linux/drivers/ide/pci/cmd64x.c
Jörn Engel 6ab3d5624e Remove obsolete #include <linux/config.h>
Signed-off-by: Jörn Engel <joern@wohnheim.fh-wedel.de>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
2006-06-30 19:25:36 +02:00

806 lines
23 KiB
C

/* $Id: cmd64x.c,v 1.21 2000/01/30 23:23:16
*
* linux/drivers/ide/pci/cmd64x.c Version 1.30 Sept 10, 2002
*
* cmd64x.c: Enable interrupts at initialization time on Ultra/PCI machines.
* Note, this driver is not used at all on other systems because
* there the "BIOS" has done all of the following already.
* Due to massive hardware bugs, UltraDMA is only supported
* on the 646U2 and not on the 646U.
*
* Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
* Copyright (C) 1998 David S. Miller (davem@redhat.com)
*
* Copyright (C) 1999-2002 Andre Hedrick <andre@linux-ide.org>
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/hdreg.h>
#include <linux/ide.h>
#include <linux/init.h>
#include <asm/io.h>
#define DISPLAY_CMD64X_TIMINGS
#define CMD_DEBUG 0
#if CMD_DEBUG
#define cmdprintk(x...) printk(x)
#else
#define cmdprintk(x...)
#endif
/*
* CMD64x specific registers definition.
*/
#define CFR 0x50
#define CFR_INTR_CH0 0x02
#define CNTRL 0x51
#define CNTRL_DIS_RA0 0x40
#define CNTRL_DIS_RA1 0x80
#define CNTRL_ENA_2ND 0x08
#define CMDTIM 0x52
#define ARTTIM0 0x53
#define DRWTIM0 0x54
#define ARTTIM1 0x55
#define DRWTIM1 0x56
#define ARTTIM23 0x57
#define ARTTIM23_DIS_RA2 0x04
#define ARTTIM23_DIS_RA3 0x08
#define ARTTIM23_INTR_CH1 0x10
#define ARTTIM2 0x57
#define ARTTIM3 0x57
#define DRWTIM23 0x58
#define DRWTIM2 0x58
#define BRST 0x59
#define DRWTIM3 0x5b
#define BMIDECR0 0x70
#define MRDMODE 0x71
#define MRDMODE_INTR_CH0 0x04
#define MRDMODE_INTR_CH1 0x08
#define MRDMODE_BLK_CH0 0x10
#define MRDMODE_BLK_CH1 0x20
#define BMIDESR0 0x72
#define UDIDETCR0 0x73
#define DTPR0 0x74
#define BMIDECR1 0x78
#define BMIDECSR 0x79
#define BMIDESR1 0x7A
#define UDIDETCR1 0x7B
#define DTPR1 0x7C
#if defined(DISPLAY_CMD64X_TIMINGS) && defined(CONFIG_PROC_FS)
#include <linux/stat.h>
#include <linux/proc_fs.h>
static u8 cmd64x_proc = 0;
#define CMD_MAX_DEVS 5
static struct pci_dev *cmd_devs[CMD_MAX_DEVS];
static int n_cmd_devs;
static char * print_cmd64x_get_info (char *buf, struct pci_dev *dev, int index)
{
char *p = buf;
u8 reg53 = 0, reg54 = 0, reg55 = 0, reg56 = 0; /* primary */
u8 reg57 = 0, reg58 = 0, reg5b; /* secondary */
u8 reg72 = 0, reg73 = 0; /* primary */
u8 reg7a = 0, reg7b = 0; /* secondary */
u8 reg50 = 0, reg71 = 0; /* extra */
p += sprintf(p, "\nController: %d\n", index);
p += sprintf(p, "CMD%x Chipset.\n", dev->device);
(void) pci_read_config_byte(dev, CFR, &reg50);
(void) pci_read_config_byte(dev, ARTTIM0, &reg53);
(void) pci_read_config_byte(dev, DRWTIM0, &reg54);
(void) pci_read_config_byte(dev, ARTTIM1, &reg55);
(void) pci_read_config_byte(dev, DRWTIM1, &reg56);
(void) pci_read_config_byte(dev, ARTTIM2, &reg57);
(void) pci_read_config_byte(dev, DRWTIM2, &reg58);
(void) pci_read_config_byte(dev, DRWTIM3, &reg5b);
(void) pci_read_config_byte(dev, MRDMODE, &reg71);
(void) pci_read_config_byte(dev, BMIDESR0, &reg72);
(void) pci_read_config_byte(dev, UDIDETCR0, &reg73);
(void) pci_read_config_byte(dev, BMIDESR1, &reg7a);
(void) pci_read_config_byte(dev, UDIDETCR1, &reg7b);
p += sprintf(p, "--------------- Primary Channel "
"---------------- Secondary Channel "
"-------------\n");
p += sprintf(p, " %sabled "
" %sabled\n",
(reg72&0x80)?"dis":" en",
(reg7a&0x80)?"dis":" en");
p += sprintf(p, "--------------- drive0 "
"--------- drive1 -------- drive0 "
"---------- drive1 ------\n");
p += sprintf(p, "DMA enabled: %s %s"
" %s %s\n",
(reg72&0x20)?"yes":"no ", (reg72&0x40)?"yes":"no ",
(reg7a&0x20)?"yes":"no ", (reg7a&0x40)?"yes":"no ");
p += sprintf(p, "DMA Mode: %s(%s) %s(%s)",
(reg72&0x20)?((reg73&0x01)?"UDMA":" DMA"):" PIO",
(reg72&0x20)?(
((reg73&0x30)==0x30)?(((reg73&0x35)==0x35)?"3":"0"):
((reg73&0x20)==0x20)?(((reg73&0x25)==0x25)?"3":"1"):
((reg73&0x10)==0x10)?(((reg73&0x15)==0x15)?"4":"2"):
((reg73&0x00)==0x00)?(((reg73&0x05)==0x05)?"5":"2"):
"X"):"?",
(reg72&0x40)?((reg73&0x02)?"UDMA":" DMA"):" PIO",
(reg72&0x40)?(
((reg73&0xC0)==0xC0)?(((reg73&0xC5)==0xC5)?"3":"0"):
((reg73&0x80)==0x80)?(((reg73&0x85)==0x85)?"3":"1"):
((reg73&0x40)==0x40)?(((reg73&0x4A)==0x4A)?"4":"2"):
((reg73&0x00)==0x00)?(((reg73&0x0A)==0x0A)?"5":"2"):
"X"):"?");
p += sprintf(p, " %s(%s) %s(%s)\n",
(reg7a&0x20)?((reg7b&0x01)?"UDMA":" DMA"):" PIO",
(reg7a&0x20)?(
((reg7b&0x30)==0x30)?(((reg7b&0x35)==0x35)?"3":"0"):
((reg7b&0x20)==0x20)?(((reg7b&0x25)==0x25)?"3":"1"):
((reg7b&0x10)==0x10)?(((reg7b&0x15)==0x15)?"4":"2"):
((reg7b&0x00)==0x00)?(((reg7b&0x05)==0x05)?"5":"2"):
"X"):"?",
(reg7a&0x40)?((reg7b&0x02)?"UDMA":" DMA"):" PIO",
(reg7a&0x40)?(
((reg7b&0xC0)==0xC0)?(((reg7b&0xC5)==0xC5)?"3":"0"):
((reg7b&0x80)==0x80)?(((reg7b&0x85)==0x85)?"3":"1"):
((reg7b&0x40)==0x40)?(((reg7b&0x4A)==0x4A)?"4":"2"):
((reg7b&0x00)==0x00)?(((reg7b&0x0A)==0x0A)?"5":"2"):
"X"):"?" );
p += sprintf(p, "PIO Mode: %s %s"
" %s %s\n",
"?", "?", "?", "?");
p += sprintf(p, " %s %s\n",
(reg50 & CFR_INTR_CH0) ? "interrupting" : "polling ",
(reg57 & ARTTIM23_INTR_CH1) ? "interrupting" : "polling");
p += sprintf(p, " %s %s\n",
(reg71 & MRDMODE_INTR_CH0) ? "pending" : "clear ",
(reg71 & MRDMODE_INTR_CH1) ? "pending" : "clear");
p += sprintf(p, " %s %s\n",
(reg71 & MRDMODE_BLK_CH0) ? "blocked" : "enabled",
(reg71 & MRDMODE_BLK_CH1) ? "blocked" : "enabled");
return (char *)p;
}
static int cmd64x_get_info (char *buffer, char **addr, off_t offset, int count)
{
char *p = buffer;
int i;
p += sprintf(p, "\n");
for (i = 0; i < n_cmd_devs; i++) {
struct pci_dev *dev = cmd_devs[i];
p = print_cmd64x_get_info(p, dev, i);
}
return p-buffer; /* => must be less than 4k! */
}
#endif /* defined(DISPLAY_CMD64X_TIMINGS) && defined(CONFIG_PROC_FS) */
/*
* This routine writes the prepared setup/active/recovery counts
* for a drive into the cmd646 chipset registers to active them.
*/
static void program_drive_counts (ide_drive_t *drive, int setup_count, int active_count, int recovery_count)
{
unsigned long flags;
struct pci_dev *dev = HWIF(drive)->pci_dev;
ide_drive_t *drives = HWIF(drive)->drives;
u8 temp_b;
static const u8 setup_counts[] = {0x40, 0x40, 0x40, 0x80, 0, 0xc0};
static const u8 recovery_counts[] =
{15, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 0};
static const u8 arttim_regs[2][2] = {
{ ARTTIM0, ARTTIM1 },
{ ARTTIM23, ARTTIM23 }
};
static const u8 drwtim_regs[2][2] = {
{ DRWTIM0, DRWTIM1 },
{ DRWTIM2, DRWTIM3 }
};
int channel = (int) HWIF(drive)->channel;
int slave = (drives != drive); /* Is this really the best way to determine this?? */
cmdprintk("program_drive_count parameters = s(%d),a(%d),r(%d),p(%d)\n",
setup_count, active_count, recovery_count, drive->present);
/*
* Set up address setup count registers.
* Primary interface has individual count/timing registers for
* each drive. Secondary interface has one common set of registers,
* for address setup so we merge these timings, using the slowest
* value.
*/
if (channel) {
drive->drive_data = setup_count;
setup_count = max(drives[0].drive_data,
drives[1].drive_data);
cmdprintk("Secondary interface, setup_count = %d\n",
setup_count);
}
/*
* Convert values to internal chipset representation
*/
setup_count = (setup_count > 5) ? 0xc0 : (int) setup_counts[setup_count];
active_count &= 0xf; /* Remember, max value is 16 */
recovery_count = (int) recovery_counts[recovery_count];
cmdprintk("Final values = %d,%d,%d\n",
setup_count, active_count, recovery_count);
/*
* Now that everything is ready, program the new timings
*/
local_irq_save(flags);
/*
* Program the address_setup clocks into ARTTIM reg,
* and then the active/recovery counts into the DRWTIM reg
*/
(void) pci_read_config_byte(dev, arttim_regs[channel][slave], &temp_b);
(void) pci_write_config_byte(dev, arttim_regs[channel][slave],
((u8) setup_count) | (temp_b & 0x3f));
(void) pci_write_config_byte(dev, drwtim_regs[channel][slave],
(u8) ((active_count << 4) | recovery_count));
cmdprintk ("Write %x to %x\n",
((u8) setup_count) | (temp_b & 0x3f),
arttim_regs[channel][slave]);
cmdprintk ("Write %x to %x\n",
(u8) ((active_count << 4) | recovery_count),
drwtim_regs[channel][slave]);
local_irq_restore(flags);
}
/*
* Attempts to set the interface PIO mode.
* The preferred method of selecting PIO modes (e.g. mode 4) is
* "echo 'piomode:4' > /proc/ide/hdx/settings". Special cases are
* 8: prefetch off, 9: prefetch on, 255: auto-select best mode.
* Called with 255 at boot time.
*/
static void cmd64x_tuneproc (ide_drive_t *drive, u8 mode_wanted)
{
int setup_time, active_time, recovery_time;
int clock_time, pio_mode, cycle_time;
u8 recovery_count2, cycle_count;
int setup_count, active_count, recovery_count;
int bus_speed = system_bus_clock();
/*byte b;*/
ide_pio_data_t d;
switch (mode_wanted) {
case 8: /* set prefetch off */
case 9: /* set prefetch on */
mode_wanted &= 1;
/*set_prefetch_mode(index, mode_wanted);*/
cmdprintk("%s: %sabled cmd640 prefetch\n",
drive->name, mode_wanted ? "en" : "dis");
return;
}
mode_wanted = ide_get_best_pio_mode (drive, mode_wanted, 5, &d);
pio_mode = d.pio_mode;
cycle_time = d.cycle_time;
/*
* I copied all this complicated stuff from cmd640.c and made a few
* minor changes. For now I am just going to pray that it is correct.
*/
if (pio_mode > 5)
pio_mode = 5;
setup_time = ide_pio_timings[pio_mode].setup_time;
active_time = ide_pio_timings[pio_mode].active_time;
recovery_time = cycle_time - (setup_time + active_time);
clock_time = 1000 / bus_speed;
cycle_count = (cycle_time + clock_time - 1) / clock_time;
setup_count = (setup_time + clock_time - 1) / clock_time;
active_count = (active_time + clock_time - 1) / clock_time;
recovery_count = (recovery_time + clock_time - 1) / clock_time;
recovery_count2 = cycle_count - (setup_count + active_count);
if (recovery_count2 > recovery_count)
recovery_count = recovery_count2;
if (recovery_count > 16) {
active_count += recovery_count - 16;
recovery_count = 16;
}
if (active_count > 16)
active_count = 16; /* maximum allowed by cmd646 */
/*
* In a perfect world, we might set the drive pio mode here
* (using WIN_SETFEATURE) before continuing.
*
* But we do not, because:
* 1) this is the wrong place to do it
* (proper is do_special() in ide.c)
* 2) in practice this is rarely, if ever, necessary
*/
program_drive_counts (drive, setup_count, active_count, recovery_count);
cmdprintk("%s: selected cmd646 PIO mode%d : %d (%dns)%s, "
"clocks=%d/%d/%d\n",
drive->name, pio_mode, mode_wanted, cycle_time,
d.overridden ? " (overriding vendor mode)" : "",
setup_count, active_count, recovery_count);
}
static u8 cmd64x_ratemask (ide_drive_t *drive)
{
struct pci_dev *dev = HWIF(drive)->pci_dev;
u8 mode = 0;
switch(dev->device) {
case PCI_DEVICE_ID_CMD_649:
mode = 3;
break;
case PCI_DEVICE_ID_CMD_648:
mode = 2;
break;
case PCI_DEVICE_ID_CMD_643:
return 0;
case PCI_DEVICE_ID_CMD_646:
{
unsigned int class_rev = 0;
pci_read_config_dword(dev,
PCI_CLASS_REVISION, &class_rev);
class_rev &= 0xff;
/*
* UltraDMA only supported on PCI646U and PCI646U2, which
* correspond to revisions 0x03, 0x05 and 0x07 respectively.
* Actually, although the CMD tech support people won't
* tell me the details, the 0x03 revision cannot support
* UDMA correctly without hardware modifications, and even
* then it only works with Quantum disks due to some
* hold time assumptions in the 646U part which are fixed
* in the 646U2.
*
* So we only do UltraDMA on revision 0x05 and 0x07 chipsets.
*/
switch(class_rev) {
case 0x07:
case 0x05:
return 1;
case 0x03:
case 0x01:
default:
return 0;
}
}
}
if (!eighty_ninty_three(drive))
mode = min(mode, (u8)1);
return mode;
}
static void config_cmd64x_chipset_for_pio (ide_drive_t *drive, u8 set_speed)
{
u8 speed = 0x00;
u8 set_pio = ide_get_best_pio_mode(drive, 4, 5, NULL);
cmd64x_tuneproc(drive, set_pio);
speed = XFER_PIO_0 + set_pio;
if (set_speed)
(void) ide_config_drive_speed(drive, speed);
}
static void config_chipset_for_pio (ide_drive_t *drive, u8 set_speed)
{
config_cmd64x_chipset_for_pio(drive, set_speed);
}
static int cmd64x_tune_chipset (ide_drive_t *drive, u8 xferspeed)
{
ide_hwif_t *hwif = HWIF(drive);
struct pci_dev *dev = hwif->pci_dev;
u8 unit = (drive->select.b.unit & 0x01);
u8 regU = 0, pciU = (hwif->channel) ? UDIDETCR1 : UDIDETCR0;
u8 regD = 0, pciD = (hwif->channel) ? BMIDESR1 : BMIDESR0;
u8 speed = ide_rate_filter(cmd64x_ratemask(drive), xferspeed);
if (speed > XFER_PIO_4) {
(void) pci_read_config_byte(dev, pciD, &regD);
(void) pci_read_config_byte(dev, pciU, &regU);
regD &= ~(unit ? 0x40 : 0x20);
regU &= ~(unit ? 0xCA : 0x35);
(void) pci_write_config_byte(dev, pciD, regD);
(void) pci_write_config_byte(dev, pciU, regU);
(void) pci_read_config_byte(dev, pciD, &regD);
(void) pci_read_config_byte(dev, pciU, &regU);
}
switch(speed) {
case XFER_UDMA_5: regU |= (unit ? 0x0A : 0x05); break;
case XFER_UDMA_4: regU |= (unit ? 0x4A : 0x15); break;
case XFER_UDMA_3: regU |= (unit ? 0x8A : 0x25); break;
case XFER_UDMA_2: regU |= (unit ? 0x42 : 0x11); break;
case XFER_UDMA_1: regU |= (unit ? 0x82 : 0x21); break;
case XFER_UDMA_0: regU |= (unit ? 0xC2 : 0x31); break;
case XFER_MW_DMA_2: regD |= (unit ? 0x40 : 0x10); break;
case XFER_MW_DMA_1: regD |= (unit ? 0x80 : 0x20); break;
case XFER_MW_DMA_0: regD |= (unit ? 0xC0 : 0x30); break;
case XFER_SW_DMA_2: regD |= (unit ? 0x40 : 0x10); break;
case XFER_SW_DMA_1: regD |= (unit ? 0x80 : 0x20); break;
case XFER_SW_DMA_0: regD |= (unit ? 0xC0 : 0x30); break;
case XFER_PIO_4: cmd64x_tuneproc(drive, 4); break;
case XFER_PIO_3: cmd64x_tuneproc(drive, 3); break;
case XFER_PIO_2: cmd64x_tuneproc(drive, 2); break;
case XFER_PIO_1: cmd64x_tuneproc(drive, 1); break;
case XFER_PIO_0: cmd64x_tuneproc(drive, 0); break;
default:
return 1;
}
if (speed > XFER_PIO_4) {
(void) pci_write_config_byte(dev, pciU, regU);
regD |= (unit ? 0x40 : 0x20);
(void) pci_write_config_byte(dev, pciD, regD);
}
return (ide_config_drive_speed(drive, speed));
}
static int config_chipset_for_dma (ide_drive_t *drive)
{
u8 speed = ide_dma_speed(drive, cmd64x_ratemask(drive));
config_chipset_for_pio(drive, !speed);
if (!speed)
return 0;
if(ide_set_xfer_rate(drive, speed))
return 0;
if (!drive->init_speed)
drive->init_speed = speed;
return ide_dma_enable(drive);
}
static int cmd64x_config_drive_for_dma (ide_drive_t *drive)
{
ide_hwif_t *hwif = HWIF(drive);
struct hd_driveid *id = drive->id;
if ((id != NULL) && ((id->capability & 1) != 0) && drive->autodma) {
if (ide_use_dma(drive)) {
if (config_chipset_for_dma(drive))
return hwif->ide_dma_on(drive);
}
goto fast_ata_pio;
} else if ((id->capability & 8) || (id->field_valid & 2)) {
fast_ata_pio:
config_chipset_for_pio(drive, 1);
return hwif->ide_dma_off_quietly(drive);
}
/* IORDY not supported */
return 0;
}
static int cmd64x_alt_dma_status (struct pci_dev *dev)
{
switch(dev->device) {
case PCI_DEVICE_ID_CMD_648:
case PCI_DEVICE_ID_CMD_649:
return 1;
default:
break;
}
return 0;
}
static int cmd64x_ide_dma_end (ide_drive_t *drive)
{
u8 dma_stat = 0, dma_cmd = 0;
ide_hwif_t *hwif = HWIF(drive);
struct pci_dev *dev = hwif->pci_dev;
drive->waiting_for_dma = 0;
/* read DMA command state */
dma_cmd = hwif->INB(hwif->dma_command);
/* stop DMA */
hwif->OUTB((dma_cmd & ~1), hwif->dma_command);
/* get DMA status */
dma_stat = hwif->INB(hwif->dma_status);
/* clear the INTR & ERROR bits */
hwif->OUTB(dma_stat|6, hwif->dma_status);
if (cmd64x_alt_dma_status(dev)) {
u8 dma_intr = 0;
u8 dma_mask = (hwif->channel) ? ARTTIM23_INTR_CH1 :
CFR_INTR_CH0;
u8 dma_reg = (hwif->channel) ? ARTTIM2 : CFR;
(void) pci_read_config_byte(dev, dma_reg, &dma_intr);
/* clear the INTR bit */
(void) pci_write_config_byte(dev, dma_reg, dma_intr|dma_mask);
}
/* purge DMA mappings */
ide_destroy_dmatable(drive);
/* verify good DMA status */
return (dma_stat & 7) != 4;
}
static int cmd64x_ide_dma_test_irq (ide_drive_t *drive)
{
ide_hwif_t *hwif = HWIF(drive);
struct pci_dev *dev = hwif->pci_dev;
u8 dma_alt_stat = 0, mask = (hwif->channel) ? MRDMODE_INTR_CH1 :
MRDMODE_INTR_CH0;
u8 dma_stat = hwif->INB(hwif->dma_status);
(void) pci_read_config_byte(dev, MRDMODE, &dma_alt_stat);
#ifdef DEBUG
printk("%s: dma_stat: 0x%02x dma_alt_stat: "
"0x%02x mask: 0x%02x\n", drive->name,
dma_stat, dma_alt_stat, mask);
#endif
if (!(dma_alt_stat & mask))
return 0;
/* return 1 if INTR asserted */
if ((dma_stat & 4) == 4)
return 1;
return 0;
}
/*
* ASUS P55T2P4D with CMD646 chipset revision 0x01 requires the old
* event order for DMA transfers.
*/
static int cmd646_1_ide_dma_end (ide_drive_t *drive)
{
ide_hwif_t *hwif = HWIF(drive);
u8 dma_stat = 0, dma_cmd = 0;
drive->waiting_for_dma = 0;
/* get DMA status */
dma_stat = hwif->INB(hwif->dma_status);
/* read DMA command state */
dma_cmd = hwif->INB(hwif->dma_command);
/* stop DMA */
hwif->OUTB((dma_cmd & ~1), hwif->dma_command);
/* clear the INTR & ERROR bits */
hwif->OUTB(dma_stat|6, hwif->dma_status);
/* and free any DMA resources */
ide_destroy_dmatable(drive);
/* verify good DMA status */
return (dma_stat & 7) != 4;
}
static unsigned int __devinit init_chipset_cmd64x(struct pci_dev *dev, const char *name)
{
u32 class_rev = 0;
u8 mrdmode = 0;
pci_read_config_dword(dev, PCI_CLASS_REVISION, &class_rev);
class_rev &= 0xff;
switch(dev->device) {
case PCI_DEVICE_ID_CMD_643:
break;
case PCI_DEVICE_ID_CMD_646:
printk(KERN_INFO "%s: chipset revision 0x%02X, ", name, class_rev);
switch(class_rev) {
case 0x07:
case 0x05:
printk("UltraDMA Capable");
break;
case 0x03:
printk("MultiWord DMA Force Limited");
break;
case 0x01:
default:
printk("MultiWord DMA Limited, IRQ workaround enabled");
break;
}
printk("\n");
break;
case PCI_DEVICE_ID_CMD_648:
case PCI_DEVICE_ID_CMD_649:
break;
default:
break;
}
/* Set a good latency timer and cache line size value. */
(void) pci_write_config_byte(dev, PCI_LATENCY_TIMER, 64);
/* FIXME: pci_set_master() to ensure a good latency timer value */
/* Setup interrupts. */
(void) pci_read_config_byte(dev, MRDMODE, &mrdmode);
mrdmode &= ~(0x30);
(void) pci_write_config_byte(dev, MRDMODE, mrdmode);
/* Use MEMORY READ LINE for reads.
* NOTE: Although not mentioned in the PCI0646U specs,
* these bits are write only and won't be read
* back as set or not. The PCI0646U2 specs clarify
* this point.
*/
(void) pci_write_config_byte(dev, MRDMODE, mrdmode | 0x02);
/* Set reasonable active/recovery/address-setup values. */
(void) pci_write_config_byte(dev, ARTTIM0, 0x40);
(void) pci_write_config_byte(dev, DRWTIM0, 0x3f);
(void) pci_write_config_byte(dev, ARTTIM1, 0x40);
(void) pci_write_config_byte(dev, DRWTIM1, 0x3f);
#ifdef __i386__
(void) pci_write_config_byte(dev, ARTTIM23, 0x1c);
#else
(void) pci_write_config_byte(dev, ARTTIM23, 0x5c);
#endif
(void) pci_write_config_byte(dev, DRWTIM23, 0x3f);
(void) pci_write_config_byte(dev, DRWTIM3, 0x3f);
#ifdef CONFIG_PPC
(void) pci_write_config_byte(dev, UDIDETCR0, 0xf0);
#endif /* CONFIG_PPC */
#if defined(DISPLAY_CMD64X_TIMINGS) && defined(CONFIG_PROC_FS)
cmd_devs[n_cmd_devs++] = dev;
if (!cmd64x_proc) {
cmd64x_proc = 1;
ide_pci_create_host_proc("cmd64x", cmd64x_get_info);
}
#endif /* DISPLAY_CMD64X_TIMINGS && CONFIG_PROC_FS */
return 0;
}
static unsigned int __devinit ata66_cmd64x(ide_hwif_t *hwif)
{
u8 ata66 = 0, mask = (hwif->channel) ? 0x02 : 0x01;
switch(hwif->pci_dev->device) {
case PCI_DEVICE_ID_CMD_643:
case PCI_DEVICE_ID_CMD_646:
return ata66;
default:
break;
}
pci_read_config_byte(hwif->pci_dev, BMIDECSR, &ata66);
return (ata66 & mask) ? 1 : 0;
}
static void __devinit init_hwif_cmd64x(ide_hwif_t *hwif)
{
struct pci_dev *dev = hwif->pci_dev;
unsigned int class_rev;
hwif->autodma = 0;
pci_read_config_dword(dev, PCI_CLASS_REVISION, &class_rev);
class_rev &= 0xff;
hwif->tuneproc = &cmd64x_tuneproc;
hwif->speedproc = &cmd64x_tune_chipset;
if (!hwif->dma_base) {
hwif->drives[0].autotune = 1;
hwif->drives[1].autotune = 1;
return;
}
hwif->atapi_dma = 1;
hwif->ultra_mask = 0x3f;
hwif->mwdma_mask = 0x07;
hwif->swdma_mask = 0x07;
if (dev->device == PCI_DEVICE_ID_CMD_643)
hwif->ultra_mask = 0x80;
if (dev->device == PCI_DEVICE_ID_CMD_646)
hwif->ultra_mask = (class_rev > 0x04) ? 0x07 : 0x80;
if (dev->device == PCI_DEVICE_ID_CMD_648)
hwif->ultra_mask = 0x1f;
hwif->ide_dma_check = &cmd64x_config_drive_for_dma;
if (!(hwif->udma_four))
hwif->udma_four = ata66_cmd64x(hwif);
if (dev->device == PCI_DEVICE_ID_CMD_646) {
hwif->chipset = ide_cmd646;
if (class_rev == 0x01) {
hwif->ide_dma_end = &cmd646_1_ide_dma_end;
} else {
hwif->ide_dma_end = &cmd64x_ide_dma_end;
hwif->ide_dma_test_irq = &cmd64x_ide_dma_test_irq;
}
} else {
hwif->ide_dma_end = &cmd64x_ide_dma_end;
hwif->ide_dma_test_irq = &cmd64x_ide_dma_test_irq;
}
if (!noautodma)
hwif->autodma = 1;
hwif->drives[0].autodma = hwif->autodma;
hwif->drives[1].autodma = hwif->autodma;
}
static ide_pci_device_t cmd64x_chipsets[] __devinitdata = {
{ /* 0 */
.name = "CMD643",
.init_chipset = init_chipset_cmd64x,
.init_hwif = init_hwif_cmd64x,
.channels = 2,
.autodma = AUTODMA,
.bootable = ON_BOARD,
},{ /* 1 */
.name = "CMD646",
.init_chipset = init_chipset_cmd64x,
.init_hwif = init_hwif_cmd64x,
.channels = 2,
.autodma = AUTODMA,
.enablebits = {{0x00,0x00,0x00}, {0x51,0x80,0x80}},
.bootable = ON_BOARD,
},{ /* 2 */
.name = "CMD648",
.init_chipset = init_chipset_cmd64x,
.init_hwif = init_hwif_cmd64x,
.channels = 2,
.autodma = AUTODMA,
.bootable = ON_BOARD,
},{ /* 3 */
.name = "CMD649",
.init_chipset = init_chipset_cmd64x,
.init_hwif = init_hwif_cmd64x,
.channels = 2,
.autodma = AUTODMA,
.bootable = ON_BOARD,
}
};
static int __devinit cmd64x_init_one(struct pci_dev *dev, const struct pci_device_id *id)
{
return ide_setup_pci_device(dev, &cmd64x_chipsets[id->driver_data]);
}
static struct pci_device_id cmd64x_pci_tbl[] = {
{ PCI_VENDOR_ID_CMD, PCI_DEVICE_ID_CMD_643, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{ PCI_VENDOR_ID_CMD, PCI_DEVICE_ID_CMD_646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1},
{ PCI_VENDOR_ID_CMD, PCI_DEVICE_ID_CMD_648, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2},
{ PCI_VENDOR_ID_CMD, PCI_DEVICE_ID_CMD_649, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 3},
{ 0, },
};
MODULE_DEVICE_TABLE(pci, cmd64x_pci_tbl);
static struct pci_driver driver = {
.name = "CMD64x_IDE",
.id_table = cmd64x_pci_tbl,
.probe = cmd64x_init_one,
};
static int cmd64x_ide_init(void)
{
return ide_pci_register_driver(&driver);
}
module_init(cmd64x_ide_init);
MODULE_AUTHOR("Eddie Dost, David Miller, Andre Hedrick");
MODULE_DESCRIPTION("PCI driver module for CMD64x IDE");
MODULE_LICENSE("GPL");