1456 lines
39 KiB
C
1456 lines
39 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2012 - Virtual Open Systems and Columbia University
|
|
* Authors: Rusty Russell <rusty@rustcorp.com.au>
|
|
* Christoffer Dall <c.dall@virtualopensystems.com>
|
|
*/
|
|
|
|
#include <linux/bsearch.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/uaccess.h>
|
|
#include <asm/kvm_arm.h>
|
|
#include <asm/kvm_host.h>
|
|
#include <asm/kvm_emulate.h>
|
|
#include <asm/kvm_coproc.h>
|
|
#include <asm/kvm_mmu.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/cputype.h>
|
|
#include <trace/events/kvm.h>
|
|
#include <asm/vfp.h>
|
|
#include "../vfp/vfpinstr.h"
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include "trace.h"
|
|
#include "coproc.h"
|
|
|
|
|
|
/******************************************************************************
|
|
* Co-processor emulation
|
|
*****************************************************************************/
|
|
|
|
static bool write_to_read_only(struct kvm_vcpu *vcpu,
|
|
const struct coproc_params *params)
|
|
{
|
|
WARN_ONCE(1, "CP15 write to read-only register\n");
|
|
print_cp_instr(params);
|
|
kvm_inject_undefined(vcpu);
|
|
return false;
|
|
}
|
|
|
|
static bool read_from_write_only(struct kvm_vcpu *vcpu,
|
|
const struct coproc_params *params)
|
|
{
|
|
WARN_ONCE(1, "CP15 read to write-only register\n");
|
|
print_cp_instr(params);
|
|
kvm_inject_undefined(vcpu);
|
|
return false;
|
|
}
|
|
|
|
/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
|
|
static u32 cache_levels;
|
|
|
|
/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
|
|
#define CSSELR_MAX 12
|
|
|
|
/*
|
|
* kvm_vcpu_arch.cp15 holds cp15 registers as an array of u32, but some
|
|
* of cp15 registers can be viewed either as couple of two u32 registers
|
|
* or one u64 register. Current u64 register encoding is that least
|
|
* significant u32 word is followed by most significant u32 word.
|
|
*/
|
|
static inline void vcpu_cp15_reg64_set(struct kvm_vcpu *vcpu,
|
|
const struct coproc_reg *r,
|
|
u64 val)
|
|
{
|
|
vcpu_cp15(vcpu, r->reg) = val & 0xffffffff;
|
|
vcpu_cp15(vcpu, r->reg + 1) = val >> 32;
|
|
}
|
|
|
|
static inline u64 vcpu_cp15_reg64_get(struct kvm_vcpu *vcpu,
|
|
const struct coproc_reg *r)
|
|
{
|
|
u64 val;
|
|
|
|
val = vcpu_cp15(vcpu, r->reg + 1);
|
|
val = val << 32;
|
|
val = val | vcpu_cp15(vcpu, r->reg);
|
|
return val;
|
|
}
|
|
|
|
int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
|
|
{
|
|
kvm_inject_undefined(vcpu);
|
|
return 1;
|
|
}
|
|
|
|
int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
|
|
{
|
|
/*
|
|
* We can get here, if the host has been built without VFPv3 support,
|
|
* but the guest attempted a floating point operation.
|
|
*/
|
|
kvm_inject_undefined(vcpu);
|
|
return 1;
|
|
}
|
|
|
|
int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
|
|
{
|
|
kvm_inject_undefined(vcpu);
|
|
return 1;
|
|
}
|
|
|
|
static void reset_mpidr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
|
|
{
|
|
/*
|
|
* Compute guest MPIDR. We build a virtual cluster out of the
|
|
* vcpu_id, but we read the 'U' bit from the underlying
|
|
* hardware directly.
|
|
*/
|
|
vcpu_cp15(vcpu, c0_MPIDR) = ((read_cpuid_mpidr() & MPIDR_SMP_BITMASK) |
|
|
((vcpu->vcpu_id >> 2) << MPIDR_LEVEL_BITS) |
|
|
(vcpu->vcpu_id & 3));
|
|
}
|
|
|
|
/* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */
|
|
static bool access_actlr(struct kvm_vcpu *vcpu,
|
|
const struct coproc_params *p,
|
|
const struct coproc_reg *r)
|
|
{
|
|
if (p->is_write)
|
|
return ignore_write(vcpu, p);
|
|
|
|
*vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c1_ACTLR);
|
|
return true;
|
|
}
|
|
|
|
/* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */
|
|
static bool access_cbar(struct kvm_vcpu *vcpu,
|
|
const struct coproc_params *p,
|
|
const struct coproc_reg *r)
|
|
{
|
|
if (p->is_write)
|
|
return write_to_read_only(vcpu, p);
|
|
return read_zero(vcpu, p);
|
|
}
|
|
|
|
/* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */
|
|
static bool access_l2ctlr(struct kvm_vcpu *vcpu,
|
|
const struct coproc_params *p,
|
|
const struct coproc_reg *r)
|
|
{
|
|
if (p->is_write)
|
|
return ignore_write(vcpu, p);
|
|
|
|
*vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c9_L2CTLR);
|
|
return true;
|
|
}
|
|
|
|
static void reset_l2ctlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
|
|
{
|
|
u32 l2ctlr, ncores;
|
|
|
|
asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr));
|
|
l2ctlr &= ~(3 << 24);
|
|
ncores = atomic_read(&vcpu->kvm->online_vcpus) - 1;
|
|
/* How many cores in the current cluster and the next ones */
|
|
ncores -= (vcpu->vcpu_id & ~3);
|
|
/* Cap it to the maximum number of cores in a single cluster */
|
|
ncores = min(ncores, 3U);
|
|
l2ctlr |= (ncores & 3) << 24;
|
|
|
|
vcpu_cp15(vcpu, c9_L2CTLR) = l2ctlr;
|
|
}
|
|
|
|
static void reset_actlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
|
|
{
|
|
u32 actlr;
|
|
|
|
/* ACTLR contains SMP bit: make sure you create all cpus first! */
|
|
asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr));
|
|
/* Make the SMP bit consistent with the guest configuration */
|
|
if (atomic_read(&vcpu->kvm->online_vcpus) > 1)
|
|
actlr |= 1U << 6;
|
|
else
|
|
actlr &= ~(1U << 6);
|
|
|
|
vcpu_cp15(vcpu, c1_ACTLR) = actlr;
|
|
}
|
|
|
|
/*
|
|
* TRM entries: A7:4.3.50, A15:4.3.49
|
|
* R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored).
|
|
*/
|
|
static bool access_l2ectlr(struct kvm_vcpu *vcpu,
|
|
const struct coproc_params *p,
|
|
const struct coproc_reg *r)
|
|
{
|
|
if (p->is_write)
|
|
return ignore_write(vcpu, p);
|
|
|
|
*vcpu_reg(vcpu, p->Rt1) = 0;
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
|
|
*/
|
|
static bool access_dcsw(struct kvm_vcpu *vcpu,
|
|
const struct coproc_params *p,
|
|
const struct coproc_reg *r)
|
|
{
|
|
if (!p->is_write)
|
|
return read_from_write_only(vcpu, p);
|
|
|
|
kvm_set_way_flush(vcpu);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Generic accessor for VM registers. Only called as long as HCR_TVM
|
|
* is set. If the guest enables the MMU, we stop trapping the VM
|
|
* sys_regs and leave it in complete control of the caches.
|
|
*
|
|
* Used by the cpu-specific code.
|
|
*/
|
|
bool access_vm_reg(struct kvm_vcpu *vcpu,
|
|
const struct coproc_params *p,
|
|
const struct coproc_reg *r)
|
|
{
|
|
bool was_enabled = vcpu_has_cache_enabled(vcpu);
|
|
|
|
BUG_ON(!p->is_write);
|
|
|
|
vcpu_cp15(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt1);
|
|
if (p->is_64bit)
|
|
vcpu_cp15(vcpu, r->reg + 1) = *vcpu_reg(vcpu, p->Rt2);
|
|
|
|
kvm_toggle_cache(vcpu, was_enabled);
|
|
return true;
|
|
}
|
|
|
|
static bool access_gic_sgi(struct kvm_vcpu *vcpu,
|
|
const struct coproc_params *p,
|
|
const struct coproc_reg *r)
|
|
{
|
|
u64 reg;
|
|
bool g1;
|
|
|
|
if (!p->is_write)
|
|
return read_from_write_only(vcpu, p);
|
|
|
|
reg = (u64)*vcpu_reg(vcpu, p->Rt2) << 32;
|
|
reg |= *vcpu_reg(vcpu, p->Rt1) ;
|
|
|
|
/*
|
|
* In a system where GICD_CTLR.DS=1, a ICC_SGI0R access generates
|
|
* Group0 SGIs only, while ICC_SGI1R can generate either group,
|
|
* depending on the SGI configuration. ICC_ASGI1R is effectively
|
|
* equivalent to ICC_SGI0R, as there is no "alternative" secure
|
|
* group.
|
|
*/
|
|
switch (p->Op1) {
|
|
default: /* Keep GCC quiet */
|
|
case 0: /* ICC_SGI1R */
|
|
g1 = true;
|
|
break;
|
|
case 1: /* ICC_ASGI1R */
|
|
case 2: /* ICC_SGI0R */
|
|
g1 = false;
|
|
break;
|
|
}
|
|
|
|
vgic_v3_dispatch_sgi(vcpu, reg, g1);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool access_gic_sre(struct kvm_vcpu *vcpu,
|
|
const struct coproc_params *p,
|
|
const struct coproc_reg *r)
|
|
{
|
|
if (p->is_write)
|
|
return ignore_write(vcpu, p);
|
|
|
|
*vcpu_reg(vcpu, p->Rt1) = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool access_cntp_tval(struct kvm_vcpu *vcpu,
|
|
const struct coproc_params *p,
|
|
const struct coproc_reg *r)
|
|
{
|
|
u32 val;
|
|
|
|
if (p->is_write) {
|
|
val = *vcpu_reg(vcpu, p->Rt1);
|
|
kvm_arm_timer_write_sysreg(vcpu,
|
|
TIMER_PTIMER, TIMER_REG_TVAL, val);
|
|
} else {
|
|
val = kvm_arm_timer_read_sysreg(vcpu,
|
|
TIMER_PTIMER, TIMER_REG_TVAL);
|
|
*vcpu_reg(vcpu, p->Rt1) = val;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool access_cntp_ctl(struct kvm_vcpu *vcpu,
|
|
const struct coproc_params *p,
|
|
const struct coproc_reg *r)
|
|
{
|
|
u32 val;
|
|
|
|
if (p->is_write) {
|
|
val = *vcpu_reg(vcpu, p->Rt1);
|
|
kvm_arm_timer_write_sysreg(vcpu,
|
|
TIMER_PTIMER, TIMER_REG_CTL, val);
|
|
} else {
|
|
val = kvm_arm_timer_read_sysreg(vcpu,
|
|
TIMER_PTIMER, TIMER_REG_CTL);
|
|
*vcpu_reg(vcpu, p->Rt1) = val;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool access_cntp_cval(struct kvm_vcpu *vcpu,
|
|
const struct coproc_params *p,
|
|
const struct coproc_reg *r)
|
|
{
|
|
u64 val;
|
|
|
|
if (p->is_write) {
|
|
val = (u64)*vcpu_reg(vcpu, p->Rt2) << 32;
|
|
val |= *vcpu_reg(vcpu, p->Rt1);
|
|
kvm_arm_timer_write_sysreg(vcpu,
|
|
TIMER_PTIMER, TIMER_REG_CVAL, val);
|
|
} else {
|
|
val = kvm_arm_timer_read_sysreg(vcpu,
|
|
TIMER_PTIMER, TIMER_REG_CVAL);
|
|
*vcpu_reg(vcpu, p->Rt1) = val;
|
|
*vcpu_reg(vcpu, p->Rt2) = val >> 32;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* We could trap ID_DFR0 and tell the guest we don't support performance
|
|
* monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
|
|
* NAKed, so it will read the PMCR anyway.
|
|
*
|
|
* Therefore we tell the guest we have 0 counters. Unfortunately, we
|
|
* must always support PMCCNTR (the cycle counter): we just RAZ/WI for
|
|
* all PM registers, which doesn't crash the guest kernel at least.
|
|
*/
|
|
static bool trap_raz_wi(struct kvm_vcpu *vcpu,
|
|
const struct coproc_params *p,
|
|
const struct coproc_reg *r)
|
|
{
|
|
if (p->is_write)
|
|
return ignore_write(vcpu, p);
|
|
else
|
|
return read_zero(vcpu, p);
|
|
}
|
|
|
|
#define access_pmcr trap_raz_wi
|
|
#define access_pmcntenset trap_raz_wi
|
|
#define access_pmcntenclr trap_raz_wi
|
|
#define access_pmovsr trap_raz_wi
|
|
#define access_pmselr trap_raz_wi
|
|
#define access_pmceid0 trap_raz_wi
|
|
#define access_pmceid1 trap_raz_wi
|
|
#define access_pmccntr trap_raz_wi
|
|
#define access_pmxevtyper trap_raz_wi
|
|
#define access_pmxevcntr trap_raz_wi
|
|
#define access_pmuserenr trap_raz_wi
|
|
#define access_pmintenset trap_raz_wi
|
|
#define access_pmintenclr trap_raz_wi
|
|
|
|
/* Architected CP15 registers.
|
|
* CRn denotes the primary register number, but is copied to the CRm in the
|
|
* user space API for 64-bit register access in line with the terminology used
|
|
* in the ARM ARM.
|
|
* Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
|
|
* registers preceding 32-bit ones.
|
|
*/
|
|
static const struct coproc_reg cp15_regs[] = {
|
|
/* MPIDR: we use VMPIDR for guest access. */
|
|
{ CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32,
|
|
NULL, reset_mpidr, c0_MPIDR },
|
|
|
|
/* CSSELR: swapped by interrupt.S. */
|
|
{ CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
|
|
NULL, reset_unknown, c0_CSSELR },
|
|
|
|
/* ACTLR: trapped by HCR.TAC bit. */
|
|
{ CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32,
|
|
access_actlr, reset_actlr, c1_ACTLR },
|
|
|
|
/* CPACR: swapped by interrupt.S. */
|
|
{ CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32,
|
|
NULL, reset_val, c1_CPACR, 0x00000000 },
|
|
|
|
/* TTBR0/TTBR1/TTBCR: swapped by interrupt.S. */
|
|
{ CRm64( 2), Op1( 0), is64, access_vm_reg, reset_unknown64, c2_TTBR0 },
|
|
{ CRn(2), CRm( 0), Op1( 0), Op2( 0), is32,
|
|
access_vm_reg, reset_unknown, c2_TTBR0 },
|
|
{ CRn(2), CRm( 0), Op1( 0), Op2( 1), is32,
|
|
access_vm_reg, reset_unknown, c2_TTBR1 },
|
|
{ CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
|
|
access_vm_reg, reset_val, c2_TTBCR, 0x00000000 },
|
|
{ CRm64( 2), Op1( 1), is64, access_vm_reg, reset_unknown64, c2_TTBR1 },
|
|
|
|
|
|
/* DACR: swapped by interrupt.S. */
|
|
{ CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
|
|
access_vm_reg, reset_unknown, c3_DACR },
|
|
|
|
/* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
|
|
{ CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
|
|
access_vm_reg, reset_unknown, c5_DFSR },
|
|
{ CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
|
|
access_vm_reg, reset_unknown, c5_IFSR },
|
|
{ CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
|
|
access_vm_reg, reset_unknown, c5_ADFSR },
|
|
{ CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
|
|
access_vm_reg, reset_unknown, c5_AIFSR },
|
|
|
|
/* DFAR/IFAR: swapped by interrupt.S. */
|
|
{ CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
|
|
access_vm_reg, reset_unknown, c6_DFAR },
|
|
{ CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
|
|
access_vm_reg, reset_unknown, c6_IFAR },
|
|
|
|
/* PAR swapped by interrupt.S */
|
|
{ CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR },
|
|
|
|
/*
|
|
* DC{C,I,CI}SW operations:
|
|
*/
|
|
{ CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
|
|
{ CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
|
|
{ CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
|
|
/*
|
|
* L2CTLR access (guest wants to know #CPUs).
|
|
*/
|
|
{ CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32,
|
|
access_l2ctlr, reset_l2ctlr, c9_L2CTLR },
|
|
{ CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32, access_l2ectlr},
|
|
|
|
/*
|
|
* Dummy performance monitor implementation.
|
|
*/
|
|
{ CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
|
|
{ CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
|
|
{ CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
|
|
{ CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
|
|
{ CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
|
|
{ CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
|
|
{ CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
|
|
{ CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
|
|
{ CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
|
|
{ CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
|
|
{ CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
|
|
{ CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
|
|
{ CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},
|
|
|
|
/* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
|
|
{ CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
|
|
access_vm_reg, reset_unknown, c10_PRRR},
|
|
{ CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
|
|
access_vm_reg, reset_unknown, c10_NMRR},
|
|
|
|
/* AMAIR0/AMAIR1: swapped by interrupt.S. */
|
|
{ CRn(10), CRm( 3), Op1( 0), Op2( 0), is32,
|
|
access_vm_reg, reset_unknown, c10_AMAIR0},
|
|
{ CRn(10), CRm( 3), Op1( 0), Op2( 1), is32,
|
|
access_vm_reg, reset_unknown, c10_AMAIR1},
|
|
|
|
/* ICC_SGI1R */
|
|
{ CRm64(12), Op1( 0), is64, access_gic_sgi},
|
|
|
|
/* VBAR: swapped by interrupt.S. */
|
|
{ CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
|
|
NULL, reset_val, c12_VBAR, 0x00000000 },
|
|
|
|
/* ICC_ASGI1R */
|
|
{ CRm64(12), Op1( 1), is64, access_gic_sgi},
|
|
/* ICC_SGI0R */
|
|
{ CRm64(12), Op1( 2), is64, access_gic_sgi},
|
|
/* ICC_SRE */
|
|
{ CRn(12), CRm(12), Op1( 0), Op2(5), is32, access_gic_sre },
|
|
|
|
/* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
|
|
{ CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
|
|
access_vm_reg, reset_val, c13_CID, 0x00000000 },
|
|
{ CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
|
|
NULL, reset_unknown, c13_TID_URW },
|
|
{ CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
|
|
NULL, reset_unknown, c13_TID_URO },
|
|
{ CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
|
|
NULL, reset_unknown, c13_TID_PRIV },
|
|
|
|
/* CNTP */
|
|
{ CRm64(14), Op1( 2), is64, access_cntp_cval},
|
|
|
|
/* CNTKCTL: swapped by interrupt.S. */
|
|
{ CRn(14), CRm( 1), Op1( 0), Op2( 0), is32,
|
|
NULL, reset_val, c14_CNTKCTL, 0x00000000 },
|
|
|
|
/* CNTP */
|
|
{ CRn(14), CRm( 2), Op1( 0), Op2( 0), is32, access_cntp_tval },
|
|
{ CRn(14), CRm( 2), Op1( 0), Op2( 1), is32, access_cntp_ctl },
|
|
|
|
/* The Configuration Base Address Register. */
|
|
{ CRn(15), CRm( 0), Op1( 4), Op2( 0), is32, access_cbar},
|
|
};
|
|
|
|
static int check_reg_table(const struct coproc_reg *table, unsigned int n)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 1; i < n; i++) {
|
|
if (cmp_reg(&table[i-1], &table[i]) >= 0) {
|
|
kvm_err("reg table %p out of order (%d)\n", table, i - 1);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Target specific emulation tables */
|
|
static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];
|
|
|
|
void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
|
|
{
|
|
BUG_ON(check_reg_table(table->table, table->num));
|
|
target_tables[table->target] = table;
|
|
}
|
|
|
|
/* Get specific register table for this target. */
|
|
static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
|
|
{
|
|
struct kvm_coproc_target_table *table;
|
|
|
|
table = target_tables[target];
|
|
*num = table->num;
|
|
return table->table;
|
|
}
|
|
|
|
#define reg_to_match_value(x) \
|
|
({ \
|
|
unsigned long val; \
|
|
val = (x)->CRn << 11; \
|
|
val |= (x)->CRm << 7; \
|
|
val |= (x)->Op1 << 4; \
|
|
val |= (x)->Op2 << 1; \
|
|
val |= !(x)->is_64bit; \
|
|
val; \
|
|
})
|
|
|
|
static int match_reg(const void *key, const void *elt)
|
|
{
|
|
const unsigned long pval = (unsigned long)key;
|
|
const struct coproc_reg *r = elt;
|
|
|
|
return pval - reg_to_match_value(r);
|
|
}
|
|
|
|
static const struct coproc_reg *find_reg(const struct coproc_params *params,
|
|
const struct coproc_reg table[],
|
|
unsigned int num)
|
|
{
|
|
unsigned long pval = reg_to_match_value(params);
|
|
|
|
return bsearch((void *)pval, table, num, sizeof(table[0]), match_reg);
|
|
}
|
|
|
|
static int emulate_cp15(struct kvm_vcpu *vcpu,
|
|
const struct coproc_params *params)
|
|
{
|
|
size_t num;
|
|
const struct coproc_reg *table, *r;
|
|
|
|
trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
|
|
params->CRm, params->Op2, params->is_write);
|
|
|
|
table = get_target_table(vcpu->arch.target, &num);
|
|
|
|
/* Search target-specific then generic table. */
|
|
r = find_reg(params, table, num);
|
|
if (!r)
|
|
r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
|
|
|
|
if (likely(r)) {
|
|
/* If we don't have an accessor, we should never get here! */
|
|
BUG_ON(!r->access);
|
|
|
|
if (likely(r->access(vcpu, params, r))) {
|
|
/* Skip instruction, since it was emulated */
|
|
kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
|
|
}
|
|
} else {
|
|
/* If access function fails, it should complain. */
|
|
kvm_err("Unsupported guest CP15 access at: %08lx [%08lx]\n",
|
|
*vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
|
|
print_cp_instr(params);
|
|
kvm_inject_undefined(vcpu);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static struct coproc_params decode_64bit_hsr(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct coproc_params params;
|
|
|
|
params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
|
|
params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
|
|
params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
|
|
params.is_64bit = true;
|
|
|
|
params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf;
|
|
params.Op2 = 0;
|
|
params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
|
|
params.CRm = 0;
|
|
|
|
return params;
|
|
}
|
|
|
|
/**
|
|
* kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
|
|
* @vcpu: The VCPU pointer
|
|
* @run: The kvm_run struct
|
|
*/
|
|
int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
|
|
{
|
|
struct coproc_params params = decode_64bit_hsr(vcpu);
|
|
|
|
return emulate_cp15(vcpu, ¶ms);
|
|
}
|
|
|
|
/**
|
|
* kvm_handle_cp14_64 -- handles a mrrc/mcrr trap on a guest CP14 access
|
|
* @vcpu: The VCPU pointer
|
|
* @run: The kvm_run struct
|
|
*/
|
|
int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
|
|
{
|
|
struct coproc_params params = decode_64bit_hsr(vcpu);
|
|
|
|
/* raz_wi cp14 */
|
|
trap_raz_wi(vcpu, ¶ms, NULL);
|
|
|
|
/* handled */
|
|
kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
|
|
return 1;
|
|
}
|
|
|
|
static void reset_coproc_regs(struct kvm_vcpu *vcpu,
|
|
const struct coproc_reg *table, size_t num,
|
|
unsigned long *bmap)
|
|
{
|
|
unsigned long i;
|
|
|
|
for (i = 0; i < num; i++)
|
|
if (table[i].reset) {
|
|
int reg = table[i].reg;
|
|
|
|
table[i].reset(vcpu, &table[i]);
|
|
if (reg > 0 && reg < NR_CP15_REGS) {
|
|
set_bit(reg, bmap);
|
|
if (table[i].is_64bit)
|
|
set_bit(reg + 1, bmap);
|
|
}
|
|
}
|
|
}
|
|
|
|
static struct coproc_params decode_32bit_hsr(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct coproc_params params;
|
|
|
|
params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
|
|
params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
|
|
params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
|
|
params.is_64bit = false;
|
|
|
|
params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
|
|
params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7;
|
|
params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7;
|
|
params.Rt2 = 0;
|
|
|
|
return params;
|
|
}
|
|
|
|
/**
|
|
* kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
|
|
* @vcpu: The VCPU pointer
|
|
* @run: The kvm_run struct
|
|
*/
|
|
int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
|
|
{
|
|
struct coproc_params params = decode_32bit_hsr(vcpu);
|
|
return emulate_cp15(vcpu, ¶ms);
|
|
}
|
|
|
|
/**
|
|
* kvm_handle_cp14_32 -- handles a mrc/mcr trap on a guest CP14 access
|
|
* @vcpu: The VCPU pointer
|
|
* @run: The kvm_run struct
|
|
*/
|
|
int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
|
|
{
|
|
struct coproc_params params = decode_32bit_hsr(vcpu);
|
|
|
|
/* raz_wi cp14 */
|
|
trap_raz_wi(vcpu, ¶ms, NULL);
|
|
|
|
/* handled */
|
|
kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
|
|
return 1;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Userspace API
|
|
*****************************************************************************/
|
|
|
|
static bool index_to_params(u64 id, struct coproc_params *params)
|
|
{
|
|
switch (id & KVM_REG_SIZE_MASK) {
|
|
case KVM_REG_SIZE_U32:
|
|
/* Any unused index bits means it's not valid. */
|
|
if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
|
|
| KVM_REG_ARM_COPROC_MASK
|
|
| KVM_REG_ARM_32_CRN_MASK
|
|
| KVM_REG_ARM_CRM_MASK
|
|
| KVM_REG_ARM_OPC1_MASK
|
|
| KVM_REG_ARM_32_OPC2_MASK))
|
|
return false;
|
|
|
|
params->is_64bit = false;
|
|
params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
|
|
>> KVM_REG_ARM_32_CRN_SHIFT);
|
|
params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
|
|
>> KVM_REG_ARM_CRM_SHIFT);
|
|
params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
|
|
>> KVM_REG_ARM_OPC1_SHIFT);
|
|
params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
|
|
>> KVM_REG_ARM_32_OPC2_SHIFT);
|
|
return true;
|
|
case KVM_REG_SIZE_U64:
|
|
/* Any unused index bits means it's not valid. */
|
|
if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
|
|
| KVM_REG_ARM_COPROC_MASK
|
|
| KVM_REG_ARM_CRM_MASK
|
|
| KVM_REG_ARM_OPC1_MASK))
|
|
return false;
|
|
params->is_64bit = true;
|
|
/* CRm to CRn: see cp15_to_index for details */
|
|
params->CRn = ((id & KVM_REG_ARM_CRM_MASK)
|
|
>> KVM_REG_ARM_CRM_SHIFT);
|
|
params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
|
|
>> KVM_REG_ARM_OPC1_SHIFT);
|
|
params->Op2 = 0;
|
|
params->CRm = 0;
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Decode an index value, and find the cp15 coproc_reg entry. */
|
|
static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
|
|
u64 id)
|
|
{
|
|
size_t num;
|
|
const struct coproc_reg *table, *r;
|
|
struct coproc_params params;
|
|
|
|
/* We only do cp15 for now. */
|
|
if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
|
|
return NULL;
|
|
|
|
if (!index_to_params(id, ¶ms))
|
|
return NULL;
|
|
|
|
table = get_target_table(vcpu->arch.target, &num);
|
|
r = find_reg(¶ms, table, num);
|
|
if (!r)
|
|
r = find_reg(¶ms, cp15_regs, ARRAY_SIZE(cp15_regs));
|
|
|
|
/* Not saved in the cp15 array? */
|
|
if (r && !r->reg)
|
|
r = NULL;
|
|
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* These are the invariant cp15 registers: we let the guest see the host
|
|
* versions of these, so they're part of the guest state.
|
|
*
|
|
* A future CPU may provide a mechanism to present different values to
|
|
* the guest, or a future kvm may trap them.
|
|
*/
|
|
/* Unfortunately, there's no register-argument for mrc, so generate. */
|
|
#define FUNCTION_FOR32(crn, crm, op1, op2, name) \
|
|
static void get_##name(struct kvm_vcpu *v, \
|
|
const struct coproc_reg *r) \
|
|
{ \
|
|
u32 val; \
|
|
\
|
|
asm volatile("mrc p15, " __stringify(op1) \
|
|
", %0, c" __stringify(crn) \
|
|
", c" __stringify(crm) \
|
|
", " __stringify(op2) "\n" : "=r" (val)); \
|
|
((struct coproc_reg *)r)->val = val; \
|
|
}
|
|
|
|
FUNCTION_FOR32(0, 0, 0, 0, MIDR)
|
|
FUNCTION_FOR32(0, 0, 0, 1, CTR)
|
|
FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
|
|
FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
|
|
FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
|
|
FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
|
|
FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
|
|
FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
|
|
FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
|
|
FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
|
|
FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
|
|
FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
|
|
FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
|
|
FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
|
|
FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
|
|
FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
|
|
FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
|
|
FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
|
|
FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
|
|
FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
|
|
FUNCTION_FOR32(0, 0, 1, 7, AIDR)
|
|
|
|
/* ->val is filled in by kvm_invariant_coproc_table_init() */
|
|
static struct coproc_reg invariant_cp15[] = {
|
|
{ CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
|
|
{ CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
|
|
{ CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
|
|
{ CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
|
|
{ CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },
|
|
|
|
{ CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
|
|
{ CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },
|
|
|
|
{ CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
|
|
{ CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
|
|
{ CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
|
|
{ CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
|
|
{ CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
|
|
{ CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
|
|
{ CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
|
|
{ CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },
|
|
|
|
{ CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
|
|
{ CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
|
|
{ CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
|
|
{ CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
|
|
{ CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
|
|
{ CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },
|
|
};
|
|
|
|
/*
|
|
* Reads a register value from a userspace address to a kernel
|
|
* variable. Make sure that register size matches sizeof(*__val).
|
|
*/
|
|
static int reg_from_user(void *val, const void __user *uaddr, u64 id)
|
|
{
|
|
if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Writes a register value to a userspace address from a kernel variable.
|
|
* Make sure that register size matches sizeof(*__val).
|
|
*/
|
|
static int reg_to_user(void __user *uaddr, const void *val, u64 id)
|
|
{
|
|
if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
static int get_invariant_cp15(u64 id, void __user *uaddr)
|
|
{
|
|
struct coproc_params params;
|
|
const struct coproc_reg *r;
|
|
int ret;
|
|
|
|
if (!index_to_params(id, ¶ms))
|
|
return -ENOENT;
|
|
|
|
r = find_reg(¶ms, invariant_cp15, ARRAY_SIZE(invariant_cp15));
|
|
if (!r)
|
|
return -ENOENT;
|
|
|
|
ret = -ENOENT;
|
|
if (KVM_REG_SIZE(id) == 4) {
|
|
u32 val = r->val;
|
|
|
|
ret = reg_to_user(uaddr, &val, id);
|
|
} else if (KVM_REG_SIZE(id) == 8) {
|
|
ret = reg_to_user(uaddr, &r->val, id);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int set_invariant_cp15(u64 id, void __user *uaddr)
|
|
{
|
|
struct coproc_params params;
|
|
const struct coproc_reg *r;
|
|
int err;
|
|
u64 val;
|
|
|
|
if (!index_to_params(id, ¶ms))
|
|
return -ENOENT;
|
|
r = find_reg(¶ms, invariant_cp15, ARRAY_SIZE(invariant_cp15));
|
|
if (!r)
|
|
return -ENOENT;
|
|
|
|
err = -ENOENT;
|
|
if (KVM_REG_SIZE(id) == 4) {
|
|
u32 val32;
|
|
|
|
err = reg_from_user(&val32, uaddr, id);
|
|
if (!err)
|
|
val = val32;
|
|
} else if (KVM_REG_SIZE(id) == 8) {
|
|
err = reg_from_user(&val, uaddr, id);
|
|
}
|
|
if (err)
|
|
return err;
|
|
|
|
/* This is what we mean by invariant: you can't change it. */
|
|
if (r->val != val)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool is_valid_cache(u32 val)
|
|
{
|
|
u32 level, ctype;
|
|
|
|
if (val >= CSSELR_MAX)
|
|
return false;
|
|
|
|
/* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
|
|
level = (val >> 1);
|
|
ctype = (cache_levels >> (level * 3)) & 7;
|
|
|
|
switch (ctype) {
|
|
case 0: /* No cache */
|
|
return false;
|
|
case 1: /* Instruction cache only */
|
|
return (val & 1);
|
|
case 2: /* Data cache only */
|
|
case 4: /* Unified cache */
|
|
return !(val & 1);
|
|
case 3: /* Separate instruction and data caches */
|
|
return true;
|
|
default: /* Reserved: we can't know instruction or data. */
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Which cache CCSIDR represents depends on CSSELR value. */
|
|
static u32 get_ccsidr(u32 csselr)
|
|
{
|
|
u32 ccsidr;
|
|
|
|
/* Make sure noone else changes CSSELR during this! */
|
|
local_irq_disable();
|
|
/* Put value into CSSELR */
|
|
asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
|
|
isb();
|
|
/* Read result out of CCSIDR */
|
|
asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
|
|
local_irq_enable();
|
|
|
|
return ccsidr;
|
|
}
|
|
|
|
static int demux_c15_get(u64 id, void __user *uaddr)
|
|
{
|
|
u32 val;
|
|
u32 __user *uval = uaddr;
|
|
|
|
/* Fail if we have unknown bits set. */
|
|
if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
|
|
| ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
|
|
return -ENOENT;
|
|
|
|
switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
|
|
case KVM_REG_ARM_DEMUX_ID_CCSIDR:
|
|
if (KVM_REG_SIZE(id) != 4)
|
|
return -ENOENT;
|
|
val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
|
|
>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
|
|
if (!is_valid_cache(val))
|
|
return -ENOENT;
|
|
|
|
return put_user(get_ccsidr(val), uval);
|
|
default:
|
|
return -ENOENT;
|
|
}
|
|
}
|
|
|
|
static int demux_c15_set(u64 id, void __user *uaddr)
|
|
{
|
|
u32 val, newval;
|
|
u32 __user *uval = uaddr;
|
|
|
|
/* Fail if we have unknown bits set. */
|
|
if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
|
|
| ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
|
|
return -ENOENT;
|
|
|
|
switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
|
|
case KVM_REG_ARM_DEMUX_ID_CCSIDR:
|
|
if (KVM_REG_SIZE(id) != 4)
|
|
return -ENOENT;
|
|
val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
|
|
>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
|
|
if (!is_valid_cache(val))
|
|
return -ENOENT;
|
|
|
|
if (get_user(newval, uval))
|
|
return -EFAULT;
|
|
|
|
/* This is also invariant: you can't change it. */
|
|
if (newval != get_ccsidr(val))
|
|
return -EINVAL;
|
|
return 0;
|
|
default:
|
|
return -ENOENT;
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_VFPv3
|
|
static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
|
|
KVM_REG_ARM_VFP_FPSCR,
|
|
KVM_REG_ARM_VFP_FPINST,
|
|
KVM_REG_ARM_VFP_FPINST2,
|
|
KVM_REG_ARM_VFP_MVFR0,
|
|
KVM_REG_ARM_VFP_MVFR1,
|
|
KVM_REG_ARM_VFP_FPSID };
|
|
|
|
static unsigned int num_fp_regs(void)
|
|
{
|
|
if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
|
|
return 32;
|
|
else
|
|
return 16;
|
|
}
|
|
|
|
static unsigned int num_vfp_regs(void)
|
|
{
|
|
/* Normal FP regs + control regs. */
|
|
return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
|
|
}
|
|
|
|
static int copy_vfp_regids(u64 __user *uindices)
|
|
{
|
|
unsigned int i;
|
|
const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
|
|
const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
|
|
|
|
for (i = 0; i < num_fp_regs(); i++) {
|
|
if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
|
|
uindices))
|
|
return -EFAULT;
|
|
uindices++;
|
|
}
|
|
|
|
for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
|
|
if (put_user(u32reg | vfp_sysregs[i], uindices))
|
|
return -EFAULT;
|
|
uindices++;
|
|
}
|
|
|
|
return num_vfp_regs();
|
|
}
|
|
|
|
static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
|
|
{
|
|
u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
|
|
u32 val;
|
|
|
|
/* Fail if we have unknown bits set. */
|
|
if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
|
|
| ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
|
|
return -ENOENT;
|
|
|
|
if (vfpid < num_fp_regs()) {
|
|
if (KVM_REG_SIZE(id) != 8)
|
|
return -ENOENT;
|
|
return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpregs[vfpid],
|
|
id);
|
|
}
|
|
|
|
/* FP control registers are all 32 bit. */
|
|
if (KVM_REG_SIZE(id) != 4)
|
|
return -ENOENT;
|
|
|
|
switch (vfpid) {
|
|
case KVM_REG_ARM_VFP_FPEXC:
|
|
return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpexc, id);
|
|
case KVM_REG_ARM_VFP_FPSCR:
|
|
return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpscr, id);
|
|
case KVM_REG_ARM_VFP_FPINST:
|
|
return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst, id);
|
|
case KVM_REG_ARM_VFP_FPINST2:
|
|
return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst2, id);
|
|
case KVM_REG_ARM_VFP_MVFR0:
|
|
val = fmrx(MVFR0);
|
|
return reg_to_user(uaddr, &val, id);
|
|
case KVM_REG_ARM_VFP_MVFR1:
|
|
val = fmrx(MVFR1);
|
|
return reg_to_user(uaddr, &val, id);
|
|
case KVM_REG_ARM_VFP_FPSID:
|
|
val = fmrx(FPSID);
|
|
return reg_to_user(uaddr, &val, id);
|
|
default:
|
|
return -ENOENT;
|
|
}
|
|
}
|
|
|
|
static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
|
|
{
|
|
u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
|
|
u32 val;
|
|
|
|
/* Fail if we have unknown bits set. */
|
|
if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
|
|
| ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
|
|
return -ENOENT;
|
|
|
|
if (vfpid < num_fp_regs()) {
|
|
if (KVM_REG_SIZE(id) != 8)
|
|
return -ENOENT;
|
|
return reg_from_user(&vcpu->arch.ctxt.vfp.fpregs[vfpid],
|
|
uaddr, id);
|
|
}
|
|
|
|
/* FP control registers are all 32 bit. */
|
|
if (KVM_REG_SIZE(id) != 4)
|
|
return -ENOENT;
|
|
|
|
switch (vfpid) {
|
|
case KVM_REG_ARM_VFP_FPEXC:
|
|
return reg_from_user(&vcpu->arch.ctxt.vfp.fpexc, uaddr, id);
|
|
case KVM_REG_ARM_VFP_FPSCR:
|
|
return reg_from_user(&vcpu->arch.ctxt.vfp.fpscr, uaddr, id);
|
|
case KVM_REG_ARM_VFP_FPINST:
|
|
return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst, uaddr, id);
|
|
case KVM_REG_ARM_VFP_FPINST2:
|
|
return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst2, uaddr, id);
|
|
/* These are invariant. */
|
|
case KVM_REG_ARM_VFP_MVFR0:
|
|
if (reg_from_user(&val, uaddr, id))
|
|
return -EFAULT;
|
|
if (val != fmrx(MVFR0))
|
|
return -EINVAL;
|
|
return 0;
|
|
case KVM_REG_ARM_VFP_MVFR1:
|
|
if (reg_from_user(&val, uaddr, id))
|
|
return -EFAULT;
|
|
if (val != fmrx(MVFR1))
|
|
return -EINVAL;
|
|
return 0;
|
|
case KVM_REG_ARM_VFP_FPSID:
|
|
if (reg_from_user(&val, uaddr, id))
|
|
return -EFAULT;
|
|
if (val != fmrx(FPSID))
|
|
return -EINVAL;
|
|
return 0;
|
|
default:
|
|
return -ENOENT;
|
|
}
|
|
}
|
|
#else /* !CONFIG_VFPv3 */
|
|
static unsigned int num_vfp_regs(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static int copy_vfp_regids(u64 __user *uindices)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
|
|
{
|
|
return -ENOENT;
|
|
}
|
|
|
|
static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
|
|
{
|
|
return -ENOENT;
|
|
}
|
|
#endif /* !CONFIG_VFPv3 */
|
|
|
|
int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
|
|
{
|
|
const struct coproc_reg *r;
|
|
void __user *uaddr = (void __user *)(long)reg->addr;
|
|
int ret;
|
|
|
|
if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
|
|
return demux_c15_get(reg->id, uaddr);
|
|
|
|
if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
|
|
return vfp_get_reg(vcpu, reg->id, uaddr);
|
|
|
|
r = index_to_coproc_reg(vcpu, reg->id);
|
|
if (!r)
|
|
return get_invariant_cp15(reg->id, uaddr);
|
|
|
|
ret = -ENOENT;
|
|
if (KVM_REG_SIZE(reg->id) == 8) {
|
|
u64 val;
|
|
|
|
val = vcpu_cp15_reg64_get(vcpu, r);
|
|
ret = reg_to_user(uaddr, &val, reg->id);
|
|
} else if (KVM_REG_SIZE(reg->id) == 4) {
|
|
ret = reg_to_user(uaddr, &vcpu_cp15(vcpu, r->reg), reg->id);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
|
|
{
|
|
const struct coproc_reg *r;
|
|
void __user *uaddr = (void __user *)(long)reg->addr;
|
|
int ret;
|
|
|
|
if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
|
|
return demux_c15_set(reg->id, uaddr);
|
|
|
|
if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
|
|
return vfp_set_reg(vcpu, reg->id, uaddr);
|
|
|
|
r = index_to_coproc_reg(vcpu, reg->id);
|
|
if (!r)
|
|
return set_invariant_cp15(reg->id, uaddr);
|
|
|
|
ret = -ENOENT;
|
|
if (KVM_REG_SIZE(reg->id) == 8) {
|
|
u64 val;
|
|
|
|
ret = reg_from_user(&val, uaddr, reg->id);
|
|
if (!ret)
|
|
vcpu_cp15_reg64_set(vcpu, r, val);
|
|
} else if (KVM_REG_SIZE(reg->id) == 4) {
|
|
ret = reg_from_user(&vcpu_cp15(vcpu, r->reg), uaddr, reg->id);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static unsigned int num_demux_regs(void)
|
|
{
|
|
unsigned int i, count = 0;
|
|
|
|
for (i = 0; i < CSSELR_MAX; i++)
|
|
if (is_valid_cache(i))
|
|
count++;
|
|
|
|
return count;
|
|
}
|
|
|
|
static int write_demux_regids(u64 __user *uindices)
|
|
{
|
|
u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
|
|
unsigned int i;
|
|
|
|
val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
|
|
for (i = 0; i < CSSELR_MAX; i++) {
|
|
if (!is_valid_cache(i))
|
|
continue;
|
|
if (put_user(val | i, uindices))
|
|
return -EFAULT;
|
|
uindices++;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static u64 cp15_to_index(const struct coproc_reg *reg)
|
|
{
|
|
u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
|
|
if (reg->is_64bit) {
|
|
val |= KVM_REG_SIZE_U64;
|
|
val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
|
|
/*
|
|
* CRn always denotes the primary coproc. reg. nr. for the
|
|
* in-kernel representation, but the user space API uses the
|
|
* CRm for the encoding, because it is modelled after the
|
|
* MRRC/MCRR instructions: see the ARM ARM rev. c page
|
|
* B3-1445
|
|
*/
|
|
val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT);
|
|
} else {
|
|
val |= KVM_REG_SIZE_U32;
|
|
val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
|
|
val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
|
|
val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
|
|
val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
|
|
}
|
|
return val;
|
|
}
|
|
|
|
static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
|
|
{
|
|
if (!*uind)
|
|
return true;
|
|
|
|
if (put_user(cp15_to_index(reg), *uind))
|
|
return false;
|
|
|
|
(*uind)++;
|
|
return true;
|
|
}
|
|
|
|
/* Assumed ordered tables, see kvm_coproc_table_init. */
|
|
static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
|
|
{
|
|
const struct coproc_reg *i1, *i2, *end1, *end2;
|
|
unsigned int total = 0;
|
|
size_t num;
|
|
|
|
/* We check for duplicates here, to allow arch-specific overrides. */
|
|
i1 = get_target_table(vcpu->arch.target, &num);
|
|
end1 = i1 + num;
|
|
i2 = cp15_regs;
|
|
end2 = cp15_regs + ARRAY_SIZE(cp15_regs);
|
|
|
|
BUG_ON(i1 == end1 || i2 == end2);
|
|
|
|
/* Walk carefully, as both tables may refer to the same register. */
|
|
while (i1 || i2) {
|
|
int cmp = cmp_reg(i1, i2);
|
|
/* target-specific overrides generic entry. */
|
|
if (cmp <= 0) {
|
|
/* Ignore registers we trap but don't save. */
|
|
if (i1->reg) {
|
|
if (!copy_reg_to_user(i1, &uind))
|
|
return -EFAULT;
|
|
total++;
|
|
}
|
|
} else {
|
|
/* Ignore registers we trap but don't save. */
|
|
if (i2->reg) {
|
|
if (!copy_reg_to_user(i2, &uind))
|
|
return -EFAULT;
|
|
total++;
|
|
}
|
|
}
|
|
|
|
if (cmp <= 0 && ++i1 == end1)
|
|
i1 = NULL;
|
|
if (cmp >= 0 && ++i2 == end2)
|
|
i2 = NULL;
|
|
}
|
|
return total;
|
|
}
|
|
|
|
unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
|
|
{
|
|
return ARRAY_SIZE(invariant_cp15)
|
|
+ num_demux_regs()
|
|
+ num_vfp_regs()
|
|
+ walk_cp15(vcpu, (u64 __user *)NULL);
|
|
}
|
|
|
|
int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
|
|
{
|
|
unsigned int i;
|
|
int err;
|
|
|
|
/* Then give them all the invariant registers' indices. */
|
|
for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
|
|
if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
|
|
return -EFAULT;
|
|
uindices++;
|
|
}
|
|
|
|
err = walk_cp15(vcpu, uindices);
|
|
if (err < 0)
|
|
return err;
|
|
uindices += err;
|
|
|
|
err = copy_vfp_regids(uindices);
|
|
if (err < 0)
|
|
return err;
|
|
uindices += err;
|
|
|
|
return write_demux_regids(uindices);
|
|
}
|
|
|
|
void kvm_coproc_table_init(void)
|
|
{
|
|
unsigned int i;
|
|
|
|
/* Make sure tables are unique and in order. */
|
|
BUG_ON(check_reg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
|
|
BUG_ON(check_reg_table(invariant_cp15, ARRAY_SIZE(invariant_cp15)));
|
|
|
|
/* We abuse the reset function to overwrite the table itself. */
|
|
for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
|
|
invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
|
|
|
|
/*
|
|
* CLIDR format is awkward, so clean it up. See ARM B4.1.20:
|
|
*
|
|
* If software reads the Cache Type fields from Ctype1
|
|
* upwards, once it has seen a value of 0b000, no caches
|
|
* exist at further-out levels of the hierarchy. So, for
|
|
* example, if Ctype3 is the first Cache Type field with a
|
|
* value of 0b000, the values of Ctype4 to Ctype7 must be
|
|
* ignored.
|
|
*/
|
|
asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
|
|
for (i = 0; i < 7; i++)
|
|
if (((cache_levels >> (i*3)) & 7) == 0)
|
|
break;
|
|
/* Clear all higher bits. */
|
|
cache_levels &= (1 << (i*3))-1;
|
|
}
|
|
|
|
/**
|
|
* kvm_reset_coprocs - sets cp15 registers to reset value
|
|
* @vcpu: The VCPU pointer
|
|
*
|
|
* This function finds the right table above and sets the registers on the
|
|
* virtual CPU struct to their architecturally defined reset values.
|
|
*/
|
|
void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
|
|
{
|
|
size_t num;
|
|
const struct coproc_reg *table;
|
|
DECLARE_BITMAP(bmap, NR_CP15_REGS) = { 0, };
|
|
|
|
/* Generic chip reset first (so target could override). */
|
|
reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs), bmap);
|
|
|
|
table = get_target_table(vcpu->arch.target, &num);
|
|
reset_coproc_regs(vcpu, table, num, bmap);
|
|
|
|
for (num = 1; num < NR_CP15_REGS; num++)
|
|
WARN(!test_bit(num, bmap),
|
|
"Didn't reset vcpu_cp15(vcpu, %zi)", num);
|
|
}
|