0 " __DATE__
|
|
|
|
#define EDAC_MOD_STR "i7300_edac"
|
|
|
|
#define i7300_printk(level, fmt, arg...) \
|
|
edac_printk(level, "i7300", fmt, ##arg)
|
|
|
|
#define i7300_mc_printk(mci, level, fmt, arg...) \
|
|
edac_mc_chipset_printk(mci, level, "i7300", fmt, ##arg)
|
|
|
|
/*
|
|
* Memory topology is organized as:
|
|
* Branch 0 - 2 channels: channels 0 and 1 (FDB0 PCI dev 21.0)
|
|
* Branch 1 - 2 channels: channels 2 and 3 (FDB1 PCI dev 22.0)
|
|
* Each channel can have to 8 DIMM sets (called as SLOTS)
|
|
* Slots should generally be filled in pairs
|
|
* Except on Single Channel mode of operation
|
|
* just slot 0/channel0 filled on this mode
|
|
* On normal operation mode, the two channels on a branch should be
|
|
* filled together for the same SLOT#
|
|
* When in mirrored mode, Branch 1 replicate memory at Branch 0, so, the four
|
|
* channels on both branches should be filled
|
|
*/
|
|
|
|
/* Limits for i7300 */
|
|
#define MAX_SLOTS 8
|
|
#define MAX_BRANCHES 2
|
|
#define MAX_CH_PER_BRANCH 2
|
|
#define MAX_CHANNELS (MAX_CH_PER_BRANCH * MAX_BRANCHES)
|
|
#define MAX_MIR 3
|
|
|
|
#define to_channel(ch, branch) ((((branch)) << 1) | (ch))
|
|
|
|
#define to_csrow(slot, ch, branch) \
|
|
(to_channel(ch, branch) | ((slot) << 2))
|
|
|
|
/*
|
|
* I7300 devices
|
|
* All 3 functions of Device 16 (0,1,2) share the SAME DID and
|
|
* uses PCI_DEVICE_ID_INTEL_I7300_MCH_ERR for device 16 (0,1,2),
|
|
* PCI_DEVICE_ID_INTEL_I7300_MCH_FB0 and PCI_DEVICE_ID_INTEL_I7300_MCH_FB1
|
|
* for device 21 (0,1).
|
|
*/
|
|
|
|
/****************************************************
|
|
* i7300 Register definitions for memory enumberation
|
|
****************************************************/
|
|
|
|
/*
|
|
* Device 16,
|
|
* Function 0: System Address (not documented)
|
|
* Function 1: Memory Branch Map, Control, Errors Register
|
|
*/
|
|
|
|
/* OFFSETS for Function 0 */
|
|
#define AMBASE 0x48 /* AMB Mem Mapped Reg Region Base */
|
|
#define MAXCH 0x56 /* Max Channel Number */
|
|
#define MAXDIMMPERCH 0x57 /* Max DIMM PER Channel Number */
|
|
|
|
/* OFFSETS for Function 1 */
|
|
#define MC_SETTINGS 0x40
|
|
|
|
#define TOLM 0x6C
|
|
#define REDMEMB 0x7C
|
|
|
|
#define MIR0 0x80
|
|
#define MIR1 0x84
|
|
#define MIR2 0x88
|
|
|
|
/*
|
|
* Note: Other Intel EDAC drivers use AMBPRESENT to identify if the available
|
|
* memory. From datasheet item 7.3.1 (FB-DIMM technology & organization), it
|
|
* seems that we cannot use this information directly for the same usage.
|
|
* Each memory slot may have up to 2 AMB interfaces, one for income and another
|
|
* for outcome interface to the next slot.
|
|
* For now, the driver just stores the AMB present registers, but rely only at
|
|
* the MTR info to detect memory.
|
|
* Datasheet is also not clear about how to map each AMBPRESENT registers to
|
|
* one of the 4 available channels.
|
|
*/
|
|
#define AMBPRESENT_0 0x64
|
|
#define AMBPRESENT_1 0x66
|
|
|
|
const static u16 mtr_regs [MAX_SLOTS] = {
|
|
0x80, 0x84, 0x88, 0x8c,
|
|
0x82, 0x86, 0x8a, 0x8e
|
|
};
|
|
|
|
/* Defines to extract the vaious fields from the
|
|
* MTRx - Memory Technology Registers
|
|
*/
|
|
#define MTR_DIMMS_PRESENT(mtr) ((mtr) & (1 << 8))
|
|
#define MTR_DIMMS_ETHROTTLE(mtr) ((mtr) & (1 << 7))
|
|
#define MTR_DRAM_WIDTH(mtr) (((mtr) & (1 << 6)) ? 8 : 4)
|
|
#define MTR_DRAM_BANKS(mtr) (((mtr) & (1 << 5)) ? 8 : 4)
|
|
#define MTR_DIMM_RANKS(mtr) (((mtr) & (1 << 4)) ? 1 : 0)
|
|
#define MTR_DIMM_ROWS(mtr) (((mtr) >> 2) & 0x3)
|
|
#define MTR_DRAM_BANKS_ADDR_BITS 2
|
|
#define MTR_DIMM_ROWS_ADDR_BITS(mtr) (MTR_DIMM_ROWS(mtr) + 13)
|
|
#define MTR_DIMM_COLS(mtr) ((mtr) & 0x3)
|
|
#define MTR_DIMM_COLS_ADDR_BITS(mtr) (MTR_DIMM_COLS(mtr) + 10)
|
|
|
|
#ifdef CONFIG_EDAC_DEBUG
|
|
/* MTR NUMROW */
|
|
static const char *numrow_toString[] = {
|
|
"8,192 - 13 rows",
|
|
"16,384 - 14 rows",
|
|
"32,768 - 15 rows",
|
|
"65,536 - 16 rows"
|
|
};
|
|
|
|
/* MTR NUMCOL */
|
|
static const char *numcol_toString[] = {
|
|
"1,024 - 10 columns",
|
|
"2,048 - 11 columns",
|
|
"4,096 - 12 columns",
|
|
"reserved"
|
|
};
|
|
#endif
|
|
|
|
/************************************************
|
|
* i7300 Register definitions for error detection
|
|
************************************************/
|
|
/*
|
|
* Device 16.2: Global Error Registers
|
|
*/
|
|
|
|
#define FERR_GLOBAL_LO 0x40
|
|
static const char *ferr_global_name[] = {
|
|
[31] = "Internal MCH Fatal Error",
|
|
[30] = "Intel QuickData Technology Device Fatal Error",
|
|
[29] = "FSB1 Fatal Error",
|
|
[28] = "FSB0 Fatal Error",
|
|
[27] = "FBD Channel 3 Fatal Error",
|
|
[26] = "FBD Channel 2 Fatal Error",
|
|
[25] = "FBD Channel 1 Fatal Error",
|
|
[24] = "FBD Channel 0 Fatal Error",
|
|
[23] = "PCI Express Device 7Fatal Error",
|
|
[22] = "PCI Express Device 6 Fatal Error",
|
|
[21] = "PCI Express Device 5 Fatal Error",
|
|
[20] = "PCI Express Device 4 Fatal Error",
|
|
[19] = "PCI Express Device 3 Fatal Error",
|
|
[18] = "PCI Express Device 2 Fatal Error",
|
|
[17] = "PCI Express Device 1 Fatal Error",
|
|
[16] = "ESI Fatal Error",
|
|
[15] = "Internal MCH Non-Fatal Error",
|
|
[14] = "Intel QuickData Technology Device Non Fatal Error",
|
|
[13] = "FSB1 Non-Fatal Error",
|
|
[12] = "FSB 0 Non-Fatal Error",
|
|
[11] = "FBD Channel 3 Non-Fatal Error",
|
|
[10] = "FBD Channel 2 Non-Fatal Error",
|
|
[9] = "FBD Channel 1 Non-Fatal Error",
|
|
[8] = "FBD Channel 0 Non-Fatal Error",
|
|
[7] = "PCI Express Device 7 Non-Fatal Error",
|
|
[6] = "PCI Express Device 6 Non-Fatal Error",
|
|
[5] = "PCI Express Device 5 Non-Fatal Error",
|
|
[4] = "PCI Express Device 4 Non-Fatal Error",
|
|
[3] = "PCI Express Device 3 Non-Fatal Error",
|
|
[2] = "PCI Express Device 2 Non-Fatal Error",
|
|
[1] = "PCI Express Device 1 Non-Fatal Error",
|
|
[0] = "ESI Non-Fatal Error",
|
|
};
|
|
|
|
#define NERR_GLOBAL 0x44
|
|
static const char *nerr_global_name[] = {
|
|
[31] = "Internal MCH Fatal Error",
|
|
[30] = "Intel QuickData Technology Device Fatal Error",
|
|
[29] = "FSB1 Fatal Error",
|
|
[28] = "FSB0 Fatal Error",
|
|
[27] = "FSB2 Fatal Error",
|
|
[26] = "FSB3 Fatal Error",
|
|
[25] = "Reserved",
|
|
[24] = "FBD Channel 0,1,2 or 3 Fatal Error",
|
|
[23] = "PCI Express Device 7 Fatal Error",
|
|
[22] = "PCI Express Device 6 Fatal Error",
|
|
[21] = "PCI Express Device 5 Fatal Error",
|
|
[20] = "PCI Express Device 4 Fatal Error",
|
|
[19] = "PCI Express Device 3 Fatal Error",
|
|
[18] = "PCI Express Device 2 Fatal Error",
|
|
[17] = "PCI Express Device 1 Fatal Error",
|
|
[16] = "ESI Fatal Error",
|
|
[15] = "Internal MCH Non-Fatal Error",
|
|
[14] = "Intel QuickData Technology Device Non Fatal Error",
|
|
[13] = "FSB1 Non-Fatal Error",
|
|
[12] = "FSB0 Non-Fatal Error",
|
|
[11] = "FSB2 Non-Fatal Error",
|
|
[10] = "FSB3 Non-Fatal Error",
|
|
[9] = "Reserved",
|
|
[8] = "FBD Channel 0,1, 2 or 3 Non-Fatal Error",
|
|
[7] = "PCI Express Device 7 Non-Fatal Error",
|
|
[6] = "PCI Express Device 6 Non-Fatal Error",
|
|
[5] = "PCI Express Device 5 Non-Fatal Error",
|
|
[4] = "PCI Express Device 4 Non-Fatal Error",
|
|
[3] = "PCI Express Device 3 Non-Fatal Error",
|
|
[2] = "PCI Express Device 2 Non-Fatal Error",
|
|
[1] = "PCI Express Device 1 Non-Fatal Error",
|
|
[0] = "ESI Non-Fatal Error",
|
|
};
|
|
|
|
#if 0
|
|
|
|
/*
|
|
* Error indicator bits and masks
|
|
* Error masks are according with Table 5-17 of i7300 datasheet
|
|
*/
|
|
|
|
enum error_mask {
|
|
EMASK_M1 = 1<<0, /* Memory Write error on non-redundant retry */
|
|
EMASK_M2 = 1<<1, /* Memory or FB-DIMM configuration CRC read error */
|
|
EMASK_M3 = 1<<2, /* Reserved */
|
|
EMASK_M4 = 1<<3, /* Uncorrectable Data ECC on Replay */
|
|
EMASK_M5 = 1<<4, /* Aliased Uncorrectable Non-Mirrored Demand Data ECC */
|
|
EMASK_M6 = 1<<5, /* Unsupported on i7300 */
|
|
EMASK_M7 = 1<<6, /* Aliased Uncorrectable Resilver- or Spare-Copy Data ECC */
|
|
EMASK_M8 = 1<<7, /* Aliased Uncorrectable Patrol Data ECC */
|
|
EMASK_M9 = 1<<8, /* Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC */
|
|
EMASK_M10 = 1<<9, /* Unsupported on i7300 */
|
|
EMASK_M11 = 1<<10, /* Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC */
|
|
EMASK_M12 = 1<<11, /* Non-Aliased Uncorrectable Patrol Data ECC */
|
|
EMASK_M13 = 1<<12, /* Memory Write error on first attempt */
|
|
EMASK_M14 = 1<<13, /* FB-DIMM Configuration Write error on first attempt */
|
|
EMASK_M15 = 1<<14, /* Memory or FB-DIMM configuration CRC read error */
|
|
EMASK_M16 = 1<<15, /* Channel Failed-Over Occurred */
|
|
EMASK_M17 = 1<<16, /* Correctable Non-Mirrored Demand Data ECC */
|
|
EMASK_M18 = 1<<17, /* Unsupported on i7300 */
|
|
EMASK_M19 = 1<<18, /* Correctable Resilver- or Spare-Copy Data ECC */
|
|
EMASK_M20 = 1<<19, /* Correctable Patrol Data ECC */
|
|
EMASK_M21 = 1<<20, /* FB-DIMM Northbound parity error on FB-DIMM Sync Status */
|
|
EMASK_M22 = 1<<21, /* SPD protocol Error */
|
|
EMASK_M23 = 1<<22, /* Non-Redundant Fast Reset Timeout */
|
|
EMASK_M24 = 1<<23, /* Refresh error */
|
|
EMASK_M25 = 1<<24, /* Memory Write error on redundant retry */
|
|
EMASK_M26 = 1<<25, /* Redundant Fast Reset Timeout */
|
|
EMASK_M27 = 1<<26, /* Correctable Counter Threshold Exceeded */
|
|
EMASK_M28 = 1<<27, /* DIMM-Spare Copy Completed */
|
|
EMASK_M29 = 1<<28, /* DIMM-Isolation Completed */
|
|
};
|
|
|
|
/*
|
|
* Names to translate bit error into something useful
|
|
*/
|
|
static const char *error_name[] = {
|
|
[0] = "Memory Write error on non-redundant retry",
|
|
[1] = "Memory or FB-DIMM configuration CRC read error",
|
|
/* Reserved */
|
|
[3] = "Uncorrectable Data ECC on Replay",
|
|
[4] = "Aliased Uncorrectable Non-Mirrored Demand Data ECC",
|
|
/* M6 Unsupported on i7300 */
|
|
[6] = "Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
|
|
[7] = "Aliased Uncorrectable Patrol Data ECC",
|
|
[8] = "Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC",
|
|
/* M10 Unsupported on i7300 */
|
|
[10] = "Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
|
|
[11] = "Non-Aliased Uncorrectable Patrol Data ECC",
|
|
[12] = "Memory Write error on first attempt",
|
|
[13] = "FB-DIMM Configuration Write error on first attempt",
|
|
[14] = "Memory or FB-DIMM configuration CRC read error",
|
|
[15] = "Channel Failed-Over Occurred",
|
|
[16] = "Correctable Non-Mirrored Demand Data ECC",
|
|
/* M18 Unsupported on i7300 */
|
|
[18] = "Correctable Resilver- or Spare-Copy Data ECC",
|
|
[19] = "Correctable Patrol Data ECC",
|
|
[20] = "FB-DIMM Northbound parity error on FB-DIMM Sync Status",
|
|
[21] = "SPD protocol Error",
|
|
[22] = "Non-Redundant Fast Reset Timeout",
|
|
[23] = "Refresh error",
|
|
[24] = "Memory Write error on redundant retry",
|
|
[25] = "Redundant Fast Reset Timeout",
|
|
[26] = "Correctable Counter Threshold Exceeded",
|
|
[27] = "DIMM-Spare Copy Completed",
|
|
[28] = "DIMM-Isolation Completed",
|
|
};
|
|
|
|
/* Fatal errors */
|
|
#define ERROR_FAT_MASK (EMASK_M1 | \
|
|
EMASK_M2 | \
|
|
EMASK_M23)
|
|
|
|
/* Correctable errors */
|
|
#define ERROR_NF_CORRECTABLE (EMASK_M27 | \
|
|
EMASK_M20 | \
|
|
EMASK_M19 | \
|
|
EMASK_M18 | \
|
|
EMASK_M17 | \
|
|
EMASK_M16)
|
|
#define ERROR_NF_DIMM_SPARE (EMASK_M29 | \
|
|
EMASK_M28)
|
|
#define ERROR_NF_SPD_PROTOCOL (EMASK_M22)
|
|
#define ERROR_NF_NORTH_CRC (EMASK_M21)
|
|
|
|
/* Recoverable errors */
|
|
#define ERROR_NF_RECOVERABLE (EMASK_M26 | \
|
|
EMASK_M25 | \
|
|
EMASK_M24 | \
|
|
EMASK_M15 | \
|
|
EMASK_M14 | \
|
|
EMASK_M13 | \
|
|
EMASK_M12 | \
|
|
EMASK_M11 | \
|
|
EMASK_M9 | \
|
|
EMASK_M8 | \
|
|
EMASK_M7 | \
|
|
EMASK_M5)
|
|
|
|
/* uncorrectable errors */
|
|
#define ERROR_NF_UNCORRECTABLE (EMASK_M4)
|
|
|
|
/* mask to all non-fatal errors */
|
|
#define ERROR_NF_MASK (ERROR_NF_CORRECTABLE | \
|
|
ERROR_NF_UNCORRECTABLE | \
|
|
ERROR_NF_RECOVERABLE | \
|
|
ERROR_NF_DIMM_SPARE | \
|
|
ERROR_NF_SPD_PROTOCOL | \
|
|
ERROR_NF_NORTH_CRC)
|
|
|
|
/*
|
|
* Define error masks for the several registers
|
|
*/
|
|
|
|
/* Enable all fatal and non fatal errors */
|
|
#define ENABLE_EMASK_ALL (ERROR_FAT_MASK | ERROR_NF_MASK)
|
|
|
|
/* mask for fatal error registers */
|
|
#define FERR_FAT_MASK ERROR_FAT_MASK
|
|
|
|
/* masks for non-fatal error register */
|
|
static inline int to_nf_mask(unsigned int mask)
|
|
{
|
|
return (mask & EMASK_M29) | (mask >> 3);
|
|
};
|
|
|
|
static inline int from_nf_ferr(unsigned int mask)
|
|
{
|
|
return (mask & EMASK_M29) | /* Bit 28 */
|
|
(mask & ((1 << 28) - 1) << 3); /* Bits 0 to 27 */
|
|
};
|
|
|
|
#define FERR_NF_MASK to_nf_mask(ERROR_NF_MASK)
|
|
#define FERR_NF_CORRECTABLE to_nf_mask(ERROR_NF_CORRECTABLE)
|
|
#define FERR_NF_DIMM_SPARE to_nf_mask(ERROR_NF_DIMM_SPARE)
|
|
#define FERR_NF_SPD_PROTOCOL to_nf_mask(ERROR_NF_SPD_PROTOCOL)
|
|
#define FERR_NF_NORTH_CRC to_nf_mask(ERROR_NF_NORTH_CRC)
|
|
#define FERR_NF_RECOVERABLE to_nf_mask(ERROR_NF_RECOVERABLE)
|
|
#define FERR_NF_UNCORRECTABLE to_nf_mask(ERROR_NF_UNCORRECTABLE)
|
|
|
|
#endif
|
|
|
|
/* Device name and register DID (Device ID) */
|
|
struct i7300_dev_info {
|
|
const char *ctl_name; /* name for this device */
|
|
u16 fsb_mapping_errors; /* DID for the branchmap,control */
|
|
};
|
|
|
|
/* Table of devices attributes supported by this driver */
|
|
static const struct i7300_dev_info i7300_devs[] = {
|
|
{
|
|
.ctl_name = "I7300",
|
|
.fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I7300_MCH_ERR,
|
|
},
|
|
};
|
|
|
|
struct i7300_dimm_info {
|
|
int megabytes; /* size, 0 means not present */
|
|
};
|
|
|
|
/* driver private data structure */
|
|
struct i7300_pvt {
|
|
struct pci_dev *pci_dev_16_0_fsb_ctlr; /* 16.0 */
|
|
struct pci_dev *pci_dev_16_1_fsb_addr_map; /* 16.1 */
|
|
struct pci_dev *pci_dev_16_2_fsb_err_regs; /* 16.2 */
|
|
struct pci_dev *pci_dev_2x_0_fbd_branch[MAX_BRANCHES]; /* 21.0 and 22.0 */
|
|
|
|
u16 tolm; /* top of low memory */
|
|
u64 ambase; /* AMB BAR */
|
|
u32 mc_settings;
|
|
|
|
u16 mir[MAX_MIR];
|
|
|
|
u16 mtr[MAX_SLOTS][MAX_BRANCHES]; /* Memory Technlogy Reg */
|
|
u16 ambpresent[MAX_CHANNELS]; /* AMB present regs */
|
|
|
|
/* DIMM information matrix, allocating architecture maximums */
|
|
struct i7300_dimm_info dimm_info[MAX_SLOTS][MAX_CHANNELS];
|
|
};
|
|
|
|
#if 0
|
|
/* I7300 MCH error information retrieved from Hardware */
|
|
struct i7300_error_info {
|
|
/* These registers are always read from the MC */
|
|
u32 ferr_fat_fbd; /* First Errors Fatal */
|
|
u32 nerr_fat_fbd; /* Next Errors Fatal */
|
|
u32 ferr_nf_fbd; /* First Errors Non-Fatal */
|
|
u32 nerr_nf_fbd; /* Next Errors Non-Fatal */
|
|
|
|
/* These registers are input ONLY if there was a Recoverable Error */
|
|
u32 redmemb; /* Recoverable Mem Data Error log B */
|
|
u16 recmema; /* Recoverable Mem Error log A */
|
|
u32 recmemb; /* Recoverable Mem Error log B */
|
|
|
|
/* These registers are input ONLY if there was a Non-Rec Error */
|
|
u16 nrecmema; /* Non-Recoverable Mem log A */
|
|
u16 nrecmemb; /* Non-Recoverable Mem log B */
|
|
|
|
};
|
|
#endif
|
|
|
|
/* FIXME: Why do we need to have this static? */
|
|
static struct edac_pci_ctl_info *i7300_pci;
|
|
|
|
|
|
#if 0
|
|
/* note that nrec_rdwr changed from NRECMEMA to NRECMEMB between the 5000 and
|
|
5400 better to use an inline function than a macro in this case */
|
|
static inline int nrec_bank(struct i7300_error_info *info)
|
|
{
|
|
return ((info->nrecmema) >> 12) & 0x7;
|
|
}
|
|
static inline int nrec_rank(struct i7300_error_info *info)
|
|
{
|
|
return ((info->nrecmema) >> 8) & 0xf;
|
|
}
|
|
static inline int nrec_buf_id(struct i7300_error_info *info)
|
|
{
|
|
return ((info->nrecmema)) & 0xff;
|
|
}
|
|
static inline int nrec_rdwr(struct i7300_error_info *info)
|
|
{
|
|
return (info->nrecmemb) >> 31;
|
|
}
|
|
/* This applies to both NREC and REC string so it can be used with nrec_rdwr
|
|
and rec_rdwr */
|
|
static inline const char *rdwr_str(int rdwr)
|
|
{
|
|
return rdwr ? "Write" : "Read";
|
|
}
|
|
static inline int nrec_cas(struct i7300_error_info *info)
|
|
{
|
|
return ((info->nrecmemb) >> 16) & 0x1fff;
|
|
}
|
|
static inline int nrec_ras(struct i7300_error_info *info)
|
|
{
|
|
return (info->nrecmemb) & 0xffff;
|
|
}
|
|
static inline int rec_bank(struct i7300_error_info *info)
|
|
{
|
|
return ((info->recmema) >> 12) & 0x7;
|
|
}
|
|
static inline int rec_rank(struct i7300_error_info *info)
|
|
{
|
|
return ((info->recmema) >> 8) & 0xf;
|
|
}
|
|
static inline int rec_rdwr(struct i7300_error_info *info)
|
|
{
|
|
return (info->recmemb) >> 31;
|
|
}
|
|
static inline int rec_cas(struct i7300_error_info *info)
|
|
{
|
|
return ((info->recmemb) >> 16) & 0x1fff;
|
|
}
|
|
static inline int rec_ras(struct i7300_error_info *info)
|
|
{
|
|
return (info->recmemb) & 0xffff;
|
|
}
|
|
|
|
/*
|
|
* i7300_get_error_info Retrieve the hardware error information from
|
|
* the hardware and cache it in the 'info'
|
|
* structure
|
|
*/
|
|
static void i7300_get_error_info(struct mem_ctl_info *mci,
|
|
struct i7300_error_info *info)
|
|
{
|
|
struct i7300_pvt *pvt;
|
|
u32 value;
|
|
|
|
pvt = mci->pvt_info;
|
|
|
|
/* read in the 1st FATAL error register */
|
|
pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, FERR_FAT_FBD, &value);
|
|
|
|
/* Mask only the bits that the doc says are valid
|
|
*/
|
|
value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK);
|
|
|
|
/* If there is an error, then read in the
|
|
NEXT FATAL error register and the Memory Error Log Register A
|
|
*/
|
|
if (value & FERR_FAT_MASK) {
|
|
info->ferr_fat_fbd = value;
|
|
|
|
/* harvest the various error data we need */
|
|
pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
|
|
NERR_FAT_FBD, &info->nerr_fat_fbd);
|
|
pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map,
|
|
NRECMEMA, &info->nrecmema);
|
|
pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map,
|
|
NRECMEMB, &info->nrecmemb);
|
|
|
|
/* Clear the error bits, by writing them back */
|
|
pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
|
|
FERR_FAT_FBD, value);
|
|
} else {
|
|
info->ferr_fat_fbd = 0;
|
|
info->nerr_fat_fbd = 0;
|
|
info->nrecmema = 0;
|
|
info->nrecmemb = 0;
|
|
}
|
|
|
|
/* read in the 1st NON-FATAL error register */
|
|
pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, FERR_NF_FBD, &value);
|
|
|
|
/* If there is an error, then read in the 1st NON-FATAL error
|
|
* register as well */
|
|
if (value & FERR_NF_MASK) {
|
|
info->ferr_nf_fbd = value;
|
|
|
|
/* harvest the various error data we need */
|
|
pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
|
|
NERR_NF_FBD, &info->nerr_nf_fbd);
|
|
pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map,
|
|
RECMEMA, &info->recmema);
|
|
pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
|
|
RECMEMB, &info->recmemb);
|
|
pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
|
|
REDMEMB, &info->redmemb);
|
|
|
|
/* Clear the error bits, by writing them back */
|
|
pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
|
|
FERR_NF_FBD, value);
|
|
} else {
|
|
info->ferr_nf_fbd = 0;
|
|
info->nerr_nf_fbd = 0;
|
|
info->recmema = 0;
|
|
info->recmemb = 0;
|
|
info->redmemb = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* i7300_proccess_non_recoverable_info(struct mem_ctl_info *mci,
|
|
* struct i7300_error_info *info,
|
|
* int handle_errors);
|
|
*
|
|
* handle the Intel FATAL and unrecoverable errors, if any
|
|
*/
|
|
static void i7300_proccess_non_recoverable_info(struct mem_ctl_info *mci,
|
|
struct i7300_error_info *info,
|
|
unsigned long allErrors)
|
|
{
|
|
char msg[EDAC_MC_LABEL_LEN + 1 + 90 + 80];
|
|
int branch;
|
|
int channel;
|
|
int bank;
|
|
int buf_id;
|
|
int rank;
|
|
int rdwr;
|
|
int ras, cas;
|
|
int errnum;
|
|
char *type = NULL;
|
|
|
|
if (!allErrors)
|
|
return; /* if no error, return now */
|
|
|
|
if (allErrors & ERROR_FAT_MASK)
|
|
type = "FATAL";
|
|
else if (allErrors & FERR_NF_UNCORRECTABLE)
|
|
type = "NON-FATAL uncorrected";
|
|
else
|
|
type = "NON-FATAL recoverable";
|
|
|
|
/* ONLY ONE of the possible error bits will be set, as per the docs */
|
|
|
|
branch = extract_fbdchan_indx(info->ferr_fat_fbd);
|
|
channel = branch;
|
|
|
|
/* Use the NON-Recoverable macros to extract data */
|
|
bank = nrec_bank(info);
|
|
rank = nrec_rank(info);
|
|
buf_id = nrec_buf_id(info);
|
|
rdwr = nrec_rdwr(info);
|
|
ras = nrec_ras(info);
|
|
cas = nrec_cas(info);
|
|
|
|
debugf0("\t\tCSROW= %d Channels= %d,%d (Branch= %d "
|
|
"DRAM Bank= %d Buffer ID = %d rdwr= %s ras= %d cas= %d)\n",
|
|
rank, channel, channel + 1, branch >> 1, bank,
|
|
buf_id, rdwr_str(rdwr), ras, cas);
|
|
|
|
/* Only 1 bit will be on */
|
|
errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
|
|
|
|
/* Form out message */
|
|
snprintf(msg, sizeof(msg),
|
|
"%s (Branch=%d DRAM-Bank=%d Buffer ID = %d RDWR=%s "
|
|
"RAS=%d CAS=%d %s Err=0x%lx (%s))",
|
|
type, branch >> 1, bank, buf_id, rdwr_str(rdwr), ras, cas,
|
|
type, allErrors, error_name[errnum]);
|
|
|
|
/* Call the helper to output message */
|
|
edac_mc_handle_fbd_ue(mci, rank, channel, channel + 1, msg);
|
|
}
|
|
|
|
/*
|
|
* i7300_process_fatal_error_info(struct mem_ctl_info *mci,
|
|
* struct i7300_error_info *info,
|
|
* int handle_errors);
|
|
*
|
|
* handle the Intel NON-FATAL errors, if any
|
|
*/
|
|
static void i7300_process_nonfatal_error_info(struct mem_ctl_info *mci,
|
|
struct i7300_error_info *info)
|
|
{
|
|
char msg[EDAC_MC_LABEL_LEN + 1 + 90 + 80];
|
|
unsigned long allErrors;
|
|
int branch;
|
|
int channel;
|
|
int bank;
|
|
int rank;
|
|
int rdwr;
|
|
int ras, cas;
|
|
int errnum;
|
|
|
|
/* mask off the Error bits that are possible */
|
|
allErrors = from_nf_ferr(info->ferr_nf_fbd & FERR_NF_MASK);
|
|
if (!allErrors)
|
|
return; /* if no error, return now */
|
|
|
|
/* ONLY ONE of the possible error bits will be set, as per the docs */
|
|
|
|
if (allErrors & (ERROR_NF_UNCORRECTABLE | ERROR_NF_RECOVERABLE)) {
|
|
i7300_proccess_non_recoverable_info(mci, info, allErrors);
|
|
return;
|
|
}
|
|
|
|
/* Correctable errors */
|
|
if (allErrors & ERROR_NF_CORRECTABLE) {
|
|
debugf0("\tCorrected bits= 0x%lx\n", allErrors);
|
|
|
|
branch = extract_fbdchan_indx(info->ferr_nf_fbd);
|
|
|
|
channel = 0;
|
|
if (REC_ECC_LOCATOR_ODD(info->redmemb))
|
|
channel = 1;
|
|
|
|
/* Convert channel to be based from zero, instead of
|
|
* from branch base of 0 */
|
|
channel += branch;
|
|
|
|
bank = rec_bank(info);
|
|
rank = rec_rank(info);
|
|
rdwr = rec_rdwr(info);
|
|
ras = rec_ras(info);
|
|
cas = rec_cas(info);
|
|
|
|
/* Only 1 bit will be on */
|
|
errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
|
|
|
|
debugf0("\t\tCSROW= %d Channel= %d (Branch %d "
|
|
"DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
|
|
rank, channel, branch >> 1, bank,
|
|
rdwr_str(rdwr), ras, cas);
|
|
|
|
/* Form out message */
|
|
snprintf(msg, sizeof(msg),
|
|
"Corrected error (Branch=%d DRAM-Bank=%d RDWR=%s "
|
|
"RAS=%d CAS=%d, CE Err=0x%lx (%s))",
|
|
branch >> 1, bank, rdwr_str(rdwr), ras, cas,
|
|
allErrors, error_name[errnum]);
|
|
|
|
/* Call the helper to output message */
|
|
edac_mc_handle_fbd_ce(mci, rank, channel, msg);
|
|
|
|
return;
|
|
}
|
|
|
|
/* Miscelaneous errors */
|
|
errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
|
|
|
|
branch = extract_fbdchan_indx(info->ferr_nf_fbd);
|
|
|
|
i7300_mc_printk(mci, KERN_EMERG,
|
|
"Non-Fatal misc error (Branch=%d Err=%#lx (%s))",
|
|
branch >> 1, allErrors, error_name[errnum]);
|
|
}
|
|
|
|
/*
|
|
* i7300_process_error_info Process the error info that is
|
|
* in the 'info' structure, previously retrieved from hardware
|
|
*/
|
|
static void i7300_process_error_info(struct mem_ctl_info *mci,
|
|
struct i7300_error_info *info)
|
|
{ u32 allErrors;
|
|
|
|
/* First handle any fatal errors that occurred */
|
|
allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK);
|
|
i7300_proccess_non_recoverable_info(mci, info, allErrors);
|
|
|
|
/* now handle any non-fatal errors that occurred */
|
|
i7300_process_nonfatal_error_info(mci, info);
|
|
}
|
|
|
|
/*
|
|
* i7300_clear_error Retrieve any error from the hardware
|
|
* but do NOT process that error.
|
|
* Used for 'clearing' out of previous errors
|
|
* Called by the Core module.
|
|
*/
|
|
static void i7300_clear_error(struct mem_ctl_info *mci)
|
|
{
|
|
struct i7300_error_info info;
|
|
|
|
i7300_get_error_info(mci, &info);
|
|
}
|
|
|
|
/*
|
|
* i7300_check_error Retrieve and process errors reported by the
|
|
* hardware. Called by the Core module.
|
|
*/
|
|
static void i7300_check_error(struct mem_ctl_info *mci)
|
|
{
|
|
struct i7300_error_info info;
|
|
debugf4("MC%d: " __FILE__ ": %s()\n", mci->mc_idx, __func__);
|
|
i7300_get_error_info(mci, &info);
|
|
i7300_process_error_info(mci, &info);
|
|
}
|
|
|
|
/*
|
|
* i7300_enable_error_reporting
|
|
* Turn on the memory reporting features of the hardware
|
|
*/
|
|
static void i7300_enable_error_reporting(struct mem_ctl_info *mci)
|
|
{
|
|
struct i7300_pvt *pvt;
|
|
u32 fbd_error_mask;
|
|
|
|
pvt = mci->pvt_info;
|
|
|
|
/* Read the FBD Error Mask Register */
|
|
pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, EMASK_FBD,
|
|
&fbd_error_mask);
|
|
|
|
/* Enable with a '0' */
|
|
fbd_error_mask &= ~(ENABLE_EMASK_ALL);
|
|
|
|
pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map, EMASK_FBD,
|
|
fbd_error_mask);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* determine_mtr(pvt, csrow, channel)
|
|
*
|
|
* return the proper MTR register as determine by the csrow and desired channel
|
|
*/
|
|
static int decode_mtr(struct i7300_pvt *pvt,
|
|
int slot, int ch, int branch,
|
|
struct i7300_dimm_info *dinfo,
|
|
struct csrow_info *p_csrow)
|
|
{
|
|
int mtr, ans, addrBits, channel;
|
|
|
|
channel = to_channel(ch, branch);
|
|
|
|
mtr = pvt->mtr[slot][branch];
|
|
ans = MTR_DIMMS_PRESENT(mtr) ? 1 : 0;
|
|
|
|
debugf2("\tMTR%d CH%d: DIMMs are %s (mtr)\n",
|
|
slot, channel,
|
|
ans ? "Present" : "NOT Present");
|
|
|
|
/* Determine if there is a DIMM present in this DIMM slot */
|
|
|
|
#if 0
|
|
if (!amb_present || !ans)
|
|
return 0;
|
|
#else
|
|
if (!ans)
|
|
return 0;
|
|
#endif
|
|
|
|
/* Start with the number of bits for a Bank
|
|
* on the DRAM */
|
|
addrBits = MTR_DRAM_BANKS_ADDR_BITS;
|
|
/* Add thenumber of ROW bits */
|
|
addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
|
|
/* add the number of COLUMN bits */
|
|
addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
|
|
/* add the number of RANK bits */
|
|
addrBits += MTR_DIMM_RANKS(mtr);
|
|
|
|
addrBits += 6; /* add 64 bits per DIMM */
|
|
addrBits -= 20; /* divide by 2^^20 */
|
|
addrBits -= 3; /* 8 bits per bytes */
|
|
|
|
dinfo->megabytes = 1 << addrBits;
|
|
|
|
debugf2("\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
|
|
|
|
debugf2("\t\tELECTRICAL THROTTLING is %s\n",
|
|
MTR_DIMMS_ETHROTTLE(mtr) ? "enabled" : "disabled");
|
|
|
|
debugf2("\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
|
|
debugf2("\t\tNUMRANK: %s\n", MTR_DIMM_RANKS(mtr) ? "double" : "single");
|
|
debugf2("\t\tNUMROW: %s\n", numrow_toString[MTR_DIMM_ROWS(mtr)]);
|
|
debugf2("\t\tNUMCOL: %s\n", numcol_toString[MTR_DIMM_COLS(mtr)]);
|
|
debugf2("\t\tSIZE: %d MB\n", dinfo->megabytes);
|
|
|
|
p_csrow->grain = 8;
|
|
p_csrow->nr_pages = dinfo->megabytes << 8;
|
|
p_csrow->mtype = MEM_FB_DDR2;
|
|
|
|
/*
|
|
* FIXME: the type of error detection actually depends of the
|
|
* mode of operation. When it is just one single memory chip, at
|
|
* socket 0, channel 0, it uses 8-byte-over-32-byte SECDED+ code.
|
|
* In normal or mirrored mode, it uses Single Device Data correction,
|
|
* with the possibility of using an extended algorithm for x8 memories
|
|
* See datasheet Sections 7.3.6 to 7.3.8
|
|
*/
|
|
p_csrow->edac_mode = EDAC_S8ECD8ED;
|
|
|
|
/* ask what device type on this row */
|
|
if (MTR_DRAM_WIDTH(mtr))
|
|
p_csrow->dtype = DEV_X8;
|
|
else
|
|
p_csrow->dtype = DEV_X4;
|
|
|
|
return mtr;
|
|
}
|
|
|
|
/*
|
|
* print_dimm_size
|
|
*
|
|
* also will output a DIMM matrix map, if debug is enabled, for viewing
|
|
* how the DIMMs are populated
|
|
*/
|
|
static void print_dimm_size(struct i7300_pvt *pvt)
|
|
{
|
|
struct i7300_dimm_info *dinfo;
|
|
char *p, *mem_buffer;
|
|
int space, n;
|
|
int channel, slot;
|
|
|
|
space = PAGE_SIZE;
|
|
mem_buffer = p = kmalloc(space, GFP_KERNEL);
|
|
if (p == NULL) {
|
|
i7300_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n",
|
|
__FILE__, __func__);
|
|
return;
|
|
}
|
|
|
|
n = snprintf(p, space, " ");
|
|
p += n;
|
|
space -= n;
|
|
for (channel = 0; channel < MAX_CHANNELS; channel++) {
|
|
n = snprintf(p, space, "channel %d | ", channel);
|
|
p += n;
|
|
space -= n;
|
|
}
|
|
debugf2("%s\n", mem_buffer);
|
|
p = mem_buffer;
|
|
space = PAGE_SIZE;
|
|
n = snprintf(p, space, "-------------------------------"
|
|
"------------------------------");
|
|
p += n;
|
|
space -= n;
|
|
debugf2("%s\n", mem_buffer);
|
|
p = mem_buffer;
|
|
space = PAGE_SIZE;
|
|
|
|
for (slot = 0; slot < MAX_SLOTS; slot++) {
|
|
n = snprintf(p, space, "csrow/SLOT %d ", slot);
|
|
p += n;
|
|
space -= n;
|
|
|
|
for (channel = 0; channel < MAX_CHANNELS; channel++) {
|
|
dinfo = &pvt->dimm_info[slot][channel];
|
|
n = snprintf(p, space, "%4d MB | ", dinfo->megabytes);
|
|
p += n;
|
|
space -= n;
|
|
}
|
|
|
|
debugf2("%s\n", mem_buffer);
|
|
p = mem_buffer;
|
|
space = PAGE_SIZE;
|
|
}
|
|
|
|
n = snprintf(p, space, "-------------------------------"
|
|
"------------------------------");
|
|
p += n;
|
|
space -= n;
|
|
debugf2("%s\n", mem_buffer);
|
|
p = mem_buffer;
|
|
space = PAGE_SIZE;
|
|
|
|
kfree(mem_buffer);
|
|
}
|
|
|
|
/*
|
|
* i7300_init_csrows Initialize the 'csrows' table within
|
|
* the mci control structure with the
|
|
* addressing of memory.
|
|
*
|
|
* return:
|
|
* 0 success
|
|
* 1 no actual memory found on this MC
|
|
*/
|
|
static int i7300_init_csrows(struct mem_ctl_info *mci)
|
|
{
|
|
struct i7300_pvt *pvt;
|
|
struct i7300_dimm_info *dinfo;
|
|
struct csrow_info *p_csrow;
|
|
int empty;
|
|
int mtr;
|
|
int ch, branch, slot, channel;
|
|
|
|
pvt = mci->pvt_info;
|
|
|
|
empty = 1; /* Assume NO memory */
|
|
|
|
debugf2("Memory Technology Registers:\n");
|
|
|
|
/* Get the AMB present registers for the four channels */
|
|
for (branch = 0; branch < MAX_BRANCHES; branch++) {
|
|
/* Read and dump branch 0's MTRs */
|
|
channel = to_channel(0, branch);
|
|
pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch], AMBPRESENT_0,
|
|
&pvt->ambpresent[channel]);
|
|
debugf2("\t\tAMB-present CH%d = 0x%x:\n",
|
|
channel, pvt->ambpresent[channel]);
|
|
|
|
channel = to_channel(1, branch);
|
|
pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch], AMBPRESENT_1,
|
|
&pvt->ambpresent[channel]);
|
|
debugf2("\t\tAMB-present CH%d = 0x%x:\n",
|
|
channel, pvt->ambpresent[channel]);
|
|
}
|
|
|
|
/* Get the set of MTR[0-7] regs by each branch */
|
|
for (slot = 0; slot < MAX_SLOTS; slot++) {
|
|
int where = mtr_regs[slot];
|
|
for (branch = 0; branch < MAX_BRANCHES; branch++) {
|
|
pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch],
|
|
where,
|
|
&pvt->mtr[slot][branch]);
|
|
for (ch = 0; ch < MAX_BRANCHES; ch++) {
|
|
int channel = to_channel(ch, branch);
|
|
|
|
dinfo = &pvt->dimm_info[slot][channel];
|
|
p_csrow = &mci->csrows[slot];
|
|
|
|
mtr = decode_mtr(pvt, slot, ch, branch,
|
|
dinfo, p_csrow);
|
|
/* if no DIMMS on this row, continue */
|
|
if (!MTR_DIMMS_PRESENT(mtr))
|
|
continue;
|
|
|
|
p_csrow->csrow_idx = slot;
|
|
|
|
/* FAKE OUT VALUES, FIXME */
|
|
p_csrow->first_page = 0 + slot * 20;
|
|
p_csrow->last_page = 9 + slot * 20;
|
|
p_csrow->page_mask = 0xfff;
|
|
|
|
empty = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
return empty;
|
|
}
|
|
|
|
static void decode_mir(int mir_no, u16 mir[MAX_MIR])
|
|
{
|
|
if (mir[mir_no] & 3)
|
|
debugf2("MIR%d: limit= 0x%x Branch(es) that participate: %s %s\n",
|
|
mir_no,
|
|
(mir[mir_no] >> 4) & 0xfff,
|
|
(mir[mir_no] & 1) ? "B0" : "",
|
|
(mir[mir_no] & 2) ? "B1": "");
|
|
}
|
|
|
|
/*
|
|
* i7300_get_mc_regs read in the necessary registers and
|
|
* cache locally
|
|
*
|
|
* Fills in the private data members
|
|
*/
|
|
static int i7300_get_mc_regs(struct mem_ctl_info *mci)
|
|
{
|
|
struct i7300_pvt *pvt;
|
|
u32 actual_tolm;
|
|
int i, rc;
|
|
|
|
pvt = mci->pvt_info;
|
|
|
|
pci_read_config_dword(pvt->pci_dev_16_0_fsb_ctlr, AMBASE,
|
|
(u32 *) &pvt->ambase);
|
|
|
|
debugf2("AMBASE= 0x%lx\n", (long unsigned int)pvt->ambase);
|
|
|
|
/* Get the Branch Map regs */
|
|
pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, TOLM, &pvt->tolm);
|
|
pvt->tolm >>= 12;
|
|
debugf2("TOLM (number of 256M regions) =%u (0x%x)\n", pvt->tolm,
|
|
pvt->tolm);
|
|
|
|
actual_tolm = (u32) ((1000l * pvt->tolm) >> (30 - 28));
|
|
debugf2("Actual TOLM byte addr=%u.%03u GB (0x%x)\n",
|
|
actual_tolm/1000, actual_tolm % 1000, pvt->tolm << 28);
|
|
|
|
/* Get memory controller settings */
|
|
pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, MC_SETTINGS,
|
|
&pvt->mc_settings);
|
|
debugf0("Memory controller operating on %s mode\n",
|
|
pvt->mc_settings & (1 << 16)? "mirrored" : "non-mirrored");
|
|
debugf0("Error detection is %s\n",
|
|
pvt->mc_settings & (1 << 5)? "enabled" : "disabled");
|
|
|
|
/* Get Memory Interleave Range registers */
|
|
pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR0, &pvt->mir[0]);
|
|
pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR1, &pvt->mir[1]);
|
|
pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR2, &pvt->mir[2]);
|
|
|
|
/* Decode the MIR regs */
|
|
for (i = 0; i < MAX_MIR; i++)
|
|
decode_mir(i, pvt->mir);
|
|
|
|
rc = i7300_init_csrows(mci);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
/* Go and determine the size of each DIMM and place in an
|
|
* orderly matrix */
|
|
print_dimm_size(pvt);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* i7300_put_devices 'put' all the devices that we have
|
|
* reserved via 'get'
|
|
*/
|
|
static void i7300_put_devices(struct mem_ctl_info *mci)
|
|
{
|
|
struct i7300_pvt *pvt;
|
|
int branch;
|
|
|
|
pvt = mci->pvt_info;
|
|
|
|
/* Decrement usage count for devices */
|
|
for (branch = 0; branch < MAX_CH_PER_BRANCH; branch++)
|
|
pci_dev_put(pvt->pci_dev_2x_0_fbd_branch[branch]);
|
|
pci_dev_put(pvt->pci_dev_16_2_fsb_err_regs);
|
|
pci_dev_put(pvt->pci_dev_16_1_fsb_addr_map);
|
|
}
|
|
|
|
/*
|
|
* i7300_get_devices Find and perform 'get' operation on the MCH's
|
|
* device/functions we want to reference for this driver
|
|
*
|
|
* Need to 'get' device 16 func 1 and func 2
|
|
*/
|
|
static int i7300_get_devices(struct mem_ctl_info *mci, int dev_idx)
|
|
{
|
|
struct i7300_pvt *pvt;
|
|
struct pci_dev *pdev;
|
|
|
|
pvt = mci->pvt_info;
|
|
|
|
/* Attempt to 'get' the MCH register we want */
|
|
pdev = NULL;
|
|
while (!pvt->pci_dev_16_1_fsb_addr_map || !pvt->pci_dev_16_2_fsb_err_regs) {
|
|
pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
|
|
PCI_DEVICE_ID_INTEL_I7300_MCH_ERR, pdev);
|
|
if (!pdev) {
|
|
/* End of list, leave */
|
|
i7300_printk(KERN_ERR,
|
|
"'system address,Process Bus' "
|
|
"device not found:"
|
|
"vendor 0x%x device 0x%x ERR funcs "
|
|
"(broken BIOS?)\n",
|
|
PCI_VENDOR_ID_INTEL,
|
|
PCI_DEVICE_ID_INTEL_I7300_MCH_ERR);
|
|
goto error;
|
|
}
|
|
|
|
/* Store device 16 funcs 1 and 2 */
|
|
switch (PCI_FUNC(pdev->devfn)) {
|
|
case 1:
|
|
pvt->pci_dev_16_1_fsb_addr_map = pdev;
|
|
break;
|
|
case 2:
|
|
pvt->pci_dev_16_2_fsb_err_regs = pdev;
|
|
break;
|
|
}
|
|
}
|
|
|
|
debugf1("System Address, processor bus- PCI Bus ID: %s %x:%x\n",
|
|
pci_name(pvt->pci_dev_16_0_fsb_ctlr),
|
|
pvt->pci_dev_16_0_fsb_ctlr->vendor, pvt->pci_dev_16_0_fsb_ctlr->device);
|
|
debugf1("Branchmap, control and errors - PCI Bus ID: %s %x:%x\n",
|
|
pci_name(pvt->pci_dev_16_1_fsb_addr_map),
|
|
pvt->pci_dev_16_1_fsb_addr_map->vendor, pvt->pci_dev_16_1_fsb_addr_map->device);
|
|
debugf1("FSB Error Regs - PCI Bus ID: %s %x:%x\n",
|
|
pci_name(pvt->pci_dev_16_2_fsb_err_regs),
|
|
pvt->pci_dev_16_2_fsb_err_regs->vendor, pvt->pci_dev_16_2_fsb_err_regs->device);
|
|
|
|
pvt->pci_dev_2x_0_fbd_branch[0] = pci_get_device(PCI_VENDOR_ID_INTEL,
|
|
PCI_DEVICE_ID_INTEL_I7300_MCH_FB0,
|
|
NULL);
|
|
if (!pvt->pci_dev_2x_0_fbd_branch[0]) {
|
|
i7300_printk(KERN_ERR,
|
|
"MC: 'BRANCH 0' device not found:"
|
|
"vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
|
|
PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I7300_MCH_FB0);
|
|
goto error;
|
|
}
|
|
|
|
pvt->pci_dev_2x_0_fbd_branch[1] = pci_get_device(PCI_VENDOR_ID_INTEL,
|
|
PCI_DEVICE_ID_INTEL_I7300_MCH_FB1,
|
|
NULL);
|
|
if (!pvt->pci_dev_2x_0_fbd_branch[1]) {
|
|
i7300_printk(KERN_ERR,
|
|
"MC: 'BRANCH 1' device not found:"
|
|
"vendor 0x%x device 0x%x Func 0 "
|
|
"(broken BIOS?)\n",
|
|
PCI_VENDOR_ID_INTEL,
|
|
PCI_DEVICE_ID_INTEL_I7300_MCH_FB1);
|
|
goto error;
|
|
}
|
|
|
|
return 0;
|
|
|
|
error:
|
|
i7300_put_devices(mci);
|
|
return -ENODEV;
|
|
}
|
|
|
|
/*
|
|
* i7300_probe1 Probe for ONE instance of device to see if it is
|
|
* present.
|
|
* return:
|
|
* 0 for FOUND a device
|
|
* < 0 for error code
|
|
*/
|
|
static int i7300_probe1(struct pci_dev *pdev, int dev_idx)
|
|
{
|
|
struct mem_ctl_info *mci;
|
|
struct i7300_pvt *pvt;
|
|
int num_channels;
|
|
int num_dimms_per_channel;
|
|
int num_csrows;
|
|
|
|
if (dev_idx >= ARRAY_SIZE(i7300_devs))
|
|
return -EINVAL;
|
|
|
|
debugf0("MC: " __FILE__ ": %s(), pdev bus %u dev=0x%x fn=0x%x\n",
|
|
__func__,
|
|
pdev->bus->number,
|
|
PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
|
|
|
|
/* We only are looking for func 0 of the set */
|
|
if (PCI_FUNC(pdev->devfn) != 0)
|
|
return -ENODEV;
|
|
|
|
/* As we don't have a motherboard identification routine to determine
|
|
* actual number of slots/dimms per channel, we thus utilize the
|
|
* resource as specified by the chipset. Thus, we might have
|
|
* have more DIMMs per channel than actually on the mobo, but this
|
|
* allows the driver to support upto the chipset max, without
|
|
* some fancy mobo determination.
|
|
*/
|
|
num_dimms_per_channel = MAX_SLOTS;
|
|
num_channels = MAX_CHANNELS;
|
|
num_csrows = MAX_SLOTS * MAX_CHANNELS;
|
|
|
|
debugf0("MC: %s(): Number of - Channels= %d DIMMS= %d CSROWS= %d\n",
|
|
__func__, num_channels, num_dimms_per_channel, num_csrows);
|
|
|
|
/* allocate a new MC control structure */
|
|
mci = edac_mc_alloc(sizeof(*pvt), num_csrows, num_channels, 0);
|
|
|
|
if (mci == NULL)
|
|
return -ENOMEM;
|
|
|
|
debugf0("MC: " __FILE__ ": %s(): mci = %p\n", __func__, mci);
|
|
|
|
mci->dev = &pdev->dev; /* record ptr to the generic device */
|
|
|
|
pvt = mci->pvt_info;
|
|
pvt->pci_dev_16_0_fsb_ctlr = pdev; /* Record this device in our private */
|
|
|
|
/* 'get' the pci devices we want to reserve for our use */
|
|
if (i7300_get_devices(mci, dev_idx))
|
|
goto fail0;
|
|
|
|
mci->mc_idx = 0;
|
|
mci->mtype_cap = MEM_FLAG_FB_DDR2;
|
|
mci->edac_ctl_cap = EDAC_FLAG_NONE;
|
|
mci->edac_cap = EDAC_FLAG_NONE;
|
|
mci->mod_name = "i7300_edac.c";
|
|
mci->mod_ver = I7300_REVISION;
|
|
mci->ctl_name = i7300_devs[dev_idx].ctl_name;
|
|
mci->dev_name = pci_name(pdev);
|
|
mci->ctl_page_to_phys = NULL;
|
|
|
|
#if 0
|
|
/* Set the function pointer to an actual operation function */
|
|
mci->edac_check = i7300_check_error;
|
|
#endif
|
|
|
|
/* initialize the MC control structure 'csrows' table
|
|
* with the mapping and control information */
|
|
if (i7300_get_mc_regs(mci)) {
|
|
debugf0("MC: Setting mci->edac_cap to EDAC_FLAG_NONE\n"
|
|
" because i7300_init_csrows() returned nonzero "
|
|
"value\n");
|
|
mci->edac_cap = EDAC_FLAG_NONE; /* no csrows found */
|
|
} else {
|
|
#if 0
|
|
debugf1("MC: Enable error reporting now\n");
|
|
i7300_enable_error_reporting(mci);
|
|
#endif
|
|
}
|
|
|
|
/* add this new MC control structure to EDAC's list of MCs */
|
|
if (edac_mc_add_mc(mci)) {
|
|
debugf0("MC: " __FILE__
|
|
": %s(): failed edac_mc_add_mc()\n", __func__);
|
|
/* FIXME: perhaps some code should go here that disables error
|
|
* reporting if we just enabled it
|
|
*/
|
|
goto fail1;
|
|
}
|
|
|
|
#if 0
|
|
i7300_clear_error(mci);
|
|
#endif
|
|
|
|
/* allocating generic PCI control info */
|
|
i7300_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
|
|
if (!i7300_pci) {
|
|
printk(KERN_WARNING
|
|
"%s(): Unable to create PCI control\n",
|
|
__func__);
|
|
printk(KERN_WARNING
|
|
"%s(): PCI error report via EDAC not setup\n",
|
|
__func__);
|
|
}
|
|
|
|
return 0;
|
|
|
|
/* Error exit unwinding stack */
|
|
fail1:
|
|
|
|
i7300_put_devices(mci);
|
|
|
|
fail0:
|
|
edac_mc_free(mci);
|
|
return -ENODEV;
|
|
}
|
|
|
|
/*
|
|
* i7300_init_one constructor for one instance of device
|
|
*
|
|
* returns:
|
|
* negative on error
|
|
* count (>= 0)
|
|
*/
|
|
static int __devinit i7300_init_one(struct pci_dev *pdev,
|
|
const struct pci_device_id *id)
|
|
{
|
|
int rc;
|
|
|
|
debugf0("MC: " __FILE__ ": %s()\n", __func__);
|
|
|
|
/* wake up device */
|
|
rc = pci_enable_device(pdev);
|
|
if (rc == -EIO)
|
|
return rc;
|
|
|
|
/* now probe and enable the device */
|
|
return i7300_probe1(pdev, id->driver_data);
|
|
}
|
|
|
|
/*
|
|
* i7300_remove_one destructor for one instance of device
|
|
*
|
|
*/
|
|
static void __devexit i7300_remove_one(struct pci_dev *pdev)
|
|
{
|
|
struct mem_ctl_info *mci;
|
|
|
|
debugf0(__FILE__ ": %s()\n", __func__);
|
|
|
|
if (i7300_pci)
|
|
edac_pci_release_generic_ctl(i7300_pci);
|
|
|
|
mci = edac_mc_del_mc(&pdev->dev);
|
|
if (!mci)
|
|
return;
|
|
|
|
/* retrieve references to resources, and free those resources */
|
|
i7300_put_devices(mci);
|
|
|
|
edac_mc_free(mci);
|
|
}
|
|
|
|
/*
|
|
* pci_device_id table for which devices we are looking for
|
|
*
|
|
* The "E500P" device is the first device supported.
|
|
*/
|
|
static const struct pci_device_id i7300_pci_tbl[] __devinitdata = {
|
|
{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I7300_MCH_ERR)},
|
|
{0,} /* 0 terminated list. */
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(pci, i7300_pci_tbl);
|
|
|
|
/*
|
|
* i7300_driver pci_driver structure for this module
|
|
*
|
|
*/
|
|
static struct pci_driver i7300_driver = {
|
|
.name = "i7300_edac",
|
|
.probe = i7300_init_one,
|
|
.remove = __devexit_p(i7300_remove_one),
|
|
.id_table = i7300_pci_tbl,
|
|
};
|
|
|
|
/*
|
|
* i7300_init Module entry function
|
|
* Try to initialize this module for its devices
|
|
*/
|
|
static int __init i7300_init(void)
|
|
{
|
|
int pci_rc;
|
|
|
|
debugf2("MC: " __FILE__ ": %s()\n", __func__);
|
|
|
|
/* Ensure that the OPSTATE is set correctly for POLL or NMI */
|
|
opstate_init();
|
|
|
|
pci_rc = pci_register_driver(&i7300_driver);
|
|
|
|
return (pci_rc < 0) ? pci_rc : 0;
|
|
}
|
|
|
|
/*
|
|
* i7300_exit() Module exit function
|
|
* Unregister the driver
|
|
*/
|
|
static void __exit i7300_exit(void)
|
|
{
|
|
debugf2("MC: " __FILE__ ": %s()\n", __func__);
|
|
pci_unregister_driver(&i7300_driver);
|
|
}
|
|
|
|
module_init(i7300_init);
|
|
module_exit(i7300_exit);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
|
|
MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
|
|
MODULE_DESCRIPTION("MC Driver for Intel I7300 memory controllers - "
|
|
I7300_REVISION);
|
|
|
|
module_param(edac_op_state, int, 0444);
|
|
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
|