linux/lib/percpu-refcount.c
Tejun Heo 2d7227828e percpu-refcount: implement percpu_ref_reinit() and percpu_ref_is_zero()
Now that explicit invocation of percpu_ref_exit() is necessary to free
the percpu counter, we can implement percpu_ref_reinit() which
reinitializes a released percpu_ref.  This can be used implement
scalable gating switch which can be drained and then re-opened without
worrying about memory allocation failures.

percpu_ref_is_zero() is added to be used in a sanity check in
percpu_ref_exit().  As this function will be useful for other purposes
too, make it a public interface.

v2: Use smp_read_barrier_depends() instead of smp_load_acquire().  We
    only need data dep barrier and smp_load_acquire() is stronger and
    heavier on some archs.  Spotted by Lai Jiangshan.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Kent Overstreet <kmo@daterainc.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
2014-06-28 08:10:14 -04:00

187 lines
6.3 KiB
C

#define pr_fmt(fmt) "%s: " fmt "\n", __func__
#include <linux/kernel.h>
#include <linux/percpu-refcount.h>
/*
* Initially, a percpu refcount is just a set of percpu counters. Initially, we
* don't try to detect the ref hitting 0 - which means that get/put can just
* increment or decrement the local counter. Note that the counter on a
* particular cpu can (and will) wrap - this is fine, when we go to shutdown the
* percpu counters will all sum to the correct value
*
* (More precisely: because moduler arithmatic is commutative the sum of all the
* pcpu_count vars will be equal to what it would have been if all the gets and
* puts were done to a single integer, even if some of the percpu integers
* overflow or underflow).
*
* The real trick to implementing percpu refcounts is shutdown. We can't detect
* the ref hitting 0 on every put - this would require global synchronization
* and defeat the whole purpose of using percpu refs.
*
* What we do is require the user to keep track of the initial refcount; we know
* the ref can't hit 0 before the user drops the initial ref, so as long as we
* convert to non percpu mode before the initial ref is dropped everything
* works.
*
* Converting to non percpu mode is done with some RCUish stuff in
* percpu_ref_kill. Additionally, we need a bias value so that the atomic_t
* can't hit 0 before we've added up all the percpu refs.
*/
#define PCPU_COUNT_BIAS (1U << 31)
static unsigned __percpu *pcpu_count_ptr(struct percpu_ref *ref)
{
return (unsigned __percpu *)(ref->pcpu_count_ptr & ~PCPU_REF_DEAD);
}
/**
* percpu_ref_init - initialize a percpu refcount
* @ref: percpu_ref to initialize
* @release: function which will be called when refcount hits 0
*
* Initializes the refcount in single atomic counter mode with a refcount of 1;
* analagous to atomic_set(ref, 1).
*
* Note that @release must not sleep - it may potentially be called from RCU
* callback context by percpu_ref_kill().
*/
int percpu_ref_init(struct percpu_ref *ref, percpu_ref_func_t *release)
{
atomic_set(&ref->count, 1 + PCPU_COUNT_BIAS);
ref->pcpu_count_ptr = (unsigned long)alloc_percpu(unsigned);
if (!ref->pcpu_count_ptr)
return -ENOMEM;
ref->release = release;
return 0;
}
EXPORT_SYMBOL_GPL(percpu_ref_init);
/**
* percpu_ref_reinit - re-initialize a percpu refcount
* @ref: perpcu_ref to re-initialize
*
* Re-initialize @ref so that it's in the same state as when it finished
* percpu_ref_init(). @ref must have been initialized successfully, killed
* and reached 0 but not exited.
*
* Note that percpu_ref_tryget[_live]() are safe to perform on @ref while
* this function is in progress.
*/
void percpu_ref_reinit(struct percpu_ref *ref)
{
unsigned __percpu *pcpu_count = pcpu_count_ptr(ref);
int cpu;
BUG_ON(!pcpu_count);
WARN_ON(!percpu_ref_is_zero(ref));
atomic_set(&ref->count, 1 + PCPU_COUNT_BIAS);
/*
* Restore per-cpu operation. smp_store_release() is paired with
* smp_read_barrier_depends() in __pcpu_ref_alive() and guarantees
* that the zeroing is visible to all percpu accesses which can see
* the following PCPU_REF_DEAD clearing.
*/
for_each_possible_cpu(cpu)
*per_cpu_ptr(pcpu_count, cpu) = 0;
smp_store_release(&ref->pcpu_count_ptr,
ref->pcpu_count_ptr & ~PCPU_REF_DEAD);
}
EXPORT_SYMBOL_GPL(percpu_ref_reinit);
/**
* percpu_ref_exit - undo percpu_ref_init()
* @ref: percpu_ref to exit
*
* This function exits @ref. The caller is responsible for ensuring that
* @ref is no longer in active use. The usual places to invoke this
* function from are the @ref->release() callback or in init failure path
* where percpu_ref_init() succeeded but other parts of the initialization
* of the embedding object failed.
*/
void percpu_ref_exit(struct percpu_ref *ref)
{
unsigned __percpu *pcpu_count = pcpu_count_ptr(ref);
if (pcpu_count) {
free_percpu(pcpu_count);
ref->pcpu_count_ptr = PCPU_REF_DEAD;
}
}
EXPORT_SYMBOL_GPL(percpu_ref_exit);
static void percpu_ref_kill_rcu(struct rcu_head *rcu)
{
struct percpu_ref *ref = container_of(rcu, struct percpu_ref, rcu);
unsigned __percpu *pcpu_count = pcpu_count_ptr(ref);
unsigned count = 0;
int cpu;
for_each_possible_cpu(cpu)
count += *per_cpu_ptr(pcpu_count, cpu);
pr_debug("global %i pcpu %i", atomic_read(&ref->count), (int) count);
/*
* It's crucial that we sum the percpu counters _before_ adding the sum
* to &ref->count; since gets could be happening on one cpu while puts
* happen on another, adding a single cpu's count could cause
* @ref->count to hit 0 before we've got a consistent value - but the
* sum of all the counts will be consistent and correct.
*
* Subtracting the bias value then has to happen _after_ adding count to
* &ref->count; we need the bias value to prevent &ref->count from
* reaching 0 before we add the percpu counts. But doing it at the same
* time is equivalent and saves us atomic operations:
*/
atomic_add((int) count - PCPU_COUNT_BIAS, &ref->count);
WARN_ONCE(atomic_read(&ref->count) <= 0, "percpu ref <= 0 (%i)",
atomic_read(&ref->count));
/* @ref is viewed as dead on all CPUs, send out kill confirmation */
if (ref->confirm_kill)
ref->confirm_kill(ref);
/*
* Now we're in single atomic_t mode with a consistent refcount, so it's
* safe to drop our initial ref:
*/
percpu_ref_put(ref);
}
/**
* percpu_ref_kill_and_confirm - drop the initial ref and schedule confirmation
* @ref: percpu_ref to kill
* @confirm_kill: optional confirmation callback
*
* Equivalent to percpu_ref_kill() but also schedules kill confirmation if
* @confirm_kill is not NULL. @confirm_kill, which may not block, will be
* called after @ref is seen as dead from all CPUs - all further
* invocations of percpu_ref_tryget() will fail. See percpu_ref_tryget()
* for more details.
*
* Due to the way percpu_ref is implemented, @confirm_kill will be called
* after at least one full RCU grace period has passed but this is an
* implementation detail and callers must not depend on it.
*/
void percpu_ref_kill_and_confirm(struct percpu_ref *ref,
percpu_ref_func_t *confirm_kill)
{
WARN_ONCE(ref->pcpu_count_ptr & PCPU_REF_DEAD,
"percpu_ref_kill() called more than once!\n");
ref->pcpu_count_ptr |= PCPU_REF_DEAD;
ref->confirm_kill = confirm_kill;
call_rcu_sched(&ref->rcu, percpu_ref_kill_rcu);
}
EXPORT_SYMBOL_GPL(percpu_ref_kill_and_confirm);