7906a075c9
[ Upstream commit6442df4940
] If ida_simple_get() returns an error when called in rproc_alloc(), put_device() is called to clean things up. By this time the rproc device type has been assigned, with rproc_type_release() as the release function. The first thing rproc_type_release() does is call: idr_destroy(&rproc->notifyids); But at the time the ida_simple_get() call is made, the notifyids field in the remoteproc structure has not been initialized. I'm not actually sure this case causes an observable problem, but it's incorrect. Fix this by initializing the notifyids field before calling ida_simple_get() in rproc_alloc(). Fixes:b5ab5e24e9
("remoteproc: maintain a generic child device for each rproc") Signed-off-by: Alex Elder <elder@linaro.org> Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Reviewed-by: Suman Anna <s-anna@ti.com> Reviewed-by: Bjorn Andersson <bjorn.andersson@linaro.org> Link: https://lore.kernel.org/r/20200415204858.2448-2-mathieu.poirier@linaro.org Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2239 lines
58 KiB
C
2239 lines
58 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Remote Processor Framework
|
|
*
|
|
* Copyright (C) 2011 Texas Instruments, Inc.
|
|
* Copyright (C) 2011 Google, Inc.
|
|
*
|
|
* Ohad Ben-Cohen <ohad@wizery.com>
|
|
* Brian Swetland <swetland@google.com>
|
|
* Mark Grosen <mgrosen@ti.com>
|
|
* Fernando Guzman Lugo <fernando.lugo@ti.com>
|
|
* Suman Anna <s-anna@ti.com>
|
|
* Robert Tivy <rtivy@ti.com>
|
|
* Armando Uribe De Leon <x0095078@ti.com>
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "%s: " fmt, __func__
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/device.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/firmware.h>
|
|
#include <linux/string.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/devcoredump.h>
|
|
#include <linux/remoteproc.h>
|
|
#include <linux/iommu.h>
|
|
#include <linux/idr.h>
|
|
#include <linux/elf.h>
|
|
#include <linux/crc32.h>
|
|
#include <linux/of_reserved_mem.h>
|
|
#include <linux/virtio_ids.h>
|
|
#include <linux/virtio_ring.h>
|
|
#include <asm/byteorder.h>
|
|
#include <linux/platform_device.h>
|
|
|
|
#include "remoteproc_internal.h"
|
|
|
|
#define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
|
|
|
|
static DEFINE_MUTEX(rproc_list_mutex);
|
|
static LIST_HEAD(rproc_list);
|
|
|
|
typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
|
|
struct resource_table *table, int len);
|
|
typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
|
|
void *, int offset, int avail);
|
|
|
|
static int rproc_alloc_carveout(struct rproc *rproc,
|
|
struct rproc_mem_entry *mem);
|
|
static int rproc_release_carveout(struct rproc *rproc,
|
|
struct rproc_mem_entry *mem);
|
|
|
|
/* Unique indices for remoteproc devices */
|
|
static DEFINE_IDA(rproc_dev_index);
|
|
|
|
static const char * const rproc_crash_names[] = {
|
|
[RPROC_MMUFAULT] = "mmufault",
|
|
[RPROC_WATCHDOG] = "watchdog",
|
|
[RPROC_FATAL_ERROR] = "fatal error",
|
|
};
|
|
|
|
/* translate rproc_crash_type to string */
|
|
static const char *rproc_crash_to_string(enum rproc_crash_type type)
|
|
{
|
|
if (type < ARRAY_SIZE(rproc_crash_names))
|
|
return rproc_crash_names[type];
|
|
return "unknown";
|
|
}
|
|
|
|
/*
|
|
* This is the IOMMU fault handler we register with the IOMMU API
|
|
* (when relevant; not all remote processors access memory through
|
|
* an IOMMU).
|
|
*
|
|
* IOMMU core will invoke this handler whenever the remote processor
|
|
* will try to access an unmapped device address.
|
|
*/
|
|
static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
|
|
unsigned long iova, int flags, void *token)
|
|
{
|
|
struct rproc *rproc = token;
|
|
|
|
dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
|
|
|
|
rproc_report_crash(rproc, RPROC_MMUFAULT);
|
|
|
|
/*
|
|
* Let the iommu core know we're not really handling this fault;
|
|
* we just used it as a recovery trigger.
|
|
*/
|
|
return -ENOSYS;
|
|
}
|
|
|
|
static int rproc_enable_iommu(struct rproc *rproc)
|
|
{
|
|
struct iommu_domain *domain;
|
|
struct device *dev = rproc->dev.parent;
|
|
int ret;
|
|
|
|
if (!rproc->has_iommu) {
|
|
dev_dbg(dev, "iommu not present\n");
|
|
return 0;
|
|
}
|
|
|
|
domain = iommu_domain_alloc(dev->bus);
|
|
if (!domain) {
|
|
dev_err(dev, "can't alloc iommu domain\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
|
|
|
|
ret = iommu_attach_device(domain, dev);
|
|
if (ret) {
|
|
dev_err(dev, "can't attach iommu device: %d\n", ret);
|
|
goto free_domain;
|
|
}
|
|
|
|
rproc->domain = domain;
|
|
|
|
return 0;
|
|
|
|
free_domain:
|
|
iommu_domain_free(domain);
|
|
return ret;
|
|
}
|
|
|
|
static void rproc_disable_iommu(struct rproc *rproc)
|
|
{
|
|
struct iommu_domain *domain = rproc->domain;
|
|
struct device *dev = rproc->dev.parent;
|
|
|
|
if (!domain)
|
|
return;
|
|
|
|
iommu_detach_device(domain, dev);
|
|
iommu_domain_free(domain);
|
|
}
|
|
|
|
phys_addr_t rproc_va_to_pa(void *cpu_addr)
|
|
{
|
|
/*
|
|
* Return physical address according to virtual address location
|
|
* - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
|
|
* - in kernel: if region allocated in generic dma memory pool
|
|
*/
|
|
if (is_vmalloc_addr(cpu_addr)) {
|
|
return page_to_phys(vmalloc_to_page(cpu_addr)) +
|
|
offset_in_page(cpu_addr);
|
|
}
|
|
|
|
WARN_ON(!virt_addr_valid(cpu_addr));
|
|
return virt_to_phys(cpu_addr);
|
|
}
|
|
EXPORT_SYMBOL(rproc_va_to_pa);
|
|
|
|
/**
|
|
* rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
|
|
* @rproc: handle of a remote processor
|
|
* @da: remoteproc device address to translate
|
|
* @len: length of the memory region @da is pointing to
|
|
*
|
|
* Some remote processors will ask us to allocate them physically contiguous
|
|
* memory regions (which we call "carveouts"), and map them to specific
|
|
* device addresses (which are hardcoded in the firmware). They may also have
|
|
* dedicated memory regions internal to the processors, and use them either
|
|
* exclusively or alongside carveouts.
|
|
*
|
|
* They may then ask us to copy objects into specific device addresses (e.g.
|
|
* code/data sections) or expose us certain symbols in other device address
|
|
* (e.g. their trace buffer).
|
|
*
|
|
* This function is a helper function with which we can go over the allocated
|
|
* carveouts and translate specific device addresses to kernel virtual addresses
|
|
* so we can access the referenced memory. This function also allows to perform
|
|
* translations on the internal remoteproc memory regions through a platform
|
|
* implementation specific da_to_va ops, if present.
|
|
*
|
|
* The function returns a valid kernel address on success or NULL on failure.
|
|
*
|
|
* Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
|
|
* but only on kernel direct mapped RAM memory. Instead, we're just using
|
|
* here the output of the DMA API for the carveouts, which should be more
|
|
* correct.
|
|
*/
|
|
void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
|
|
{
|
|
struct rproc_mem_entry *carveout;
|
|
void *ptr = NULL;
|
|
|
|
if (rproc->ops->da_to_va) {
|
|
ptr = rproc->ops->da_to_va(rproc, da, len);
|
|
if (ptr)
|
|
goto out;
|
|
}
|
|
|
|
list_for_each_entry(carveout, &rproc->carveouts, node) {
|
|
int offset = da - carveout->da;
|
|
|
|
/* Verify that carveout is allocated */
|
|
if (!carveout->va)
|
|
continue;
|
|
|
|
/* try next carveout if da is too small */
|
|
if (offset < 0)
|
|
continue;
|
|
|
|
/* try next carveout if da is too large */
|
|
if (offset + len > carveout->len)
|
|
continue;
|
|
|
|
ptr = carveout->va + offset;
|
|
|
|
break;
|
|
}
|
|
|
|
out:
|
|
return ptr;
|
|
}
|
|
EXPORT_SYMBOL(rproc_da_to_va);
|
|
|
|
/**
|
|
* rproc_find_carveout_by_name() - lookup the carveout region by a name
|
|
* @rproc: handle of a remote processor
|
|
* @name,..: carveout name to find (standard printf format)
|
|
*
|
|
* Platform driver has the capability to register some pre-allacoted carveout
|
|
* (physically contiguous memory regions) before rproc firmware loading and
|
|
* associated resource table analysis. These regions may be dedicated memory
|
|
* regions internal to the coprocessor or specified DDR region with specific
|
|
* attributes
|
|
*
|
|
* This function is a helper function with which we can go over the
|
|
* allocated carveouts and return associated region characteristics like
|
|
* coprocessor address, length or processor virtual address.
|
|
*
|
|
* Return: a valid pointer on carveout entry on success or NULL on failure.
|
|
*/
|
|
struct rproc_mem_entry *
|
|
rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
|
|
{
|
|
va_list args;
|
|
char _name[32];
|
|
struct rproc_mem_entry *carveout, *mem = NULL;
|
|
|
|
if (!name)
|
|
return NULL;
|
|
|
|
va_start(args, name);
|
|
vsnprintf(_name, sizeof(_name), name, args);
|
|
va_end(args);
|
|
|
|
list_for_each_entry(carveout, &rproc->carveouts, node) {
|
|
/* Compare carveout and requested names */
|
|
if (!strcmp(carveout->name, _name)) {
|
|
mem = carveout;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return mem;
|
|
}
|
|
|
|
/**
|
|
* rproc_check_carveout_da() - Check specified carveout da configuration
|
|
* @rproc: handle of a remote processor
|
|
* @mem: pointer on carveout to check
|
|
* @da: area device address
|
|
* @len: associated area size
|
|
*
|
|
* This function is a helper function to verify requested device area (couple
|
|
* da, len) is part of specified carveout.
|
|
* If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
|
|
* checked.
|
|
*
|
|
* Return: 0 if carveout matches request else error
|
|
*/
|
|
static int rproc_check_carveout_da(struct rproc *rproc,
|
|
struct rproc_mem_entry *mem, u32 da, u32 len)
|
|
{
|
|
struct device *dev = &rproc->dev;
|
|
int delta;
|
|
|
|
/* Check requested resource length */
|
|
if (len > mem->len) {
|
|
dev_err(dev, "Registered carveout doesn't fit len request\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
|
|
/* Address doesn't match registered carveout configuration */
|
|
return -EINVAL;
|
|
} else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
|
|
delta = da - mem->da;
|
|
|
|
/* Check requested resource belongs to registered carveout */
|
|
if (delta < 0) {
|
|
dev_err(dev,
|
|
"Registered carveout doesn't fit da request\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (delta + len > mem->len) {
|
|
dev_err(dev,
|
|
"Registered carveout doesn't fit len request\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
|
|
{
|
|
struct rproc *rproc = rvdev->rproc;
|
|
struct device *dev = &rproc->dev;
|
|
struct rproc_vring *rvring = &rvdev->vring[i];
|
|
struct fw_rsc_vdev *rsc;
|
|
int ret, size, notifyid;
|
|
struct rproc_mem_entry *mem;
|
|
|
|
/* actual size of vring (in bytes) */
|
|
size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
|
|
|
|
rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
|
|
|
|
/* Search for pre-registered carveout */
|
|
mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
|
|
i);
|
|
if (mem) {
|
|
if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
|
|
return -ENOMEM;
|
|
} else {
|
|
/* Register carveout in in list */
|
|
mem = rproc_mem_entry_init(dev, 0, 0, size, rsc->vring[i].da,
|
|
rproc_alloc_carveout,
|
|
rproc_release_carveout,
|
|
"vdev%dvring%d",
|
|
rvdev->index, i);
|
|
if (!mem) {
|
|
dev_err(dev, "Can't allocate memory entry structure\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
rproc_add_carveout(rproc, mem);
|
|
}
|
|
|
|
/*
|
|
* Assign an rproc-wide unique index for this vring
|
|
* TODO: assign a notifyid for rvdev updates as well
|
|
* TODO: support predefined notifyids (via resource table)
|
|
*/
|
|
ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
|
|
if (ret < 0) {
|
|
dev_err(dev, "idr_alloc failed: %d\n", ret);
|
|
return ret;
|
|
}
|
|
notifyid = ret;
|
|
|
|
/* Potentially bump max_notifyid */
|
|
if (notifyid > rproc->max_notifyid)
|
|
rproc->max_notifyid = notifyid;
|
|
|
|
rvring->notifyid = notifyid;
|
|
|
|
/* Let the rproc know the notifyid of this vring.*/
|
|
rsc->vring[i].notifyid = notifyid;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
|
|
{
|
|
struct rproc *rproc = rvdev->rproc;
|
|
struct device *dev = &rproc->dev;
|
|
struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
|
|
struct rproc_vring *rvring = &rvdev->vring[i];
|
|
|
|
dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
|
|
i, vring->da, vring->num, vring->align);
|
|
|
|
/* verify queue size and vring alignment are sane */
|
|
if (!vring->num || !vring->align) {
|
|
dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
|
|
vring->num, vring->align);
|
|
return -EINVAL;
|
|
}
|
|
|
|
rvring->len = vring->num;
|
|
rvring->align = vring->align;
|
|
rvring->rvdev = rvdev;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void rproc_free_vring(struct rproc_vring *rvring)
|
|
{
|
|
struct rproc *rproc = rvring->rvdev->rproc;
|
|
int idx = rvring - rvring->rvdev->vring;
|
|
struct fw_rsc_vdev *rsc;
|
|
|
|
idr_remove(&rproc->notifyids, rvring->notifyid);
|
|
|
|
/* reset resource entry info */
|
|
rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
|
|
rsc->vring[idx].da = 0;
|
|
rsc->vring[idx].notifyid = -1;
|
|
}
|
|
|
|
static int rproc_vdev_do_start(struct rproc_subdev *subdev)
|
|
{
|
|
struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
|
|
|
|
return rproc_add_virtio_dev(rvdev, rvdev->id);
|
|
}
|
|
|
|
static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed)
|
|
{
|
|
struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
|
|
int ret;
|
|
|
|
ret = device_for_each_child(&rvdev->dev, NULL, rproc_remove_virtio_dev);
|
|
if (ret)
|
|
dev_warn(&rvdev->dev, "can't remove vdev child device: %d\n", ret);
|
|
}
|
|
|
|
/**
|
|
* rproc_rvdev_release() - release the existence of a rvdev
|
|
*
|
|
* @dev: the subdevice's dev
|
|
*/
|
|
static void rproc_rvdev_release(struct device *dev)
|
|
{
|
|
struct rproc_vdev *rvdev = container_of(dev, struct rproc_vdev, dev);
|
|
|
|
of_reserved_mem_device_release(dev);
|
|
|
|
kfree(rvdev);
|
|
}
|
|
|
|
/**
|
|
* rproc_handle_vdev() - handle a vdev fw resource
|
|
* @rproc: the remote processor
|
|
* @rsc: the vring resource descriptor
|
|
* @avail: size of available data (for sanity checking the image)
|
|
*
|
|
* This resource entry requests the host to statically register a virtio
|
|
* device (vdev), and setup everything needed to support it. It contains
|
|
* everything needed to make it possible: the virtio device id, virtio
|
|
* device features, vrings information, virtio config space, etc...
|
|
*
|
|
* Before registering the vdev, the vrings are allocated from non-cacheable
|
|
* physically contiguous memory. Currently we only support two vrings per
|
|
* remote processor (temporary limitation). We might also want to consider
|
|
* doing the vring allocation only later when ->find_vqs() is invoked, and
|
|
* then release them upon ->del_vqs().
|
|
*
|
|
* Note: @da is currently not really handled correctly: we dynamically
|
|
* allocate it using the DMA API, ignoring requested hard coded addresses,
|
|
* and we don't take care of any required IOMMU programming. This is all
|
|
* going to be taken care of when the generic iommu-based DMA API will be
|
|
* merged. Meanwhile, statically-addressed iommu-based firmware images should
|
|
* use RSC_DEVMEM resource entries to map their required @da to the physical
|
|
* address of their base CMA region (ouch, hacky!).
|
|
*
|
|
* Returns 0 on success, or an appropriate error code otherwise
|
|
*/
|
|
static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
|
|
int offset, int avail)
|
|
{
|
|
struct device *dev = &rproc->dev;
|
|
struct rproc_vdev *rvdev;
|
|
int i, ret;
|
|
char name[16];
|
|
|
|
/* make sure resource isn't truncated */
|
|
if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
|
|
+ rsc->config_len > avail) {
|
|
dev_err(dev, "vdev rsc is truncated\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* make sure reserved bytes are zeroes */
|
|
if (rsc->reserved[0] || rsc->reserved[1]) {
|
|
dev_err(dev, "vdev rsc has non zero reserved bytes\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
|
|
rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
|
|
|
|
/* we currently support only two vrings per rvdev */
|
|
if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
|
|
dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
|
|
return -EINVAL;
|
|
}
|
|
|
|
rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
|
|
if (!rvdev)
|
|
return -ENOMEM;
|
|
|
|
kref_init(&rvdev->refcount);
|
|
|
|
rvdev->id = rsc->id;
|
|
rvdev->rproc = rproc;
|
|
rvdev->index = rproc->nb_vdev++;
|
|
|
|
/* Initialise vdev subdevice */
|
|
snprintf(name, sizeof(name), "vdev%dbuffer", rvdev->index);
|
|
rvdev->dev.parent = &rproc->dev;
|
|
rvdev->dev.dma_pfn_offset = rproc->dev.parent->dma_pfn_offset;
|
|
rvdev->dev.release = rproc_rvdev_release;
|
|
dev_set_name(&rvdev->dev, "%s#%s", dev_name(rvdev->dev.parent), name);
|
|
dev_set_drvdata(&rvdev->dev, rvdev);
|
|
|
|
ret = device_register(&rvdev->dev);
|
|
if (ret) {
|
|
put_device(&rvdev->dev);
|
|
return ret;
|
|
}
|
|
/* Make device dma capable by inheriting from parent's capabilities */
|
|
set_dma_ops(&rvdev->dev, get_dma_ops(rproc->dev.parent));
|
|
|
|
ret = dma_coerce_mask_and_coherent(&rvdev->dev,
|
|
dma_get_mask(rproc->dev.parent));
|
|
if (ret) {
|
|
dev_warn(dev,
|
|
"Failed to set DMA mask %llx. Trying to continue... %x\n",
|
|
dma_get_mask(rproc->dev.parent), ret);
|
|
}
|
|
|
|
/* parse the vrings */
|
|
for (i = 0; i < rsc->num_of_vrings; i++) {
|
|
ret = rproc_parse_vring(rvdev, rsc, i);
|
|
if (ret)
|
|
goto free_rvdev;
|
|
}
|
|
|
|
/* remember the resource offset*/
|
|
rvdev->rsc_offset = offset;
|
|
|
|
/* allocate the vring resources */
|
|
for (i = 0; i < rsc->num_of_vrings; i++) {
|
|
ret = rproc_alloc_vring(rvdev, i);
|
|
if (ret)
|
|
goto unwind_vring_allocations;
|
|
}
|
|
|
|
list_add_tail(&rvdev->node, &rproc->rvdevs);
|
|
|
|
rvdev->subdev.start = rproc_vdev_do_start;
|
|
rvdev->subdev.stop = rproc_vdev_do_stop;
|
|
|
|
rproc_add_subdev(rproc, &rvdev->subdev);
|
|
|
|
return 0;
|
|
|
|
unwind_vring_allocations:
|
|
for (i--; i >= 0; i--)
|
|
rproc_free_vring(&rvdev->vring[i]);
|
|
free_rvdev:
|
|
device_unregister(&rvdev->dev);
|
|
return ret;
|
|
}
|
|
|
|
void rproc_vdev_release(struct kref *ref)
|
|
{
|
|
struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount);
|
|
struct rproc_vring *rvring;
|
|
struct rproc *rproc = rvdev->rproc;
|
|
int id;
|
|
|
|
for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) {
|
|
rvring = &rvdev->vring[id];
|
|
rproc_free_vring(rvring);
|
|
}
|
|
|
|
rproc_remove_subdev(rproc, &rvdev->subdev);
|
|
list_del(&rvdev->node);
|
|
device_unregister(&rvdev->dev);
|
|
}
|
|
|
|
/**
|
|
* rproc_handle_trace() - handle a shared trace buffer resource
|
|
* @rproc: the remote processor
|
|
* @rsc: the trace resource descriptor
|
|
* @avail: size of available data (for sanity checking the image)
|
|
*
|
|
* In case the remote processor dumps trace logs into memory,
|
|
* export it via debugfs.
|
|
*
|
|
* Currently, the 'da' member of @rsc should contain the device address
|
|
* where the remote processor is dumping the traces. Later we could also
|
|
* support dynamically allocating this address using the generic
|
|
* DMA API (but currently there isn't a use case for that).
|
|
*
|
|
* Returns 0 on success, or an appropriate error code otherwise
|
|
*/
|
|
static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
|
|
int offset, int avail)
|
|
{
|
|
struct rproc_debug_trace *trace;
|
|
struct device *dev = &rproc->dev;
|
|
char name[15];
|
|
|
|
if (sizeof(*rsc) > avail) {
|
|
dev_err(dev, "trace rsc is truncated\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* make sure reserved bytes are zeroes */
|
|
if (rsc->reserved) {
|
|
dev_err(dev, "trace rsc has non zero reserved bytes\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
trace = kzalloc(sizeof(*trace), GFP_KERNEL);
|
|
if (!trace)
|
|
return -ENOMEM;
|
|
|
|
/* set the trace buffer dma properties */
|
|
trace->trace_mem.len = rsc->len;
|
|
trace->trace_mem.da = rsc->da;
|
|
|
|
/* set pointer on rproc device */
|
|
trace->rproc = rproc;
|
|
|
|
/* make sure snprintf always null terminates, even if truncating */
|
|
snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
|
|
|
|
/* create the debugfs entry */
|
|
trace->tfile = rproc_create_trace_file(name, rproc, trace);
|
|
if (!trace->tfile) {
|
|
kfree(trace);
|
|
return -EINVAL;
|
|
}
|
|
|
|
list_add_tail(&trace->node, &rproc->traces);
|
|
|
|
rproc->num_traces++;
|
|
|
|
dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n",
|
|
name, rsc->da, rsc->len);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* rproc_handle_devmem() - handle devmem resource entry
|
|
* @rproc: remote processor handle
|
|
* @rsc: the devmem resource entry
|
|
* @avail: size of available data (for sanity checking the image)
|
|
*
|
|
* Remote processors commonly need to access certain on-chip peripherals.
|
|
*
|
|
* Some of these remote processors access memory via an iommu device,
|
|
* and might require us to configure their iommu before they can access
|
|
* the on-chip peripherals they need.
|
|
*
|
|
* This resource entry is a request to map such a peripheral device.
|
|
*
|
|
* These devmem entries will contain the physical address of the device in
|
|
* the 'pa' member. If a specific device address is expected, then 'da' will
|
|
* contain it (currently this is the only use case supported). 'len' will
|
|
* contain the size of the physical region we need to map.
|
|
*
|
|
* Currently we just "trust" those devmem entries to contain valid physical
|
|
* addresses, but this is going to change: we want the implementations to
|
|
* tell us ranges of physical addresses the firmware is allowed to request,
|
|
* and not allow firmwares to request access to physical addresses that
|
|
* are outside those ranges.
|
|
*/
|
|
static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
|
|
int offset, int avail)
|
|
{
|
|
struct rproc_mem_entry *mapping;
|
|
struct device *dev = &rproc->dev;
|
|
int ret;
|
|
|
|
/* no point in handling this resource without a valid iommu domain */
|
|
if (!rproc->domain)
|
|
return -EINVAL;
|
|
|
|
if (sizeof(*rsc) > avail) {
|
|
dev_err(dev, "devmem rsc is truncated\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* make sure reserved bytes are zeroes */
|
|
if (rsc->reserved) {
|
|
dev_err(dev, "devmem rsc has non zero reserved bytes\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
|
|
if (!mapping)
|
|
return -ENOMEM;
|
|
|
|
ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
|
|
if (ret) {
|
|
dev_err(dev, "failed to map devmem: %d\n", ret);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* We'll need this info later when we'll want to unmap everything
|
|
* (e.g. on shutdown).
|
|
*
|
|
* We can't trust the remote processor not to change the resource
|
|
* table, so we must maintain this info independently.
|
|
*/
|
|
mapping->da = rsc->da;
|
|
mapping->len = rsc->len;
|
|
list_add_tail(&mapping->node, &rproc->mappings);
|
|
|
|
dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
|
|
rsc->pa, rsc->da, rsc->len);
|
|
|
|
return 0;
|
|
|
|
out:
|
|
kfree(mapping);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* rproc_alloc_carveout() - allocated specified carveout
|
|
* @rproc: rproc handle
|
|
* @mem: the memory entry to allocate
|
|
*
|
|
* This function allocate specified memory entry @mem using
|
|
* dma_alloc_coherent() as default allocator
|
|
*/
|
|
static int rproc_alloc_carveout(struct rproc *rproc,
|
|
struct rproc_mem_entry *mem)
|
|
{
|
|
struct rproc_mem_entry *mapping = NULL;
|
|
struct device *dev = &rproc->dev;
|
|
dma_addr_t dma;
|
|
void *va;
|
|
int ret;
|
|
|
|
va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
|
|
if (!va) {
|
|
dev_err(dev->parent,
|
|
"failed to allocate dma memory: len 0x%x\n", mem->len);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%x\n",
|
|
va, &dma, mem->len);
|
|
|
|
if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) {
|
|
/*
|
|
* Check requested da is equal to dma address
|
|
* and print a warn message in case of missalignment.
|
|
* Don't stop rproc_start sequence as coprocessor may
|
|
* build pa to da translation on its side.
|
|
*/
|
|
if (mem->da != (u32)dma)
|
|
dev_warn(dev->parent,
|
|
"Allocated carveout doesn't fit device address request\n");
|
|
}
|
|
|
|
/*
|
|
* Ok, this is non-standard.
|
|
*
|
|
* Sometimes we can't rely on the generic iommu-based DMA API
|
|
* to dynamically allocate the device address and then set the IOMMU
|
|
* tables accordingly, because some remote processors might
|
|
* _require_ us to use hard coded device addresses that their
|
|
* firmware was compiled with.
|
|
*
|
|
* In this case, we must use the IOMMU API directly and map
|
|
* the memory to the device address as expected by the remote
|
|
* processor.
|
|
*
|
|
* Obviously such remote processor devices should not be configured
|
|
* to use the iommu-based DMA API: we expect 'dma' to contain the
|
|
* physical address in this case.
|
|
*/
|
|
if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) {
|
|
mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
|
|
if (!mapping) {
|
|
ret = -ENOMEM;
|
|
goto dma_free;
|
|
}
|
|
|
|
ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
|
|
mem->flags);
|
|
if (ret) {
|
|
dev_err(dev, "iommu_map failed: %d\n", ret);
|
|
goto free_mapping;
|
|
}
|
|
|
|
/*
|
|
* We'll need this info later when we'll want to unmap
|
|
* everything (e.g. on shutdown).
|
|
*
|
|
* We can't trust the remote processor not to change the
|
|
* resource table, so we must maintain this info independently.
|
|
*/
|
|
mapping->da = mem->da;
|
|
mapping->len = mem->len;
|
|
list_add_tail(&mapping->node, &rproc->mappings);
|
|
|
|
dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
|
|
mem->da, &dma);
|
|
}
|
|
|
|
if (mem->da == FW_RSC_ADDR_ANY) {
|
|
/* Update device address as undefined by requester */
|
|
if ((u64)dma & HIGH_BITS_MASK)
|
|
dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n");
|
|
|
|
mem->da = (u32)dma;
|
|
}
|
|
|
|
mem->dma = dma;
|
|
mem->va = va;
|
|
|
|
return 0;
|
|
|
|
free_mapping:
|
|
kfree(mapping);
|
|
dma_free:
|
|
dma_free_coherent(dev->parent, mem->len, va, dma);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* rproc_release_carveout() - release acquired carveout
|
|
* @rproc: rproc handle
|
|
* @mem: the memory entry to release
|
|
*
|
|
* This function releases specified memory entry @mem allocated via
|
|
* rproc_alloc_carveout() function by @rproc.
|
|
*/
|
|
static int rproc_release_carveout(struct rproc *rproc,
|
|
struct rproc_mem_entry *mem)
|
|
{
|
|
struct device *dev = &rproc->dev;
|
|
|
|
/* clean up carveout allocations */
|
|
dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* rproc_handle_carveout() - handle phys contig memory allocation requests
|
|
* @rproc: rproc handle
|
|
* @rsc: the resource entry
|
|
* @avail: size of available data (for image validation)
|
|
*
|
|
* This function will handle firmware requests for allocation of physically
|
|
* contiguous memory regions.
|
|
*
|
|
* These request entries should come first in the firmware's resource table,
|
|
* as other firmware entries might request placing other data objects inside
|
|
* these memory regions (e.g. data/code segments, trace resource entries, ...).
|
|
*
|
|
* Allocating memory this way helps utilizing the reserved physical memory
|
|
* (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
|
|
* needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
|
|
* pressure is important; it may have a substantial impact on performance.
|
|
*/
|
|
static int rproc_handle_carveout(struct rproc *rproc,
|
|
struct fw_rsc_carveout *rsc,
|
|
int offset, int avail)
|
|
{
|
|
struct rproc_mem_entry *carveout;
|
|
struct device *dev = &rproc->dev;
|
|
|
|
if (sizeof(*rsc) > avail) {
|
|
dev_err(dev, "carveout rsc is truncated\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* make sure reserved bytes are zeroes */
|
|
if (rsc->reserved) {
|
|
dev_err(dev, "carveout rsc has non zero reserved bytes\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
|
|
rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
|
|
|
|
/*
|
|
* Check carveout rsc already part of a registered carveout,
|
|
* Search by name, then check the da and length
|
|
*/
|
|
carveout = rproc_find_carveout_by_name(rproc, rsc->name);
|
|
|
|
if (carveout) {
|
|
if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
|
|
dev_err(dev,
|
|
"Carveout already associated to resource table\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
|
|
return -ENOMEM;
|
|
|
|
/* Update memory carveout with resource table info */
|
|
carveout->rsc_offset = offset;
|
|
carveout->flags = rsc->flags;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Register carveout in in list */
|
|
carveout = rproc_mem_entry_init(dev, 0, 0, rsc->len, rsc->da,
|
|
rproc_alloc_carveout,
|
|
rproc_release_carveout, rsc->name);
|
|
if (!carveout) {
|
|
dev_err(dev, "Can't allocate memory entry structure\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
carveout->flags = rsc->flags;
|
|
carveout->rsc_offset = offset;
|
|
rproc_add_carveout(rproc, carveout);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* rproc_add_carveout() - register an allocated carveout region
|
|
* @rproc: rproc handle
|
|
* @mem: memory entry to register
|
|
*
|
|
* This function registers specified memory entry in @rproc carveouts list.
|
|
* Specified carveout should have been allocated before registering.
|
|
*/
|
|
void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
|
|
{
|
|
list_add_tail(&mem->node, &rproc->carveouts);
|
|
}
|
|
EXPORT_SYMBOL(rproc_add_carveout);
|
|
|
|
/**
|
|
* rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
|
|
* @dev: pointer on device struct
|
|
* @va: virtual address
|
|
* @dma: dma address
|
|
* @len: memory carveout length
|
|
* @da: device address
|
|
* @alloc: memory carveout allocation function
|
|
* @release: memory carveout release function
|
|
* @name: carveout name
|
|
*
|
|
* This function allocates a rproc_mem_entry struct and fill it with parameters
|
|
* provided by client.
|
|
*/
|
|
struct rproc_mem_entry *
|
|
rproc_mem_entry_init(struct device *dev,
|
|
void *va, dma_addr_t dma, int len, u32 da,
|
|
int (*alloc)(struct rproc *, struct rproc_mem_entry *),
|
|
int (*release)(struct rproc *, struct rproc_mem_entry *),
|
|
const char *name, ...)
|
|
{
|
|
struct rproc_mem_entry *mem;
|
|
va_list args;
|
|
|
|
mem = kzalloc(sizeof(*mem), GFP_KERNEL);
|
|
if (!mem)
|
|
return mem;
|
|
|
|
mem->va = va;
|
|
mem->dma = dma;
|
|
mem->da = da;
|
|
mem->len = len;
|
|
mem->alloc = alloc;
|
|
mem->release = release;
|
|
mem->rsc_offset = FW_RSC_ADDR_ANY;
|
|
mem->of_resm_idx = -1;
|
|
|
|
va_start(args, name);
|
|
vsnprintf(mem->name, sizeof(mem->name), name, args);
|
|
va_end(args);
|
|
|
|
return mem;
|
|
}
|
|
EXPORT_SYMBOL(rproc_mem_entry_init);
|
|
|
|
/**
|
|
* rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
|
|
* from a reserved memory phandle
|
|
* @dev: pointer on device struct
|
|
* @of_resm_idx: reserved memory phandle index in "memory-region"
|
|
* @len: memory carveout length
|
|
* @da: device address
|
|
* @name: carveout name
|
|
*
|
|
* This function allocates a rproc_mem_entry struct and fill it with parameters
|
|
* provided by client.
|
|
*/
|
|
struct rproc_mem_entry *
|
|
rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, int len,
|
|
u32 da, const char *name, ...)
|
|
{
|
|
struct rproc_mem_entry *mem;
|
|
va_list args;
|
|
|
|
mem = kzalloc(sizeof(*mem), GFP_KERNEL);
|
|
if (!mem)
|
|
return mem;
|
|
|
|
mem->da = da;
|
|
mem->len = len;
|
|
mem->rsc_offset = FW_RSC_ADDR_ANY;
|
|
mem->of_resm_idx = of_resm_idx;
|
|
|
|
va_start(args, name);
|
|
vsnprintf(mem->name, sizeof(mem->name), name, args);
|
|
va_end(args);
|
|
|
|
return mem;
|
|
}
|
|
EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
|
|
|
|
/**
|
|
* A lookup table for resource handlers. The indices are defined in
|
|
* enum fw_resource_type.
|
|
*/
|
|
static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
|
|
[RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
|
|
[RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
|
|
[RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
|
|
[RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
|
|
};
|
|
|
|
/* handle firmware resource entries before booting the remote processor */
|
|
static int rproc_handle_resources(struct rproc *rproc,
|
|
rproc_handle_resource_t handlers[RSC_LAST])
|
|
{
|
|
struct device *dev = &rproc->dev;
|
|
rproc_handle_resource_t handler;
|
|
int ret = 0, i;
|
|
|
|
if (!rproc->table_ptr)
|
|
return 0;
|
|
|
|
for (i = 0; i < rproc->table_ptr->num; i++) {
|
|
int offset = rproc->table_ptr->offset[i];
|
|
struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
|
|
int avail = rproc->table_sz - offset - sizeof(*hdr);
|
|
void *rsc = (void *)hdr + sizeof(*hdr);
|
|
|
|
/* make sure table isn't truncated */
|
|
if (avail < 0) {
|
|
dev_err(dev, "rsc table is truncated\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
dev_dbg(dev, "rsc: type %d\n", hdr->type);
|
|
|
|
if (hdr->type >= RSC_VENDOR_START &&
|
|
hdr->type <= RSC_VENDOR_END) {
|
|
ret = rproc_handle_rsc(rproc, hdr->type, rsc,
|
|
offset + sizeof(*hdr), avail);
|
|
if (ret == RSC_HANDLED)
|
|
continue;
|
|
else if (ret < 0)
|
|
break;
|
|
|
|
dev_warn(dev, "unsupported vendor resource %d\n",
|
|
hdr->type);
|
|
continue;
|
|
}
|
|
|
|
if (hdr->type >= RSC_LAST) {
|
|
dev_warn(dev, "unsupported resource %d\n", hdr->type);
|
|
continue;
|
|
}
|
|
|
|
handler = handlers[hdr->type];
|
|
if (!handler)
|
|
continue;
|
|
|
|
ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int rproc_prepare_subdevices(struct rproc *rproc)
|
|
{
|
|
struct rproc_subdev *subdev;
|
|
int ret;
|
|
|
|
list_for_each_entry(subdev, &rproc->subdevs, node) {
|
|
if (subdev->prepare) {
|
|
ret = subdev->prepare(subdev);
|
|
if (ret)
|
|
goto unroll_preparation;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
unroll_preparation:
|
|
list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
|
|
if (subdev->unprepare)
|
|
subdev->unprepare(subdev);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int rproc_start_subdevices(struct rproc *rproc)
|
|
{
|
|
struct rproc_subdev *subdev;
|
|
int ret;
|
|
|
|
list_for_each_entry(subdev, &rproc->subdevs, node) {
|
|
if (subdev->start) {
|
|
ret = subdev->start(subdev);
|
|
if (ret)
|
|
goto unroll_registration;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
unroll_registration:
|
|
list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
|
|
if (subdev->stop)
|
|
subdev->stop(subdev, true);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
|
|
{
|
|
struct rproc_subdev *subdev;
|
|
|
|
list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
|
|
if (subdev->stop)
|
|
subdev->stop(subdev, crashed);
|
|
}
|
|
}
|
|
|
|
static void rproc_unprepare_subdevices(struct rproc *rproc)
|
|
{
|
|
struct rproc_subdev *subdev;
|
|
|
|
list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
|
|
if (subdev->unprepare)
|
|
subdev->unprepare(subdev);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* rproc_alloc_registered_carveouts() - allocate all carveouts registered
|
|
* in the list
|
|
* @rproc: the remote processor handle
|
|
*
|
|
* This function parses registered carveout list, performs allocation
|
|
* if alloc() ops registered and updates resource table information
|
|
* if rsc_offset set.
|
|
*
|
|
* Return: 0 on success
|
|
*/
|
|
static int rproc_alloc_registered_carveouts(struct rproc *rproc)
|
|
{
|
|
struct rproc_mem_entry *entry, *tmp;
|
|
struct fw_rsc_carveout *rsc;
|
|
struct device *dev = &rproc->dev;
|
|
u64 pa;
|
|
int ret;
|
|
|
|
list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
|
|
if (entry->alloc) {
|
|
ret = entry->alloc(rproc, entry);
|
|
if (ret) {
|
|
dev_err(dev, "Unable to allocate carveout %s: %d\n",
|
|
entry->name, ret);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
|
|
/* update resource table */
|
|
rsc = (void *)rproc->table_ptr + entry->rsc_offset;
|
|
|
|
/*
|
|
* Some remote processors might need to know the pa
|
|
* even though they are behind an IOMMU. E.g., OMAP4's
|
|
* remote M3 processor needs this so it can control
|
|
* on-chip hardware accelerators that are not behind
|
|
* the IOMMU, and therefor must know the pa.
|
|
*
|
|
* Generally we don't want to expose physical addresses
|
|
* if we don't have to (remote processors are generally
|
|
* _not_ trusted), so we might want to do this only for
|
|
* remote processor that _must_ have this (e.g. OMAP4's
|
|
* dual M3 subsystem).
|
|
*
|
|
* Non-IOMMU processors might also want to have this info.
|
|
* In this case, the device address and the physical address
|
|
* are the same.
|
|
*/
|
|
|
|
/* Use va if defined else dma to generate pa */
|
|
if (entry->va)
|
|
pa = (u64)rproc_va_to_pa(entry->va);
|
|
else
|
|
pa = (u64)entry->dma;
|
|
|
|
if (((u64)pa) & HIGH_BITS_MASK)
|
|
dev_warn(dev,
|
|
"Physical address cast in 32bit to fit resource table format\n");
|
|
|
|
rsc->pa = (u32)pa;
|
|
rsc->da = entry->da;
|
|
rsc->len = entry->len;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* rproc_coredump_cleanup() - clean up dump_segments list
|
|
* @rproc: the remote processor handle
|
|
*/
|
|
static void rproc_coredump_cleanup(struct rproc *rproc)
|
|
{
|
|
struct rproc_dump_segment *entry, *tmp;
|
|
|
|
list_for_each_entry_safe(entry, tmp, &rproc->dump_segments, node) {
|
|
list_del(&entry->node);
|
|
kfree(entry);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* rproc_resource_cleanup() - clean up and free all acquired resources
|
|
* @rproc: rproc handle
|
|
*
|
|
* This function will free all resources acquired for @rproc, and it
|
|
* is called whenever @rproc either shuts down or fails to boot.
|
|
*/
|
|
static void rproc_resource_cleanup(struct rproc *rproc)
|
|
{
|
|
struct rproc_mem_entry *entry, *tmp;
|
|
struct rproc_debug_trace *trace, *ttmp;
|
|
struct rproc_vdev *rvdev, *rvtmp;
|
|
struct device *dev = &rproc->dev;
|
|
|
|
/* clean up debugfs trace entries */
|
|
list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) {
|
|
rproc_remove_trace_file(trace->tfile);
|
|
rproc->num_traces--;
|
|
list_del(&trace->node);
|
|
kfree(trace);
|
|
}
|
|
|
|
/* clean up iommu mapping entries */
|
|
list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
|
|
size_t unmapped;
|
|
|
|
unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
|
|
if (unmapped != entry->len) {
|
|
/* nothing much to do besides complaining */
|
|
dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
|
|
unmapped);
|
|
}
|
|
|
|
list_del(&entry->node);
|
|
kfree(entry);
|
|
}
|
|
|
|
/* clean up carveout allocations */
|
|
list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
|
|
if (entry->release)
|
|
entry->release(rproc, entry);
|
|
list_del(&entry->node);
|
|
kfree(entry);
|
|
}
|
|
|
|
/* clean up remote vdev entries */
|
|
list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
|
|
kref_put(&rvdev->refcount, rproc_vdev_release);
|
|
|
|
rproc_coredump_cleanup(rproc);
|
|
}
|
|
|
|
static int rproc_start(struct rproc *rproc, const struct firmware *fw)
|
|
{
|
|
struct resource_table *loaded_table;
|
|
struct device *dev = &rproc->dev;
|
|
int ret;
|
|
|
|
/* load the ELF segments to memory */
|
|
ret = rproc_load_segments(rproc, fw);
|
|
if (ret) {
|
|
dev_err(dev, "Failed to load program segments: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* The starting device has been given the rproc->cached_table as the
|
|
* resource table. The address of the vring along with the other
|
|
* allocated resources (carveouts etc) is stored in cached_table.
|
|
* In order to pass this information to the remote device we must copy
|
|
* this information to device memory. We also update the table_ptr so
|
|
* that any subsequent changes will be applied to the loaded version.
|
|
*/
|
|
loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
|
|
if (loaded_table) {
|
|
memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
|
|
rproc->table_ptr = loaded_table;
|
|
}
|
|
|
|
ret = rproc_prepare_subdevices(rproc);
|
|
if (ret) {
|
|
dev_err(dev, "failed to prepare subdevices for %s: %d\n",
|
|
rproc->name, ret);
|
|
goto reset_table_ptr;
|
|
}
|
|
|
|
/* power up the remote processor */
|
|
ret = rproc->ops->start(rproc);
|
|
if (ret) {
|
|
dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
|
|
goto unprepare_subdevices;
|
|
}
|
|
|
|
/* Start any subdevices for the remote processor */
|
|
ret = rproc_start_subdevices(rproc);
|
|
if (ret) {
|
|
dev_err(dev, "failed to probe subdevices for %s: %d\n",
|
|
rproc->name, ret);
|
|
goto stop_rproc;
|
|
}
|
|
|
|
rproc->state = RPROC_RUNNING;
|
|
|
|
dev_info(dev, "remote processor %s is now up\n", rproc->name);
|
|
|
|
return 0;
|
|
|
|
stop_rproc:
|
|
rproc->ops->stop(rproc);
|
|
unprepare_subdevices:
|
|
rproc_unprepare_subdevices(rproc);
|
|
reset_table_ptr:
|
|
rproc->table_ptr = rproc->cached_table;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* take a firmware and boot a remote processor with it.
|
|
*/
|
|
static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
|
|
{
|
|
struct device *dev = &rproc->dev;
|
|
const char *name = rproc->firmware;
|
|
int ret;
|
|
|
|
ret = rproc_fw_sanity_check(rproc, fw);
|
|
if (ret)
|
|
return ret;
|
|
|
|
dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
|
|
|
|
/*
|
|
* if enabling an IOMMU isn't relevant for this rproc, this is
|
|
* just a nop
|
|
*/
|
|
ret = rproc_enable_iommu(rproc);
|
|
if (ret) {
|
|
dev_err(dev, "can't enable iommu: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
|
|
|
|
/* Load resource table, core dump segment list etc from the firmware */
|
|
ret = rproc_parse_fw(rproc, fw);
|
|
if (ret)
|
|
goto disable_iommu;
|
|
|
|
/* reset max_notifyid */
|
|
rproc->max_notifyid = -1;
|
|
|
|
/* reset handled vdev */
|
|
rproc->nb_vdev = 0;
|
|
|
|
/* handle fw resources which are required to boot rproc */
|
|
ret = rproc_handle_resources(rproc, rproc_loading_handlers);
|
|
if (ret) {
|
|
dev_err(dev, "Failed to process resources: %d\n", ret);
|
|
goto clean_up_resources;
|
|
}
|
|
|
|
/* Allocate carveout resources associated to rproc */
|
|
ret = rproc_alloc_registered_carveouts(rproc);
|
|
if (ret) {
|
|
dev_err(dev, "Failed to allocate associated carveouts: %d\n",
|
|
ret);
|
|
goto clean_up_resources;
|
|
}
|
|
|
|
ret = rproc_start(rproc, fw);
|
|
if (ret)
|
|
goto clean_up_resources;
|
|
|
|
return 0;
|
|
|
|
clean_up_resources:
|
|
rproc_resource_cleanup(rproc);
|
|
kfree(rproc->cached_table);
|
|
rproc->cached_table = NULL;
|
|
rproc->table_ptr = NULL;
|
|
disable_iommu:
|
|
rproc_disable_iommu(rproc);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* take a firmware and boot it up.
|
|
*
|
|
* Note: this function is called asynchronously upon registration of the
|
|
* remote processor (so we must wait until it completes before we try
|
|
* to unregister the device. one other option is just to use kref here,
|
|
* that might be cleaner).
|
|
*/
|
|
static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
|
|
{
|
|
struct rproc *rproc = context;
|
|
|
|
rproc_boot(rproc);
|
|
|
|
release_firmware(fw);
|
|
}
|
|
|
|
static int rproc_trigger_auto_boot(struct rproc *rproc)
|
|
{
|
|
int ret;
|
|
|
|
/*
|
|
* We're initiating an asynchronous firmware loading, so we can
|
|
* be built-in kernel code, without hanging the boot process.
|
|
*/
|
|
ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
|
|
rproc->firmware, &rproc->dev, GFP_KERNEL,
|
|
rproc, rproc_auto_boot_callback);
|
|
if (ret < 0)
|
|
dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int rproc_stop(struct rproc *rproc, bool crashed)
|
|
{
|
|
struct device *dev = &rproc->dev;
|
|
int ret;
|
|
|
|
/* Stop any subdevices for the remote processor */
|
|
rproc_stop_subdevices(rproc, crashed);
|
|
|
|
/* the installed resource table is no longer accessible */
|
|
rproc->table_ptr = rproc->cached_table;
|
|
|
|
/* power off the remote processor */
|
|
ret = rproc->ops->stop(rproc);
|
|
if (ret) {
|
|
dev_err(dev, "can't stop rproc: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
rproc_unprepare_subdevices(rproc);
|
|
|
|
rproc->state = RPROC_OFFLINE;
|
|
|
|
dev_info(dev, "stopped remote processor %s\n", rproc->name);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* rproc_coredump_add_segment() - add segment of device memory to coredump
|
|
* @rproc: handle of a remote processor
|
|
* @da: device address
|
|
* @size: size of segment
|
|
*
|
|
* Add device memory to the list of segments to be included in a coredump for
|
|
* the remoteproc.
|
|
*
|
|
* Return: 0 on success, negative errno on error.
|
|
*/
|
|
int rproc_coredump_add_segment(struct rproc *rproc, dma_addr_t da, size_t size)
|
|
{
|
|
struct rproc_dump_segment *segment;
|
|
|
|
segment = kzalloc(sizeof(*segment), GFP_KERNEL);
|
|
if (!segment)
|
|
return -ENOMEM;
|
|
|
|
segment->da = da;
|
|
segment->size = size;
|
|
|
|
list_add_tail(&segment->node, &rproc->dump_segments);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(rproc_coredump_add_segment);
|
|
|
|
/**
|
|
* rproc_coredump_add_custom_segment() - add custom coredump segment
|
|
* @rproc: handle of a remote processor
|
|
* @da: device address
|
|
* @size: size of segment
|
|
* @dumpfn: custom dump function called for each segment during coredump
|
|
* @priv: private data
|
|
*
|
|
* Add device memory to the list of segments to be included in the coredump
|
|
* and associate the segment with the given custom dump function and private
|
|
* data.
|
|
*
|
|
* Return: 0 on success, negative errno on error.
|
|
*/
|
|
int rproc_coredump_add_custom_segment(struct rproc *rproc,
|
|
dma_addr_t da, size_t size,
|
|
void (*dumpfn)(struct rproc *rproc,
|
|
struct rproc_dump_segment *segment,
|
|
void *dest),
|
|
void *priv)
|
|
{
|
|
struct rproc_dump_segment *segment;
|
|
|
|
segment = kzalloc(sizeof(*segment), GFP_KERNEL);
|
|
if (!segment)
|
|
return -ENOMEM;
|
|
|
|
segment->da = da;
|
|
segment->size = size;
|
|
segment->priv = priv;
|
|
segment->dump = dumpfn;
|
|
|
|
list_add_tail(&segment->node, &rproc->dump_segments);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(rproc_coredump_add_custom_segment);
|
|
|
|
/**
|
|
* rproc_coredump() - perform coredump
|
|
* @rproc: rproc handle
|
|
*
|
|
* This function will generate an ELF header for the registered segments
|
|
* and create a devcoredump device associated with rproc.
|
|
*/
|
|
static void rproc_coredump(struct rproc *rproc)
|
|
{
|
|
struct rproc_dump_segment *segment;
|
|
struct elf32_phdr *phdr;
|
|
struct elf32_hdr *ehdr;
|
|
size_t data_size;
|
|
size_t offset;
|
|
void *data;
|
|
void *ptr;
|
|
int phnum = 0;
|
|
|
|
if (list_empty(&rproc->dump_segments))
|
|
return;
|
|
|
|
data_size = sizeof(*ehdr);
|
|
list_for_each_entry(segment, &rproc->dump_segments, node) {
|
|
data_size += sizeof(*phdr) + segment->size;
|
|
|
|
phnum++;
|
|
}
|
|
|
|
data = vmalloc(data_size);
|
|
if (!data)
|
|
return;
|
|
|
|
ehdr = data;
|
|
|
|
memset(ehdr, 0, sizeof(*ehdr));
|
|
memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
|
|
ehdr->e_ident[EI_CLASS] = ELFCLASS32;
|
|
ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
|
|
ehdr->e_ident[EI_VERSION] = EV_CURRENT;
|
|
ehdr->e_ident[EI_OSABI] = ELFOSABI_NONE;
|
|
ehdr->e_type = ET_CORE;
|
|
ehdr->e_machine = EM_NONE;
|
|
ehdr->e_version = EV_CURRENT;
|
|
ehdr->e_entry = rproc->bootaddr;
|
|
ehdr->e_phoff = sizeof(*ehdr);
|
|
ehdr->e_ehsize = sizeof(*ehdr);
|
|
ehdr->e_phentsize = sizeof(*phdr);
|
|
ehdr->e_phnum = phnum;
|
|
|
|
phdr = data + ehdr->e_phoff;
|
|
offset = ehdr->e_phoff + sizeof(*phdr) * ehdr->e_phnum;
|
|
list_for_each_entry(segment, &rproc->dump_segments, node) {
|
|
memset(phdr, 0, sizeof(*phdr));
|
|
phdr->p_type = PT_LOAD;
|
|
phdr->p_offset = offset;
|
|
phdr->p_vaddr = segment->da;
|
|
phdr->p_paddr = segment->da;
|
|
phdr->p_filesz = segment->size;
|
|
phdr->p_memsz = segment->size;
|
|
phdr->p_flags = PF_R | PF_W | PF_X;
|
|
phdr->p_align = 0;
|
|
|
|
if (segment->dump) {
|
|
segment->dump(rproc, segment, data + offset);
|
|
} else {
|
|
ptr = rproc_da_to_va(rproc, segment->da, segment->size);
|
|
if (!ptr) {
|
|
dev_err(&rproc->dev,
|
|
"invalid coredump segment (%pad, %zu)\n",
|
|
&segment->da, segment->size);
|
|
memset(data + offset, 0xff, segment->size);
|
|
} else {
|
|
memcpy(data + offset, ptr, segment->size);
|
|
}
|
|
}
|
|
|
|
offset += phdr->p_filesz;
|
|
phdr++;
|
|
}
|
|
|
|
dev_coredumpv(&rproc->dev, data, data_size, GFP_KERNEL);
|
|
}
|
|
|
|
/**
|
|
* rproc_trigger_recovery() - recover a remoteproc
|
|
* @rproc: the remote processor
|
|
*
|
|
* The recovery is done by resetting all the virtio devices, that way all the
|
|
* rpmsg drivers will be reseted along with the remote processor making the
|
|
* remoteproc functional again.
|
|
*
|
|
* This function can sleep, so it cannot be called from atomic context.
|
|
*/
|
|
int rproc_trigger_recovery(struct rproc *rproc)
|
|
{
|
|
const struct firmware *firmware_p;
|
|
struct device *dev = &rproc->dev;
|
|
int ret;
|
|
|
|
dev_err(dev, "recovering %s\n", rproc->name);
|
|
|
|
ret = mutex_lock_interruptible(&rproc->lock);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = rproc_stop(rproc, true);
|
|
if (ret)
|
|
goto unlock_mutex;
|
|
|
|
/* generate coredump */
|
|
rproc_coredump(rproc);
|
|
|
|
/* load firmware */
|
|
ret = request_firmware(&firmware_p, rproc->firmware, dev);
|
|
if (ret < 0) {
|
|
dev_err(dev, "request_firmware failed: %d\n", ret);
|
|
goto unlock_mutex;
|
|
}
|
|
|
|
/* boot the remote processor up again */
|
|
ret = rproc_start(rproc, firmware_p);
|
|
|
|
release_firmware(firmware_p);
|
|
|
|
unlock_mutex:
|
|
mutex_unlock(&rproc->lock);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* rproc_crash_handler_work() - handle a crash
|
|
*
|
|
* This function needs to handle everything related to a crash, like cpu
|
|
* registers and stack dump, information to help to debug the fatal error, etc.
|
|
*/
|
|
static void rproc_crash_handler_work(struct work_struct *work)
|
|
{
|
|
struct rproc *rproc = container_of(work, struct rproc, crash_handler);
|
|
struct device *dev = &rproc->dev;
|
|
|
|
dev_dbg(dev, "enter %s\n", __func__);
|
|
|
|
mutex_lock(&rproc->lock);
|
|
|
|
if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
|
|
/* handle only the first crash detected */
|
|
mutex_unlock(&rproc->lock);
|
|
return;
|
|
}
|
|
|
|
rproc->state = RPROC_CRASHED;
|
|
dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
|
|
rproc->name);
|
|
|
|
mutex_unlock(&rproc->lock);
|
|
|
|
if (!rproc->recovery_disabled)
|
|
rproc_trigger_recovery(rproc);
|
|
}
|
|
|
|
/**
|
|
* rproc_boot() - boot a remote processor
|
|
* @rproc: handle of a remote processor
|
|
*
|
|
* Boot a remote processor (i.e. load its firmware, power it on, ...).
|
|
*
|
|
* If the remote processor is already powered on, this function immediately
|
|
* returns (successfully).
|
|
*
|
|
* Returns 0 on success, and an appropriate error value otherwise.
|
|
*/
|
|
int rproc_boot(struct rproc *rproc)
|
|
{
|
|
const struct firmware *firmware_p;
|
|
struct device *dev;
|
|
int ret;
|
|
|
|
if (!rproc) {
|
|
pr_err("invalid rproc handle\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
dev = &rproc->dev;
|
|
|
|
ret = mutex_lock_interruptible(&rproc->lock);
|
|
if (ret) {
|
|
dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
|
|
return ret;
|
|
}
|
|
|
|
if (rproc->state == RPROC_DELETED) {
|
|
ret = -ENODEV;
|
|
dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
|
|
goto unlock_mutex;
|
|
}
|
|
|
|
/* skip the boot process if rproc is already powered up */
|
|
if (atomic_inc_return(&rproc->power) > 1) {
|
|
ret = 0;
|
|
goto unlock_mutex;
|
|
}
|
|
|
|
dev_info(dev, "powering up %s\n", rproc->name);
|
|
|
|
/* load firmware */
|
|
ret = request_firmware(&firmware_p, rproc->firmware, dev);
|
|
if (ret < 0) {
|
|
dev_err(dev, "request_firmware failed: %d\n", ret);
|
|
goto downref_rproc;
|
|
}
|
|
|
|
ret = rproc_fw_boot(rproc, firmware_p);
|
|
|
|
release_firmware(firmware_p);
|
|
|
|
downref_rproc:
|
|
if (ret)
|
|
atomic_dec(&rproc->power);
|
|
unlock_mutex:
|
|
mutex_unlock(&rproc->lock);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(rproc_boot);
|
|
|
|
/**
|
|
* rproc_shutdown() - power off the remote processor
|
|
* @rproc: the remote processor
|
|
*
|
|
* Power off a remote processor (previously booted with rproc_boot()).
|
|
*
|
|
* In case @rproc is still being used by an additional user(s), then
|
|
* this function will just decrement the power refcount and exit,
|
|
* without really powering off the device.
|
|
*
|
|
* Every call to rproc_boot() must (eventually) be accompanied by a call
|
|
* to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
|
|
*
|
|
* Notes:
|
|
* - we're not decrementing the rproc's refcount, only the power refcount.
|
|
* which means that the @rproc handle stays valid even after rproc_shutdown()
|
|
* returns, and users can still use it with a subsequent rproc_boot(), if
|
|
* needed.
|
|
*/
|
|
void rproc_shutdown(struct rproc *rproc)
|
|
{
|
|
struct device *dev = &rproc->dev;
|
|
int ret;
|
|
|
|
ret = mutex_lock_interruptible(&rproc->lock);
|
|
if (ret) {
|
|
dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
|
|
return;
|
|
}
|
|
|
|
/* if the remote proc is still needed, bail out */
|
|
if (!atomic_dec_and_test(&rproc->power))
|
|
goto out;
|
|
|
|
ret = rproc_stop(rproc, false);
|
|
if (ret) {
|
|
atomic_inc(&rproc->power);
|
|
goto out;
|
|
}
|
|
|
|
/* clean up all acquired resources */
|
|
rproc_resource_cleanup(rproc);
|
|
|
|
rproc_disable_iommu(rproc);
|
|
|
|
/* Free the copy of the resource table */
|
|
kfree(rproc->cached_table);
|
|
rproc->cached_table = NULL;
|
|
rproc->table_ptr = NULL;
|
|
out:
|
|
mutex_unlock(&rproc->lock);
|
|
}
|
|
EXPORT_SYMBOL(rproc_shutdown);
|
|
|
|
/**
|
|
* rproc_get_by_phandle() - find a remote processor by phandle
|
|
* @phandle: phandle to the rproc
|
|
*
|
|
* Finds an rproc handle using the remote processor's phandle, and then
|
|
* return a handle to the rproc.
|
|
*
|
|
* This function increments the remote processor's refcount, so always
|
|
* use rproc_put() to decrement it back once rproc isn't needed anymore.
|
|
*
|
|
* Returns the rproc handle on success, and NULL on failure.
|
|
*/
|
|
#ifdef CONFIG_OF
|
|
struct rproc *rproc_get_by_phandle(phandle phandle)
|
|
{
|
|
struct rproc *rproc = NULL, *r;
|
|
struct device_node *np;
|
|
|
|
np = of_find_node_by_phandle(phandle);
|
|
if (!np)
|
|
return NULL;
|
|
|
|
mutex_lock(&rproc_list_mutex);
|
|
list_for_each_entry(r, &rproc_list, node) {
|
|
if (r->dev.parent && r->dev.parent->of_node == np) {
|
|
/* prevent underlying implementation from being removed */
|
|
if (!try_module_get(r->dev.parent->driver->owner)) {
|
|
dev_err(&r->dev, "can't get owner\n");
|
|
break;
|
|
}
|
|
|
|
rproc = r;
|
|
get_device(&rproc->dev);
|
|
break;
|
|
}
|
|
}
|
|
mutex_unlock(&rproc_list_mutex);
|
|
|
|
of_node_put(np);
|
|
|
|
return rproc;
|
|
}
|
|
#else
|
|
struct rproc *rproc_get_by_phandle(phandle phandle)
|
|
{
|
|
return NULL;
|
|
}
|
|
#endif
|
|
EXPORT_SYMBOL(rproc_get_by_phandle);
|
|
|
|
/**
|
|
* rproc_add() - register a remote processor
|
|
* @rproc: the remote processor handle to register
|
|
*
|
|
* Registers @rproc with the remoteproc framework, after it has been
|
|
* allocated with rproc_alloc().
|
|
*
|
|
* This is called by the platform-specific rproc implementation, whenever
|
|
* a new remote processor device is probed.
|
|
*
|
|
* Returns 0 on success and an appropriate error code otherwise.
|
|
*
|
|
* Note: this function initiates an asynchronous firmware loading
|
|
* context, which will look for virtio devices supported by the rproc's
|
|
* firmware.
|
|
*
|
|
* If found, those virtio devices will be created and added, so as a result
|
|
* of registering this remote processor, additional virtio drivers might be
|
|
* probed.
|
|
*/
|
|
int rproc_add(struct rproc *rproc)
|
|
{
|
|
struct device *dev = &rproc->dev;
|
|
int ret;
|
|
|
|
ret = device_add(dev);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
dev_info(dev, "%s is available\n", rproc->name);
|
|
|
|
/* create debugfs entries */
|
|
rproc_create_debug_dir(rproc);
|
|
|
|
/* if rproc is marked always-on, request it to boot */
|
|
if (rproc->auto_boot) {
|
|
ret = rproc_trigger_auto_boot(rproc);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
/* expose to rproc_get_by_phandle users */
|
|
mutex_lock(&rproc_list_mutex);
|
|
list_add(&rproc->node, &rproc_list);
|
|
mutex_unlock(&rproc_list_mutex);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(rproc_add);
|
|
|
|
/**
|
|
* rproc_type_release() - release a remote processor instance
|
|
* @dev: the rproc's device
|
|
*
|
|
* This function should _never_ be called directly.
|
|
*
|
|
* It will be called by the driver core when no one holds a valid pointer
|
|
* to @dev anymore.
|
|
*/
|
|
static void rproc_type_release(struct device *dev)
|
|
{
|
|
struct rproc *rproc = container_of(dev, struct rproc, dev);
|
|
|
|
dev_info(&rproc->dev, "releasing %s\n", rproc->name);
|
|
|
|
idr_destroy(&rproc->notifyids);
|
|
|
|
if (rproc->index >= 0)
|
|
ida_simple_remove(&rproc_dev_index, rproc->index);
|
|
|
|
kfree(rproc->firmware);
|
|
kfree(rproc->ops);
|
|
kfree(rproc);
|
|
}
|
|
|
|
static const struct device_type rproc_type = {
|
|
.name = "remoteproc",
|
|
.release = rproc_type_release,
|
|
};
|
|
|
|
/**
|
|
* rproc_alloc() - allocate a remote processor handle
|
|
* @dev: the underlying device
|
|
* @name: name of this remote processor
|
|
* @ops: platform-specific handlers (mainly start/stop)
|
|
* @firmware: name of firmware file to load, can be NULL
|
|
* @len: length of private data needed by the rproc driver (in bytes)
|
|
*
|
|
* Allocates a new remote processor handle, but does not register
|
|
* it yet. if @firmware is NULL, a default name is used.
|
|
*
|
|
* This function should be used by rproc implementations during initialization
|
|
* of the remote processor.
|
|
*
|
|
* After creating an rproc handle using this function, and when ready,
|
|
* implementations should then call rproc_add() to complete
|
|
* the registration of the remote processor.
|
|
*
|
|
* On success the new rproc is returned, and on failure, NULL.
|
|
*
|
|
* Note: _never_ directly deallocate @rproc, even if it was not registered
|
|
* yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
|
|
*/
|
|
struct rproc *rproc_alloc(struct device *dev, const char *name,
|
|
const struct rproc_ops *ops,
|
|
const char *firmware, int len)
|
|
{
|
|
struct rproc *rproc;
|
|
char *p, *template = "rproc-%s-fw";
|
|
int name_len;
|
|
|
|
if (!dev || !name || !ops)
|
|
return NULL;
|
|
|
|
if (!firmware) {
|
|
/*
|
|
* If the caller didn't pass in a firmware name then
|
|
* construct a default name.
|
|
*/
|
|
name_len = strlen(name) + strlen(template) - 2 + 1;
|
|
p = kmalloc(name_len, GFP_KERNEL);
|
|
if (!p)
|
|
return NULL;
|
|
snprintf(p, name_len, template, name);
|
|
} else {
|
|
p = kstrdup(firmware, GFP_KERNEL);
|
|
if (!p)
|
|
return NULL;
|
|
}
|
|
|
|
rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
|
|
if (!rproc) {
|
|
kfree(p);
|
|
return NULL;
|
|
}
|
|
|
|
rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
|
|
if (!rproc->ops) {
|
|
kfree(p);
|
|
kfree(rproc);
|
|
return NULL;
|
|
}
|
|
|
|
rproc->firmware = p;
|
|
rproc->name = name;
|
|
rproc->priv = &rproc[1];
|
|
rproc->auto_boot = true;
|
|
|
|
device_initialize(&rproc->dev);
|
|
rproc->dev.parent = dev;
|
|
rproc->dev.type = &rproc_type;
|
|
rproc->dev.class = &rproc_class;
|
|
rproc->dev.driver_data = rproc;
|
|
idr_init(&rproc->notifyids);
|
|
|
|
/* Assign a unique device index and name */
|
|
rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
|
|
if (rproc->index < 0) {
|
|
dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
|
|
put_device(&rproc->dev);
|
|
return NULL;
|
|
}
|
|
|
|
dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
|
|
|
|
atomic_set(&rproc->power, 0);
|
|
|
|
/* Default to ELF loader if no load function is specified */
|
|
if (!rproc->ops->load) {
|
|
rproc->ops->load = rproc_elf_load_segments;
|
|
rproc->ops->parse_fw = rproc_elf_load_rsc_table;
|
|
rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
|
|
rproc->ops->sanity_check = rproc_elf_sanity_check;
|
|
rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
|
|
}
|
|
|
|
mutex_init(&rproc->lock);
|
|
|
|
INIT_LIST_HEAD(&rproc->carveouts);
|
|
INIT_LIST_HEAD(&rproc->mappings);
|
|
INIT_LIST_HEAD(&rproc->traces);
|
|
INIT_LIST_HEAD(&rproc->rvdevs);
|
|
INIT_LIST_HEAD(&rproc->subdevs);
|
|
INIT_LIST_HEAD(&rproc->dump_segments);
|
|
|
|
INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
|
|
|
|
rproc->state = RPROC_OFFLINE;
|
|
|
|
return rproc;
|
|
}
|
|
EXPORT_SYMBOL(rproc_alloc);
|
|
|
|
/**
|
|
* rproc_free() - unroll rproc_alloc()
|
|
* @rproc: the remote processor handle
|
|
*
|
|
* This function decrements the rproc dev refcount.
|
|
*
|
|
* If no one holds any reference to rproc anymore, then its refcount would
|
|
* now drop to zero, and it would be freed.
|
|
*/
|
|
void rproc_free(struct rproc *rproc)
|
|
{
|
|
put_device(&rproc->dev);
|
|
}
|
|
EXPORT_SYMBOL(rproc_free);
|
|
|
|
/**
|
|
* rproc_put() - release rproc reference
|
|
* @rproc: the remote processor handle
|
|
*
|
|
* This function decrements the rproc dev refcount.
|
|
*
|
|
* If no one holds any reference to rproc anymore, then its refcount would
|
|
* now drop to zero, and it would be freed.
|
|
*/
|
|
void rproc_put(struct rproc *rproc)
|
|
{
|
|
module_put(rproc->dev.parent->driver->owner);
|
|
put_device(&rproc->dev);
|
|
}
|
|
EXPORT_SYMBOL(rproc_put);
|
|
|
|
/**
|
|
* rproc_del() - unregister a remote processor
|
|
* @rproc: rproc handle to unregister
|
|
*
|
|
* This function should be called when the platform specific rproc
|
|
* implementation decides to remove the rproc device. it should
|
|
* _only_ be called if a previous invocation of rproc_add()
|
|
* has completed successfully.
|
|
*
|
|
* After rproc_del() returns, @rproc isn't freed yet, because
|
|
* of the outstanding reference created by rproc_alloc. To decrement that
|
|
* one last refcount, one still needs to call rproc_free().
|
|
*
|
|
* Returns 0 on success and -EINVAL if @rproc isn't valid.
|
|
*/
|
|
int rproc_del(struct rproc *rproc)
|
|
{
|
|
if (!rproc)
|
|
return -EINVAL;
|
|
|
|
/* if rproc is marked always-on, rproc_add() booted it */
|
|
/* TODO: make sure this works with rproc->power > 1 */
|
|
if (rproc->auto_boot)
|
|
rproc_shutdown(rproc);
|
|
|
|
mutex_lock(&rproc->lock);
|
|
rproc->state = RPROC_DELETED;
|
|
mutex_unlock(&rproc->lock);
|
|
|
|
rproc_delete_debug_dir(rproc);
|
|
|
|
/* the rproc is downref'ed as soon as it's removed from the klist */
|
|
mutex_lock(&rproc_list_mutex);
|
|
list_del(&rproc->node);
|
|
mutex_unlock(&rproc_list_mutex);
|
|
|
|
device_del(&rproc->dev);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(rproc_del);
|
|
|
|
/**
|
|
* rproc_add_subdev() - add a subdevice to a remoteproc
|
|
* @rproc: rproc handle to add the subdevice to
|
|
* @subdev: subdev handle to register
|
|
*
|
|
* Caller is responsible for populating optional subdevice function pointers.
|
|
*/
|
|
void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
|
|
{
|
|
list_add_tail(&subdev->node, &rproc->subdevs);
|
|
}
|
|
EXPORT_SYMBOL(rproc_add_subdev);
|
|
|
|
/**
|
|
* rproc_remove_subdev() - remove a subdevice from a remoteproc
|
|
* @rproc: rproc handle to remove the subdevice from
|
|
* @subdev: subdev handle, previously registered with rproc_add_subdev()
|
|
*/
|
|
void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
|
|
{
|
|
list_del(&subdev->node);
|
|
}
|
|
EXPORT_SYMBOL(rproc_remove_subdev);
|
|
|
|
/**
|
|
* rproc_get_by_child() - acquire rproc handle of @dev's ancestor
|
|
* @dev: child device to find ancestor of
|
|
*
|
|
* Returns the ancestor rproc instance, or NULL if not found.
|
|
*/
|
|
struct rproc *rproc_get_by_child(struct device *dev)
|
|
{
|
|
for (dev = dev->parent; dev; dev = dev->parent) {
|
|
if (dev->type == &rproc_type)
|
|
return dev->driver_data;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL(rproc_get_by_child);
|
|
|
|
/**
|
|
* rproc_report_crash() - rproc crash reporter function
|
|
* @rproc: remote processor
|
|
* @type: crash type
|
|
*
|
|
* This function must be called every time a crash is detected by the low-level
|
|
* drivers implementing a specific remoteproc. This should not be called from a
|
|
* non-remoteproc driver.
|
|
*
|
|
* This function can be called from atomic/interrupt context.
|
|
*/
|
|
void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
|
|
{
|
|
if (!rproc) {
|
|
pr_err("NULL rproc pointer\n");
|
|
return;
|
|
}
|
|
|
|
dev_err(&rproc->dev, "crash detected in %s: type %s\n",
|
|
rproc->name, rproc_crash_to_string(type));
|
|
|
|
/* create a new task to handle the error */
|
|
schedule_work(&rproc->crash_handler);
|
|
}
|
|
EXPORT_SYMBOL(rproc_report_crash);
|
|
|
|
static int __init remoteproc_init(void)
|
|
{
|
|
rproc_init_sysfs();
|
|
rproc_init_debugfs();
|
|
|
|
return 0;
|
|
}
|
|
subsys_initcall(remoteproc_init);
|
|
|
|
static void __exit remoteproc_exit(void)
|
|
{
|
|
ida_destroy(&rproc_dev_index);
|
|
|
|
rproc_exit_debugfs();
|
|
rproc_exit_sysfs();
|
|
}
|
|
module_exit(remoteproc_exit);
|
|
|
|
MODULE_LICENSE("GPL v2");
|
|
MODULE_DESCRIPTION("Generic Remote Processor Framework");
|