79bf2bb335
With Ingo Molnar <mingo@elte.hu> Add functions to provide dynamic ticks and high resolution timers. The code which keeps track of jiffies and handles the long idle periods is shared between tick based and high resolution timer based dynticks. The dyntick functionality can be disabled on the kernel commandline. Provide also the infrastructure to support high resolution timers. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@elte.hu> Cc: john stultz <johnstul@us.ibm.com> Cc: Roman Zippel <zippel@linux-m68k.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1899 lines
49 KiB
C
1899 lines
49 KiB
C
/*
|
|
* linux/kernel/timer.c
|
|
*
|
|
* Kernel internal timers, kernel timekeeping, basic process system calls
|
|
*
|
|
* Copyright (C) 1991, 1992 Linus Torvalds
|
|
*
|
|
* 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
|
|
*
|
|
* 1997-09-10 Updated NTP code according to technical memorandum Jan '96
|
|
* "A Kernel Model for Precision Timekeeping" by Dave Mills
|
|
* 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
|
|
* serialize accesses to xtime/lost_ticks).
|
|
* Copyright (C) 1998 Andrea Arcangeli
|
|
* 1999-03-10 Improved NTP compatibility by Ulrich Windl
|
|
* 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
|
|
* 2000-10-05 Implemented scalable SMP per-CPU timer handling.
|
|
* Copyright (C) 2000, 2001, 2002 Ingo Molnar
|
|
* Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
|
|
*/
|
|
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/module.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/init.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/thread_info.h>
|
|
#include <linux/time.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/posix-timers.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/tick.h>
|
|
|
|
#include <asm/uaccess.h>
|
|
#include <asm/unistd.h>
|
|
#include <asm/div64.h>
|
|
#include <asm/timex.h>
|
|
#include <asm/io.h>
|
|
|
|
u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
|
|
|
|
EXPORT_SYMBOL(jiffies_64);
|
|
|
|
/*
|
|
* per-CPU timer vector definitions:
|
|
*/
|
|
#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
|
|
#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
|
|
#define TVN_SIZE (1 << TVN_BITS)
|
|
#define TVR_SIZE (1 << TVR_BITS)
|
|
#define TVN_MASK (TVN_SIZE - 1)
|
|
#define TVR_MASK (TVR_SIZE - 1)
|
|
|
|
typedef struct tvec_s {
|
|
struct list_head vec[TVN_SIZE];
|
|
} tvec_t;
|
|
|
|
typedef struct tvec_root_s {
|
|
struct list_head vec[TVR_SIZE];
|
|
} tvec_root_t;
|
|
|
|
struct tvec_t_base_s {
|
|
spinlock_t lock;
|
|
struct timer_list *running_timer;
|
|
unsigned long timer_jiffies;
|
|
tvec_root_t tv1;
|
|
tvec_t tv2;
|
|
tvec_t tv3;
|
|
tvec_t tv4;
|
|
tvec_t tv5;
|
|
} ____cacheline_aligned_in_smp;
|
|
|
|
typedef struct tvec_t_base_s tvec_base_t;
|
|
|
|
tvec_base_t boot_tvec_bases;
|
|
EXPORT_SYMBOL(boot_tvec_bases);
|
|
static DEFINE_PER_CPU(tvec_base_t *, tvec_bases) = &boot_tvec_bases;
|
|
|
|
/**
|
|
* __round_jiffies - function to round jiffies to a full second
|
|
* @j: the time in (absolute) jiffies that should be rounded
|
|
* @cpu: the processor number on which the timeout will happen
|
|
*
|
|
* __round_jiffies() rounds an absolute time in the future (in jiffies)
|
|
* up or down to (approximately) full seconds. This is useful for timers
|
|
* for which the exact time they fire does not matter too much, as long as
|
|
* they fire approximately every X seconds.
|
|
*
|
|
* By rounding these timers to whole seconds, all such timers will fire
|
|
* at the same time, rather than at various times spread out. The goal
|
|
* of this is to have the CPU wake up less, which saves power.
|
|
*
|
|
* The exact rounding is skewed for each processor to avoid all
|
|
* processors firing at the exact same time, which could lead
|
|
* to lock contention or spurious cache line bouncing.
|
|
*
|
|
* The return value is the rounded version of the @j parameter.
|
|
*/
|
|
unsigned long __round_jiffies(unsigned long j, int cpu)
|
|
{
|
|
int rem;
|
|
unsigned long original = j;
|
|
|
|
/*
|
|
* We don't want all cpus firing their timers at once hitting the
|
|
* same lock or cachelines, so we skew each extra cpu with an extra
|
|
* 3 jiffies. This 3 jiffies came originally from the mm/ code which
|
|
* already did this.
|
|
* The skew is done by adding 3*cpunr, then round, then subtract this
|
|
* extra offset again.
|
|
*/
|
|
j += cpu * 3;
|
|
|
|
rem = j % HZ;
|
|
|
|
/*
|
|
* If the target jiffie is just after a whole second (which can happen
|
|
* due to delays of the timer irq, long irq off times etc etc) then
|
|
* we should round down to the whole second, not up. Use 1/4th second
|
|
* as cutoff for this rounding as an extreme upper bound for this.
|
|
*/
|
|
if (rem < HZ/4) /* round down */
|
|
j = j - rem;
|
|
else /* round up */
|
|
j = j - rem + HZ;
|
|
|
|
/* now that we have rounded, subtract the extra skew again */
|
|
j -= cpu * 3;
|
|
|
|
if (j <= jiffies) /* rounding ate our timeout entirely; */
|
|
return original;
|
|
return j;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__round_jiffies);
|
|
|
|
/**
|
|
* __round_jiffies_relative - function to round jiffies to a full second
|
|
* @j: the time in (relative) jiffies that should be rounded
|
|
* @cpu: the processor number on which the timeout will happen
|
|
*
|
|
* __round_jiffies_relative() rounds a time delta in the future (in jiffies)
|
|
* up or down to (approximately) full seconds. This is useful for timers
|
|
* for which the exact time they fire does not matter too much, as long as
|
|
* they fire approximately every X seconds.
|
|
*
|
|
* By rounding these timers to whole seconds, all such timers will fire
|
|
* at the same time, rather than at various times spread out. The goal
|
|
* of this is to have the CPU wake up less, which saves power.
|
|
*
|
|
* The exact rounding is skewed for each processor to avoid all
|
|
* processors firing at the exact same time, which could lead
|
|
* to lock contention or spurious cache line bouncing.
|
|
*
|
|
* The return value is the rounded version of the @j parameter.
|
|
*/
|
|
unsigned long __round_jiffies_relative(unsigned long j, int cpu)
|
|
{
|
|
/*
|
|
* In theory the following code can skip a jiffy in case jiffies
|
|
* increments right between the addition and the later subtraction.
|
|
* However since the entire point of this function is to use approximate
|
|
* timeouts, it's entirely ok to not handle that.
|
|
*/
|
|
return __round_jiffies(j + jiffies, cpu) - jiffies;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__round_jiffies_relative);
|
|
|
|
/**
|
|
* round_jiffies - function to round jiffies to a full second
|
|
* @j: the time in (absolute) jiffies that should be rounded
|
|
*
|
|
* round_jiffies() rounds an absolute time in the future (in jiffies)
|
|
* up or down to (approximately) full seconds. This is useful for timers
|
|
* for which the exact time they fire does not matter too much, as long as
|
|
* they fire approximately every X seconds.
|
|
*
|
|
* By rounding these timers to whole seconds, all such timers will fire
|
|
* at the same time, rather than at various times spread out. The goal
|
|
* of this is to have the CPU wake up less, which saves power.
|
|
*
|
|
* The return value is the rounded version of the @j parameter.
|
|
*/
|
|
unsigned long round_jiffies(unsigned long j)
|
|
{
|
|
return __round_jiffies(j, raw_smp_processor_id());
|
|
}
|
|
EXPORT_SYMBOL_GPL(round_jiffies);
|
|
|
|
/**
|
|
* round_jiffies_relative - function to round jiffies to a full second
|
|
* @j: the time in (relative) jiffies that should be rounded
|
|
*
|
|
* round_jiffies_relative() rounds a time delta in the future (in jiffies)
|
|
* up or down to (approximately) full seconds. This is useful for timers
|
|
* for which the exact time they fire does not matter too much, as long as
|
|
* they fire approximately every X seconds.
|
|
*
|
|
* By rounding these timers to whole seconds, all such timers will fire
|
|
* at the same time, rather than at various times spread out. The goal
|
|
* of this is to have the CPU wake up less, which saves power.
|
|
*
|
|
* The return value is the rounded version of the @j parameter.
|
|
*/
|
|
unsigned long round_jiffies_relative(unsigned long j)
|
|
{
|
|
return __round_jiffies_relative(j, raw_smp_processor_id());
|
|
}
|
|
EXPORT_SYMBOL_GPL(round_jiffies_relative);
|
|
|
|
|
|
static inline void set_running_timer(tvec_base_t *base,
|
|
struct timer_list *timer)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
base->running_timer = timer;
|
|
#endif
|
|
}
|
|
|
|
static void internal_add_timer(tvec_base_t *base, struct timer_list *timer)
|
|
{
|
|
unsigned long expires = timer->expires;
|
|
unsigned long idx = expires - base->timer_jiffies;
|
|
struct list_head *vec;
|
|
|
|
if (idx < TVR_SIZE) {
|
|
int i = expires & TVR_MASK;
|
|
vec = base->tv1.vec + i;
|
|
} else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
|
|
int i = (expires >> TVR_BITS) & TVN_MASK;
|
|
vec = base->tv2.vec + i;
|
|
} else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
|
|
int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
|
|
vec = base->tv3.vec + i;
|
|
} else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
|
|
int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
|
|
vec = base->tv4.vec + i;
|
|
} else if ((signed long) idx < 0) {
|
|
/*
|
|
* Can happen if you add a timer with expires == jiffies,
|
|
* or you set a timer to go off in the past
|
|
*/
|
|
vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
|
|
} else {
|
|
int i;
|
|
/* If the timeout is larger than 0xffffffff on 64-bit
|
|
* architectures then we use the maximum timeout:
|
|
*/
|
|
if (idx > 0xffffffffUL) {
|
|
idx = 0xffffffffUL;
|
|
expires = idx + base->timer_jiffies;
|
|
}
|
|
i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
|
|
vec = base->tv5.vec + i;
|
|
}
|
|
/*
|
|
* Timers are FIFO:
|
|
*/
|
|
list_add_tail(&timer->entry, vec);
|
|
}
|
|
|
|
/**
|
|
* init_timer - initialize a timer.
|
|
* @timer: the timer to be initialized
|
|
*
|
|
* init_timer() must be done to a timer prior calling *any* of the
|
|
* other timer functions.
|
|
*/
|
|
void fastcall init_timer(struct timer_list *timer)
|
|
{
|
|
timer->entry.next = NULL;
|
|
timer->base = __raw_get_cpu_var(tvec_bases);
|
|
}
|
|
EXPORT_SYMBOL(init_timer);
|
|
|
|
static inline void detach_timer(struct timer_list *timer,
|
|
int clear_pending)
|
|
{
|
|
struct list_head *entry = &timer->entry;
|
|
|
|
__list_del(entry->prev, entry->next);
|
|
if (clear_pending)
|
|
entry->next = NULL;
|
|
entry->prev = LIST_POISON2;
|
|
}
|
|
|
|
/*
|
|
* We are using hashed locking: holding per_cpu(tvec_bases).lock
|
|
* means that all timers which are tied to this base via timer->base are
|
|
* locked, and the base itself is locked too.
|
|
*
|
|
* So __run_timers/migrate_timers can safely modify all timers which could
|
|
* be found on ->tvX lists.
|
|
*
|
|
* When the timer's base is locked, and the timer removed from list, it is
|
|
* possible to set timer->base = NULL and drop the lock: the timer remains
|
|
* locked.
|
|
*/
|
|
static tvec_base_t *lock_timer_base(struct timer_list *timer,
|
|
unsigned long *flags)
|
|
__acquires(timer->base->lock)
|
|
{
|
|
tvec_base_t *base;
|
|
|
|
for (;;) {
|
|
base = timer->base;
|
|
if (likely(base != NULL)) {
|
|
spin_lock_irqsave(&base->lock, *flags);
|
|
if (likely(base == timer->base))
|
|
return base;
|
|
/* The timer has migrated to another CPU */
|
|
spin_unlock_irqrestore(&base->lock, *flags);
|
|
}
|
|
cpu_relax();
|
|
}
|
|
}
|
|
|
|
int __mod_timer(struct timer_list *timer, unsigned long expires)
|
|
{
|
|
tvec_base_t *base, *new_base;
|
|
unsigned long flags;
|
|
int ret = 0;
|
|
|
|
BUG_ON(!timer->function);
|
|
|
|
base = lock_timer_base(timer, &flags);
|
|
|
|
if (timer_pending(timer)) {
|
|
detach_timer(timer, 0);
|
|
ret = 1;
|
|
}
|
|
|
|
new_base = __get_cpu_var(tvec_bases);
|
|
|
|
if (base != new_base) {
|
|
/*
|
|
* We are trying to schedule the timer on the local CPU.
|
|
* However we can't change timer's base while it is running,
|
|
* otherwise del_timer_sync() can't detect that the timer's
|
|
* handler yet has not finished. This also guarantees that
|
|
* the timer is serialized wrt itself.
|
|
*/
|
|
if (likely(base->running_timer != timer)) {
|
|
/* See the comment in lock_timer_base() */
|
|
timer->base = NULL;
|
|
spin_unlock(&base->lock);
|
|
base = new_base;
|
|
spin_lock(&base->lock);
|
|
timer->base = base;
|
|
}
|
|
}
|
|
|
|
timer->expires = expires;
|
|
internal_add_timer(base, timer);
|
|
spin_unlock_irqrestore(&base->lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
EXPORT_SYMBOL(__mod_timer);
|
|
|
|
/**
|
|
* add_timer_on - start a timer on a particular CPU
|
|
* @timer: the timer to be added
|
|
* @cpu: the CPU to start it on
|
|
*
|
|
* This is not very scalable on SMP. Double adds are not possible.
|
|
*/
|
|
void add_timer_on(struct timer_list *timer, int cpu)
|
|
{
|
|
tvec_base_t *base = per_cpu(tvec_bases, cpu);
|
|
unsigned long flags;
|
|
|
|
BUG_ON(timer_pending(timer) || !timer->function);
|
|
spin_lock_irqsave(&base->lock, flags);
|
|
timer->base = base;
|
|
internal_add_timer(base, timer);
|
|
spin_unlock_irqrestore(&base->lock, flags);
|
|
}
|
|
|
|
|
|
/**
|
|
* mod_timer - modify a timer's timeout
|
|
* @timer: the timer to be modified
|
|
* @expires: new timeout in jiffies
|
|
*
|
|
* mod_timer() is a more efficient way to update the expire field of an
|
|
* active timer (if the timer is inactive it will be activated)
|
|
*
|
|
* mod_timer(timer, expires) is equivalent to:
|
|
*
|
|
* del_timer(timer); timer->expires = expires; add_timer(timer);
|
|
*
|
|
* Note that if there are multiple unserialized concurrent users of the
|
|
* same timer, then mod_timer() is the only safe way to modify the timeout,
|
|
* since add_timer() cannot modify an already running timer.
|
|
*
|
|
* The function returns whether it has modified a pending timer or not.
|
|
* (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
|
|
* active timer returns 1.)
|
|
*/
|
|
int mod_timer(struct timer_list *timer, unsigned long expires)
|
|
{
|
|
BUG_ON(!timer->function);
|
|
|
|
/*
|
|
* This is a common optimization triggered by the
|
|
* networking code - if the timer is re-modified
|
|
* to be the same thing then just return:
|
|
*/
|
|
if (timer->expires == expires && timer_pending(timer))
|
|
return 1;
|
|
|
|
return __mod_timer(timer, expires);
|
|
}
|
|
|
|
EXPORT_SYMBOL(mod_timer);
|
|
|
|
/**
|
|
* del_timer - deactive a timer.
|
|
* @timer: the timer to be deactivated
|
|
*
|
|
* del_timer() deactivates a timer - this works on both active and inactive
|
|
* timers.
|
|
*
|
|
* The function returns whether it has deactivated a pending timer or not.
|
|
* (ie. del_timer() of an inactive timer returns 0, del_timer() of an
|
|
* active timer returns 1.)
|
|
*/
|
|
int del_timer(struct timer_list *timer)
|
|
{
|
|
tvec_base_t *base;
|
|
unsigned long flags;
|
|
int ret = 0;
|
|
|
|
if (timer_pending(timer)) {
|
|
base = lock_timer_base(timer, &flags);
|
|
if (timer_pending(timer)) {
|
|
detach_timer(timer, 1);
|
|
ret = 1;
|
|
}
|
|
spin_unlock_irqrestore(&base->lock, flags);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
EXPORT_SYMBOL(del_timer);
|
|
|
|
#ifdef CONFIG_SMP
|
|
/**
|
|
* try_to_del_timer_sync - Try to deactivate a timer
|
|
* @timer: timer do del
|
|
*
|
|
* This function tries to deactivate a timer. Upon successful (ret >= 0)
|
|
* exit the timer is not queued and the handler is not running on any CPU.
|
|
*
|
|
* It must not be called from interrupt contexts.
|
|
*/
|
|
int try_to_del_timer_sync(struct timer_list *timer)
|
|
{
|
|
tvec_base_t *base;
|
|
unsigned long flags;
|
|
int ret = -1;
|
|
|
|
base = lock_timer_base(timer, &flags);
|
|
|
|
if (base->running_timer == timer)
|
|
goto out;
|
|
|
|
ret = 0;
|
|
if (timer_pending(timer)) {
|
|
detach_timer(timer, 1);
|
|
ret = 1;
|
|
}
|
|
out:
|
|
spin_unlock_irqrestore(&base->lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* del_timer_sync - deactivate a timer and wait for the handler to finish.
|
|
* @timer: the timer to be deactivated
|
|
*
|
|
* This function only differs from del_timer() on SMP: besides deactivating
|
|
* the timer it also makes sure the handler has finished executing on other
|
|
* CPUs.
|
|
*
|
|
* Synchronization rules: Callers must prevent restarting of the timer,
|
|
* otherwise this function is meaningless. It must not be called from
|
|
* interrupt contexts. The caller must not hold locks which would prevent
|
|
* completion of the timer's handler. The timer's handler must not call
|
|
* add_timer_on(). Upon exit the timer is not queued and the handler is
|
|
* not running on any CPU.
|
|
*
|
|
* The function returns whether it has deactivated a pending timer or not.
|
|
*/
|
|
int del_timer_sync(struct timer_list *timer)
|
|
{
|
|
for (;;) {
|
|
int ret = try_to_del_timer_sync(timer);
|
|
if (ret >= 0)
|
|
return ret;
|
|
cpu_relax();
|
|
}
|
|
}
|
|
|
|
EXPORT_SYMBOL(del_timer_sync);
|
|
#endif
|
|
|
|
static int cascade(tvec_base_t *base, tvec_t *tv, int index)
|
|
{
|
|
/* cascade all the timers from tv up one level */
|
|
struct timer_list *timer, *tmp;
|
|
struct list_head tv_list;
|
|
|
|
list_replace_init(tv->vec + index, &tv_list);
|
|
|
|
/*
|
|
* We are removing _all_ timers from the list, so we
|
|
* don't have to detach them individually.
|
|
*/
|
|
list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
|
|
BUG_ON(timer->base != base);
|
|
internal_add_timer(base, timer);
|
|
}
|
|
|
|
return index;
|
|
}
|
|
|
|
#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
|
|
|
|
/**
|
|
* __run_timers - run all expired timers (if any) on this CPU.
|
|
* @base: the timer vector to be processed.
|
|
*
|
|
* This function cascades all vectors and executes all expired timer
|
|
* vectors.
|
|
*/
|
|
static inline void __run_timers(tvec_base_t *base)
|
|
{
|
|
struct timer_list *timer;
|
|
|
|
spin_lock_irq(&base->lock);
|
|
while (time_after_eq(jiffies, base->timer_jiffies)) {
|
|
struct list_head work_list;
|
|
struct list_head *head = &work_list;
|
|
int index = base->timer_jiffies & TVR_MASK;
|
|
|
|
/*
|
|
* Cascade timers:
|
|
*/
|
|
if (!index &&
|
|
(!cascade(base, &base->tv2, INDEX(0))) &&
|
|
(!cascade(base, &base->tv3, INDEX(1))) &&
|
|
!cascade(base, &base->tv4, INDEX(2)))
|
|
cascade(base, &base->tv5, INDEX(3));
|
|
++base->timer_jiffies;
|
|
list_replace_init(base->tv1.vec + index, &work_list);
|
|
while (!list_empty(head)) {
|
|
void (*fn)(unsigned long);
|
|
unsigned long data;
|
|
|
|
timer = list_entry(head->next,struct timer_list,entry);
|
|
fn = timer->function;
|
|
data = timer->data;
|
|
|
|
set_running_timer(base, timer);
|
|
detach_timer(timer, 1);
|
|
spin_unlock_irq(&base->lock);
|
|
{
|
|
int preempt_count = preempt_count();
|
|
fn(data);
|
|
if (preempt_count != preempt_count()) {
|
|
printk(KERN_WARNING "huh, entered %p "
|
|
"with preempt_count %08x, exited"
|
|
" with %08x?\n",
|
|
fn, preempt_count,
|
|
preempt_count());
|
|
BUG();
|
|
}
|
|
}
|
|
spin_lock_irq(&base->lock);
|
|
}
|
|
}
|
|
set_running_timer(base, NULL);
|
|
spin_unlock_irq(&base->lock);
|
|
}
|
|
|
|
#if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
|
|
/*
|
|
* Find out when the next timer event is due to happen. This
|
|
* is used on S/390 to stop all activity when a cpus is idle.
|
|
* This functions needs to be called disabled.
|
|
*/
|
|
static unsigned long __next_timer_interrupt(tvec_base_t *base)
|
|
{
|
|
unsigned long timer_jiffies = base->timer_jiffies;
|
|
unsigned long expires = timer_jiffies + (LONG_MAX >> 1);
|
|
int index, slot, array, found = 0;
|
|
struct timer_list *nte;
|
|
tvec_t *varray[4];
|
|
|
|
/* Look for timer events in tv1. */
|
|
index = slot = timer_jiffies & TVR_MASK;
|
|
do {
|
|
list_for_each_entry(nte, base->tv1.vec + slot, entry) {
|
|
found = 1;
|
|
expires = nte->expires;
|
|
/* Look at the cascade bucket(s)? */
|
|
if (!index || slot < index)
|
|
goto cascade;
|
|
return expires;
|
|
}
|
|
slot = (slot + 1) & TVR_MASK;
|
|
} while (slot != index);
|
|
|
|
cascade:
|
|
/* Calculate the next cascade event */
|
|
if (index)
|
|
timer_jiffies += TVR_SIZE - index;
|
|
timer_jiffies >>= TVR_BITS;
|
|
|
|
/* Check tv2-tv5. */
|
|
varray[0] = &base->tv2;
|
|
varray[1] = &base->tv3;
|
|
varray[2] = &base->tv4;
|
|
varray[3] = &base->tv5;
|
|
|
|
for (array = 0; array < 4; array++) {
|
|
tvec_t *varp = varray[array];
|
|
|
|
index = slot = timer_jiffies & TVN_MASK;
|
|
do {
|
|
list_for_each_entry(nte, varp->vec + slot, entry) {
|
|
found = 1;
|
|
if (time_before(nte->expires, expires))
|
|
expires = nte->expires;
|
|
}
|
|
/*
|
|
* Do we still search for the first timer or are
|
|
* we looking up the cascade buckets ?
|
|
*/
|
|
if (found) {
|
|
/* Look at the cascade bucket(s)? */
|
|
if (!index || slot < index)
|
|
break;
|
|
return expires;
|
|
}
|
|
slot = (slot + 1) & TVN_MASK;
|
|
} while (slot != index);
|
|
|
|
if (index)
|
|
timer_jiffies += TVN_SIZE - index;
|
|
timer_jiffies >>= TVN_BITS;
|
|
}
|
|
return expires;
|
|
}
|
|
|
|
/*
|
|
* Check, if the next hrtimer event is before the next timer wheel
|
|
* event:
|
|
*/
|
|
static unsigned long cmp_next_hrtimer_event(unsigned long now,
|
|
unsigned long expires)
|
|
{
|
|
ktime_t hr_delta = hrtimer_get_next_event();
|
|
struct timespec tsdelta;
|
|
|
|
if (hr_delta.tv64 == KTIME_MAX)
|
|
return expires;
|
|
|
|
if (hr_delta.tv64 <= TICK_NSEC)
|
|
return now;
|
|
|
|
tsdelta = ktime_to_timespec(hr_delta);
|
|
now += timespec_to_jiffies(&tsdelta);
|
|
if (time_before(now, expires))
|
|
return now;
|
|
return expires;
|
|
}
|
|
|
|
/**
|
|
* next_timer_interrupt - return the jiffy of the next pending timer
|
|
*/
|
|
unsigned long get_next_timer_interrupt(unsigned long now)
|
|
{
|
|
tvec_base_t *base = __get_cpu_var(tvec_bases);
|
|
unsigned long expires;
|
|
|
|
spin_lock(&base->lock);
|
|
expires = __next_timer_interrupt(base);
|
|
spin_unlock(&base->lock);
|
|
|
|
if (time_before_eq(expires, now))
|
|
return now;
|
|
|
|
return cmp_next_hrtimer_event(now, expires);
|
|
}
|
|
|
|
#ifdef CONFIG_NO_IDLE_HZ
|
|
unsigned long next_timer_interrupt(void)
|
|
{
|
|
return get_next_timer_interrupt(jiffies);
|
|
}
|
|
#endif
|
|
|
|
#endif
|
|
|
|
/******************************************************************/
|
|
|
|
/*
|
|
* The current time
|
|
* wall_to_monotonic is what we need to add to xtime (or xtime corrected
|
|
* for sub jiffie times) to get to monotonic time. Monotonic is pegged
|
|
* at zero at system boot time, so wall_to_monotonic will be negative,
|
|
* however, we will ALWAYS keep the tv_nsec part positive so we can use
|
|
* the usual normalization.
|
|
*/
|
|
struct timespec xtime __attribute__ ((aligned (16)));
|
|
struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
|
|
|
|
EXPORT_SYMBOL(xtime);
|
|
|
|
|
|
/* XXX - all of this timekeeping code should be later moved to time.c */
|
|
#include <linux/clocksource.h>
|
|
static struct clocksource *clock; /* pointer to current clocksource */
|
|
|
|
#ifdef CONFIG_GENERIC_TIME
|
|
/**
|
|
* __get_nsec_offset - Returns nanoseconds since last call to periodic_hook
|
|
*
|
|
* private function, must hold xtime_lock lock when being
|
|
* called. Returns the number of nanoseconds since the
|
|
* last call to update_wall_time() (adjusted by NTP scaling)
|
|
*/
|
|
static inline s64 __get_nsec_offset(void)
|
|
{
|
|
cycle_t cycle_now, cycle_delta;
|
|
s64 ns_offset;
|
|
|
|
/* read clocksource: */
|
|
cycle_now = clocksource_read(clock);
|
|
|
|
/* calculate the delta since the last update_wall_time: */
|
|
cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
|
|
|
|
/* convert to nanoseconds: */
|
|
ns_offset = cyc2ns(clock, cycle_delta);
|
|
|
|
return ns_offset;
|
|
}
|
|
|
|
/**
|
|
* __get_realtime_clock_ts - Returns the time of day in a timespec
|
|
* @ts: pointer to the timespec to be set
|
|
*
|
|
* Returns the time of day in a timespec. Used by
|
|
* do_gettimeofday() and get_realtime_clock_ts().
|
|
*/
|
|
static inline void __get_realtime_clock_ts(struct timespec *ts)
|
|
{
|
|
unsigned long seq;
|
|
s64 nsecs;
|
|
|
|
do {
|
|
seq = read_seqbegin(&xtime_lock);
|
|
|
|
*ts = xtime;
|
|
nsecs = __get_nsec_offset();
|
|
|
|
} while (read_seqretry(&xtime_lock, seq));
|
|
|
|
timespec_add_ns(ts, nsecs);
|
|
}
|
|
|
|
/**
|
|
* getnstimeofday - Returns the time of day in a timespec
|
|
* @ts: pointer to the timespec to be set
|
|
*
|
|
* Returns the time of day in a timespec.
|
|
*/
|
|
void getnstimeofday(struct timespec *ts)
|
|
{
|
|
__get_realtime_clock_ts(ts);
|
|
}
|
|
|
|
EXPORT_SYMBOL(getnstimeofday);
|
|
|
|
/**
|
|
* do_gettimeofday - Returns the time of day in a timeval
|
|
* @tv: pointer to the timeval to be set
|
|
*
|
|
* NOTE: Users should be converted to using get_realtime_clock_ts()
|
|
*/
|
|
void do_gettimeofday(struct timeval *tv)
|
|
{
|
|
struct timespec now;
|
|
|
|
__get_realtime_clock_ts(&now);
|
|
tv->tv_sec = now.tv_sec;
|
|
tv->tv_usec = now.tv_nsec/1000;
|
|
}
|
|
|
|
EXPORT_SYMBOL(do_gettimeofday);
|
|
/**
|
|
* do_settimeofday - Sets the time of day
|
|
* @tv: pointer to the timespec variable containing the new time
|
|
*
|
|
* Sets the time of day to the new time and update NTP and notify hrtimers
|
|
*/
|
|
int do_settimeofday(struct timespec *tv)
|
|
{
|
|
unsigned long flags;
|
|
time_t wtm_sec, sec = tv->tv_sec;
|
|
long wtm_nsec, nsec = tv->tv_nsec;
|
|
|
|
if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
|
|
return -EINVAL;
|
|
|
|
write_seqlock_irqsave(&xtime_lock, flags);
|
|
|
|
nsec -= __get_nsec_offset();
|
|
|
|
wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
|
|
wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
|
|
|
|
set_normalized_timespec(&xtime, sec, nsec);
|
|
set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
|
|
|
|
clock->error = 0;
|
|
ntp_clear();
|
|
|
|
write_sequnlock_irqrestore(&xtime_lock, flags);
|
|
|
|
/* signal hrtimers about time change */
|
|
clock_was_set();
|
|
|
|
return 0;
|
|
}
|
|
|
|
EXPORT_SYMBOL(do_settimeofday);
|
|
|
|
/**
|
|
* change_clocksource - Swaps clocksources if a new one is available
|
|
*
|
|
* Accumulates current time interval and initializes new clocksource
|
|
*/
|
|
static void change_clocksource(void)
|
|
{
|
|
struct clocksource *new;
|
|
cycle_t now;
|
|
u64 nsec;
|
|
|
|
new = clocksource_get_next();
|
|
|
|
if (clock == new)
|
|
return;
|
|
|
|
now = clocksource_read(new);
|
|
nsec = __get_nsec_offset();
|
|
timespec_add_ns(&xtime, nsec);
|
|
|
|
clock = new;
|
|
clock->cycle_last = now;
|
|
|
|
clock->error = 0;
|
|
clock->xtime_nsec = 0;
|
|
clocksource_calculate_interval(clock, NTP_INTERVAL_LENGTH);
|
|
|
|
tick_clock_notify();
|
|
|
|
printk(KERN_INFO "Time: %s clocksource has been installed.\n",
|
|
clock->name);
|
|
}
|
|
#else
|
|
static inline void change_clocksource(void) { }
|
|
#endif
|
|
|
|
/**
|
|
* timeofday_is_continuous - check to see if timekeeping is free running
|
|
*/
|
|
int timekeeping_is_continuous(void)
|
|
{
|
|
unsigned long seq;
|
|
int ret;
|
|
|
|
do {
|
|
seq = read_seqbegin(&xtime_lock);
|
|
|
|
ret = clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
|
|
|
|
} while (read_seqretry(&xtime_lock, seq));
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* read_persistent_clock - Return time in seconds from the persistent clock.
|
|
*
|
|
* Weak dummy function for arches that do not yet support it.
|
|
* Returns seconds from epoch using the battery backed persistent clock.
|
|
* Returns zero if unsupported.
|
|
*
|
|
* XXX - Do be sure to remove it once all arches implement it.
|
|
*/
|
|
unsigned long __attribute__((weak)) read_persistent_clock(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* timekeeping_init - Initializes the clocksource and common timekeeping values
|
|
*/
|
|
void __init timekeeping_init(void)
|
|
{
|
|
unsigned long flags;
|
|
unsigned long sec = read_persistent_clock();
|
|
|
|
write_seqlock_irqsave(&xtime_lock, flags);
|
|
|
|
ntp_clear();
|
|
|
|
clock = clocksource_get_next();
|
|
clocksource_calculate_interval(clock, NTP_INTERVAL_LENGTH);
|
|
clock->cycle_last = clocksource_read(clock);
|
|
|
|
xtime.tv_sec = sec;
|
|
xtime.tv_nsec = 0;
|
|
set_normalized_timespec(&wall_to_monotonic,
|
|
-xtime.tv_sec, -xtime.tv_nsec);
|
|
|
|
write_sequnlock_irqrestore(&xtime_lock, flags);
|
|
}
|
|
|
|
/* flag for if timekeeping is suspended */
|
|
static int timekeeping_suspended;
|
|
/* time in seconds when suspend began */
|
|
static unsigned long timekeeping_suspend_time;
|
|
|
|
/**
|
|
* timekeeping_resume - Resumes the generic timekeeping subsystem.
|
|
* @dev: unused
|
|
*
|
|
* This is for the generic clocksource timekeeping.
|
|
* xtime/wall_to_monotonic/jiffies/etc are
|
|
* still managed by arch specific suspend/resume code.
|
|
*/
|
|
static int timekeeping_resume(struct sys_device *dev)
|
|
{
|
|
unsigned long flags;
|
|
unsigned long now = read_persistent_clock();
|
|
|
|
write_seqlock_irqsave(&xtime_lock, flags);
|
|
|
|
if (now && (now > timekeeping_suspend_time)) {
|
|
unsigned long sleep_length = now - timekeeping_suspend_time;
|
|
|
|
xtime.tv_sec += sleep_length;
|
|
wall_to_monotonic.tv_sec -= sleep_length;
|
|
}
|
|
/* re-base the last cycle value */
|
|
clock->cycle_last = clocksource_read(clock);
|
|
clock->error = 0;
|
|
timekeeping_suspended = 0;
|
|
write_sequnlock_irqrestore(&xtime_lock, flags);
|
|
|
|
touch_softlockup_watchdog();
|
|
/* Resume hrtimers */
|
|
clock_was_set();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int timekeeping_suspend(struct sys_device *dev, pm_message_t state)
|
|
{
|
|
unsigned long flags;
|
|
|
|
write_seqlock_irqsave(&xtime_lock, flags);
|
|
timekeeping_suspended = 1;
|
|
timekeeping_suspend_time = read_persistent_clock();
|
|
write_sequnlock_irqrestore(&xtime_lock, flags);
|
|
return 0;
|
|
}
|
|
|
|
/* sysfs resume/suspend bits for timekeeping */
|
|
static struct sysdev_class timekeeping_sysclass = {
|
|
.resume = timekeeping_resume,
|
|
.suspend = timekeeping_suspend,
|
|
set_kset_name("timekeeping"),
|
|
};
|
|
|
|
static struct sys_device device_timer = {
|
|
.id = 0,
|
|
.cls = &timekeeping_sysclass,
|
|
};
|
|
|
|
static int __init timekeeping_init_device(void)
|
|
{
|
|
int error = sysdev_class_register(&timekeeping_sysclass);
|
|
if (!error)
|
|
error = sysdev_register(&device_timer);
|
|
return error;
|
|
}
|
|
|
|
device_initcall(timekeeping_init_device);
|
|
|
|
/*
|
|
* If the error is already larger, we look ahead even further
|
|
* to compensate for late or lost adjustments.
|
|
*/
|
|
static __always_inline int clocksource_bigadjust(s64 error, s64 *interval,
|
|
s64 *offset)
|
|
{
|
|
s64 tick_error, i;
|
|
u32 look_ahead, adj;
|
|
s32 error2, mult;
|
|
|
|
/*
|
|
* Use the current error value to determine how much to look ahead.
|
|
* The larger the error the slower we adjust for it to avoid problems
|
|
* with losing too many ticks, otherwise we would overadjust and
|
|
* produce an even larger error. The smaller the adjustment the
|
|
* faster we try to adjust for it, as lost ticks can do less harm
|
|
* here. This is tuned so that an error of about 1 msec is adusted
|
|
* within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
|
|
*/
|
|
error2 = clock->error >> (TICK_LENGTH_SHIFT + 22 - 2 * SHIFT_HZ);
|
|
error2 = abs(error2);
|
|
for (look_ahead = 0; error2 > 0; look_ahead++)
|
|
error2 >>= 2;
|
|
|
|
/*
|
|
* Now calculate the error in (1 << look_ahead) ticks, but first
|
|
* remove the single look ahead already included in the error.
|
|
*/
|
|
tick_error = current_tick_length() >>
|
|
(TICK_LENGTH_SHIFT - clock->shift + 1);
|
|
tick_error -= clock->xtime_interval >> 1;
|
|
error = ((error - tick_error) >> look_ahead) + tick_error;
|
|
|
|
/* Finally calculate the adjustment shift value. */
|
|
i = *interval;
|
|
mult = 1;
|
|
if (error < 0) {
|
|
error = -error;
|
|
*interval = -*interval;
|
|
*offset = -*offset;
|
|
mult = -1;
|
|
}
|
|
for (adj = 0; error > i; adj++)
|
|
error >>= 1;
|
|
|
|
*interval <<= adj;
|
|
*offset <<= adj;
|
|
return mult << adj;
|
|
}
|
|
|
|
/*
|
|
* Adjust the multiplier to reduce the error value,
|
|
* this is optimized for the most common adjustments of -1,0,1,
|
|
* for other values we can do a bit more work.
|
|
*/
|
|
static void clocksource_adjust(struct clocksource *clock, s64 offset)
|
|
{
|
|
s64 error, interval = clock->cycle_interval;
|
|
int adj;
|
|
|
|
error = clock->error >> (TICK_LENGTH_SHIFT - clock->shift - 1);
|
|
if (error > interval) {
|
|
error >>= 2;
|
|
if (likely(error <= interval))
|
|
adj = 1;
|
|
else
|
|
adj = clocksource_bigadjust(error, &interval, &offset);
|
|
} else if (error < -interval) {
|
|
error >>= 2;
|
|
if (likely(error >= -interval)) {
|
|
adj = -1;
|
|
interval = -interval;
|
|
offset = -offset;
|
|
} else
|
|
adj = clocksource_bigadjust(error, &interval, &offset);
|
|
} else
|
|
return;
|
|
|
|
clock->mult += adj;
|
|
clock->xtime_interval += interval;
|
|
clock->xtime_nsec -= offset;
|
|
clock->error -= (interval - offset) <<
|
|
(TICK_LENGTH_SHIFT - clock->shift);
|
|
}
|
|
|
|
/**
|
|
* update_wall_time - Uses the current clocksource to increment the wall time
|
|
*
|
|
* Called from the timer interrupt, must hold a write on xtime_lock.
|
|
*/
|
|
static void update_wall_time(void)
|
|
{
|
|
cycle_t offset;
|
|
|
|
/* Make sure we're fully resumed: */
|
|
if (unlikely(timekeeping_suspended))
|
|
return;
|
|
|
|
#ifdef CONFIG_GENERIC_TIME
|
|
offset = (clocksource_read(clock) - clock->cycle_last) & clock->mask;
|
|
#else
|
|
offset = clock->cycle_interval;
|
|
#endif
|
|
clock->xtime_nsec += (s64)xtime.tv_nsec << clock->shift;
|
|
|
|
/* normally this loop will run just once, however in the
|
|
* case of lost or late ticks, it will accumulate correctly.
|
|
*/
|
|
while (offset >= clock->cycle_interval) {
|
|
/* accumulate one interval */
|
|
clock->xtime_nsec += clock->xtime_interval;
|
|
clock->cycle_last += clock->cycle_interval;
|
|
offset -= clock->cycle_interval;
|
|
|
|
if (clock->xtime_nsec >= (u64)NSEC_PER_SEC << clock->shift) {
|
|
clock->xtime_nsec -= (u64)NSEC_PER_SEC << clock->shift;
|
|
xtime.tv_sec++;
|
|
second_overflow();
|
|
}
|
|
|
|
/* interpolator bits */
|
|
time_interpolator_update(clock->xtime_interval
|
|
>> clock->shift);
|
|
|
|
/* accumulate error between NTP and clock interval */
|
|
clock->error += current_tick_length();
|
|
clock->error -= clock->xtime_interval << (TICK_LENGTH_SHIFT - clock->shift);
|
|
}
|
|
|
|
/* correct the clock when NTP error is too big */
|
|
clocksource_adjust(clock, offset);
|
|
|
|
/* store full nanoseconds into xtime */
|
|
xtime.tv_nsec = (s64)clock->xtime_nsec >> clock->shift;
|
|
clock->xtime_nsec -= (s64)xtime.tv_nsec << clock->shift;
|
|
|
|
/* check to see if there is a new clocksource to use */
|
|
change_clocksource();
|
|
}
|
|
|
|
/*
|
|
* Called from the timer interrupt handler to charge one tick to the current
|
|
* process. user_tick is 1 if the tick is user time, 0 for system.
|
|
*/
|
|
void update_process_times(int user_tick)
|
|
{
|
|
struct task_struct *p = current;
|
|
int cpu = smp_processor_id();
|
|
|
|
/* Note: this timer irq context must be accounted for as well. */
|
|
if (user_tick)
|
|
account_user_time(p, jiffies_to_cputime(1));
|
|
else
|
|
account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1));
|
|
run_local_timers();
|
|
if (rcu_pending(cpu))
|
|
rcu_check_callbacks(cpu, user_tick);
|
|
scheduler_tick();
|
|
run_posix_cpu_timers(p);
|
|
}
|
|
|
|
/*
|
|
* Nr of active tasks - counted in fixed-point numbers
|
|
*/
|
|
static unsigned long count_active_tasks(void)
|
|
{
|
|
return nr_active() * FIXED_1;
|
|
}
|
|
|
|
/*
|
|
* Hmm.. Changed this, as the GNU make sources (load.c) seems to
|
|
* imply that avenrun[] is the standard name for this kind of thing.
|
|
* Nothing else seems to be standardized: the fractional size etc
|
|
* all seem to differ on different machines.
|
|
*
|
|
* Requires xtime_lock to access.
|
|
*/
|
|
unsigned long avenrun[3];
|
|
|
|
EXPORT_SYMBOL(avenrun);
|
|
|
|
/*
|
|
* calc_load - given tick count, update the avenrun load estimates.
|
|
* This is called while holding a write_lock on xtime_lock.
|
|
*/
|
|
static inline void calc_load(unsigned long ticks)
|
|
{
|
|
unsigned long active_tasks; /* fixed-point */
|
|
static int count = LOAD_FREQ;
|
|
|
|
count -= ticks;
|
|
if (unlikely(count < 0)) {
|
|
active_tasks = count_active_tasks();
|
|
do {
|
|
CALC_LOAD(avenrun[0], EXP_1, active_tasks);
|
|
CALC_LOAD(avenrun[1], EXP_5, active_tasks);
|
|
CALC_LOAD(avenrun[2], EXP_15, active_tasks);
|
|
count += LOAD_FREQ;
|
|
} while (count < 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This read-write spinlock protects us from races in SMP while
|
|
* playing with xtime and avenrun.
|
|
*/
|
|
__attribute__((weak)) __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
|
|
|
|
EXPORT_SYMBOL(xtime_lock);
|
|
|
|
/*
|
|
* This function runs timers and the timer-tq in bottom half context.
|
|
*/
|
|
static void run_timer_softirq(struct softirq_action *h)
|
|
{
|
|
tvec_base_t *base = __get_cpu_var(tvec_bases);
|
|
|
|
hrtimer_run_queues();
|
|
if (time_after_eq(jiffies, base->timer_jiffies))
|
|
__run_timers(base);
|
|
}
|
|
|
|
/*
|
|
* Called by the local, per-CPU timer interrupt on SMP.
|
|
*/
|
|
void run_local_timers(void)
|
|
{
|
|
raise_softirq(TIMER_SOFTIRQ);
|
|
softlockup_tick();
|
|
}
|
|
|
|
/*
|
|
* Called by the timer interrupt. xtime_lock must already be taken
|
|
* by the timer IRQ!
|
|
*/
|
|
static inline void update_times(unsigned long ticks)
|
|
{
|
|
update_wall_time();
|
|
calc_load(ticks);
|
|
}
|
|
|
|
/*
|
|
* The 64-bit jiffies value is not atomic - you MUST NOT read it
|
|
* without sampling the sequence number in xtime_lock.
|
|
* jiffies is defined in the linker script...
|
|
*/
|
|
|
|
void do_timer(unsigned long ticks)
|
|
{
|
|
jiffies_64 += ticks;
|
|
update_times(ticks);
|
|
}
|
|
|
|
#ifdef __ARCH_WANT_SYS_ALARM
|
|
|
|
/*
|
|
* For backwards compatibility? This can be done in libc so Alpha
|
|
* and all newer ports shouldn't need it.
|
|
*/
|
|
asmlinkage unsigned long sys_alarm(unsigned int seconds)
|
|
{
|
|
return alarm_setitimer(seconds);
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifndef __alpha__
|
|
|
|
/*
|
|
* The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
|
|
* should be moved into arch/i386 instead?
|
|
*/
|
|
|
|
/**
|
|
* sys_getpid - return the thread group id of the current process
|
|
*
|
|
* Note, despite the name, this returns the tgid not the pid. The tgid and
|
|
* the pid are identical unless CLONE_THREAD was specified on clone() in
|
|
* which case the tgid is the same in all threads of the same group.
|
|
*
|
|
* This is SMP safe as current->tgid does not change.
|
|
*/
|
|
asmlinkage long sys_getpid(void)
|
|
{
|
|
return current->tgid;
|
|
}
|
|
|
|
/*
|
|
* Accessing ->real_parent is not SMP-safe, it could
|
|
* change from under us. However, we can use a stale
|
|
* value of ->real_parent under rcu_read_lock(), see
|
|
* release_task()->call_rcu(delayed_put_task_struct).
|
|
*/
|
|
asmlinkage long sys_getppid(void)
|
|
{
|
|
int pid;
|
|
|
|
rcu_read_lock();
|
|
pid = rcu_dereference(current->real_parent)->tgid;
|
|
rcu_read_unlock();
|
|
|
|
return pid;
|
|
}
|
|
|
|
asmlinkage long sys_getuid(void)
|
|
{
|
|
/* Only we change this so SMP safe */
|
|
return current->uid;
|
|
}
|
|
|
|
asmlinkage long sys_geteuid(void)
|
|
{
|
|
/* Only we change this so SMP safe */
|
|
return current->euid;
|
|
}
|
|
|
|
asmlinkage long sys_getgid(void)
|
|
{
|
|
/* Only we change this so SMP safe */
|
|
return current->gid;
|
|
}
|
|
|
|
asmlinkage long sys_getegid(void)
|
|
{
|
|
/* Only we change this so SMP safe */
|
|
return current->egid;
|
|
}
|
|
|
|
#endif
|
|
|
|
static void process_timeout(unsigned long __data)
|
|
{
|
|
wake_up_process((struct task_struct *)__data);
|
|
}
|
|
|
|
/**
|
|
* schedule_timeout - sleep until timeout
|
|
* @timeout: timeout value in jiffies
|
|
*
|
|
* Make the current task sleep until @timeout jiffies have
|
|
* elapsed. The routine will return immediately unless
|
|
* the current task state has been set (see set_current_state()).
|
|
*
|
|
* You can set the task state as follows -
|
|
*
|
|
* %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
|
|
* pass before the routine returns. The routine will return 0
|
|
*
|
|
* %TASK_INTERRUPTIBLE - the routine may return early if a signal is
|
|
* delivered to the current task. In this case the remaining time
|
|
* in jiffies will be returned, or 0 if the timer expired in time
|
|
*
|
|
* The current task state is guaranteed to be TASK_RUNNING when this
|
|
* routine returns.
|
|
*
|
|
* Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
|
|
* the CPU away without a bound on the timeout. In this case the return
|
|
* value will be %MAX_SCHEDULE_TIMEOUT.
|
|
*
|
|
* In all cases the return value is guaranteed to be non-negative.
|
|
*/
|
|
fastcall signed long __sched schedule_timeout(signed long timeout)
|
|
{
|
|
struct timer_list timer;
|
|
unsigned long expire;
|
|
|
|
switch (timeout)
|
|
{
|
|
case MAX_SCHEDULE_TIMEOUT:
|
|
/*
|
|
* These two special cases are useful to be comfortable
|
|
* in the caller. Nothing more. We could take
|
|
* MAX_SCHEDULE_TIMEOUT from one of the negative value
|
|
* but I' d like to return a valid offset (>=0) to allow
|
|
* the caller to do everything it want with the retval.
|
|
*/
|
|
schedule();
|
|
goto out;
|
|
default:
|
|
/*
|
|
* Another bit of PARANOID. Note that the retval will be
|
|
* 0 since no piece of kernel is supposed to do a check
|
|
* for a negative retval of schedule_timeout() (since it
|
|
* should never happens anyway). You just have the printk()
|
|
* that will tell you if something is gone wrong and where.
|
|
*/
|
|
if (timeout < 0) {
|
|
printk(KERN_ERR "schedule_timeout: wrong timeout "
|
|
"value %lx\n", timeout);
|
|
dump_stack();
|
|
current->state = TASK_RUNNING;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
expire = timeout + jiffies;
|
|
|
|
setup_timer(&timer, process_timeout, (unsigned long)current);
|
|
__mod_timer(&timer, expire);
|
|
schedule();
|
|
del_singleshot_timer_sync(&timer);
|
|
|
|
timeout = expire - jiffies;
|
|
|
|
out:
|
|
return timeout < 0 ? 0 : timeout;
|
|
}
|
|
EXPORT_SYMBOL(schedule_timeout);
|
|
|
|
/*
|
|
* We can use __set_current_state() here because schedule_timeout() calls
|
|
* schedule() unconditionally.
|
|
*/
|
|
signed long __sched schedule_timeout_interruptible(signed long timeout)
|
|
{
|
|
__set_current_state(TASK_INTERRUPTIBLE);
|
|
return schedule_timeout(timeout);
|
|
}
|
|
EXPORT_SYMBOL(schedule_timeout_interruptible);
|
|
|
|
signed long __sched schedule_timeout_uninterruptible(signed long timeout)
|
|
{
|
|
__set_current_state(TASK_UNINTERRUPTIBLE);
|
|
return schedule_timeout(timeout);
|
|
}
|
|
EXPORT_SYMBOL(schedule_timeout_uninterruptible);
|
|
|
|
/* Thread ID - the internal kernel "pid" */
|
|
asmlinkage long sys_gettid(void)
|
|
{
|
|
return current->pid;
|
|
}
|
|
|
|
/**
|
|
* do_sysinfo - fill in sysinfo struct
|
|
* @info: pointer to buffer to fill
|
|
*/
|
|
int do_sysinfo(struct sysinfo *info)
|
|
{
|
|
unsigned long mem_total, sav_total;
|
|
unsigned int mem_unit, bitcount;
|
|
unsigned long seq;
|
|
|
|
memset(info, 0, sizeof(struct sysinfo));
|
|
|
|
do {
|
|
struct timespec tp;
|
|
seq = read_seqbegin(&xtime_lock);
|
|
|
|
/*
|
|
* This is annoying. The below is the same thing
|
|
* posix_get_clock_monotonic() does, but it wants to
|
|
* take the lock which we want to cover the loads stuff
|
|
* too.
|
|
*/
|
|
|
|
getnstimeofday(&tp);
|
|
tp.tv_sec += wall_to_monotonic.tv_sec;
|
|
tp.tv_nsec += wall_to_monotonic.tv_nsec;
|
|
if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
|
|
tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
|
|
tp.tv_sec++;
|
|
}
|
|
info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
|
|
|
|
info->loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
|
|
info->loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
|
|
info->loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
|
|
|
|
info->procs = nr_threads;
|
|
} while (read_seqretry(&xtime_lock, seq));
|
|
|
|
si_meminfo(info);
|
|
si_swapinfo(info);
|
|
|
|
/*
|
|
* If the sum of all the available memory (i.e. ram + swap)
|
|
* is less than can be stored in a 32 bit unsigned long then
|
|
* we can be binary compatible with 2.2.x kernels. If not,
|
|
* well, in that case 2.2.x was broken anyways...
|
|
*
|
|
* -Erik Andersen <andersee@debian.org>
|
|
*/
|
|
|
|
mem_total = info->totalram + info->totalswap;
|
|
if (mem_total < info->totalram || mem_total < info->totalswap)
|
|
goto out;
|
|
bitcount = 0;
|
|
mem_unit = info->mem_unit;
|
|
while (mem_unit > 1) {
|
|
bitcount++;
|
|
mem_unit >>= 1;
|
|
sav_total = mem_total;
|
|
mem_total <<= 1;
|
|
if (mem_total < sav_total)
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* If mem_total did not overflow, multiply all memory values by
|
|
* info->mem_unit and set it to 1. This leaves things compatible
|
|
* with 2.2.x, and also retains compatibility with earlier 2.4.x
|
|
* kernels...
|
|
*/
|
|
|
|
info->mem_unit = 1;
|
|
info->totalram <<= bitcount;
|
|
info->freeram <<= bitcount;
|
|
info->sharedram <<= bitcount;
|
|
info->bufferram <<= bitcount;
|
|
info->totalswap <<= bitcount;
|
|
info->freeswap <<= bitcount;
|
|
info->totalhigh <<= bitcount;
|
|
info->freehigh <<= bitcount;
|
|
|
|
out:
|
|
return 0;
|
|
}
|
|
|
|
asmlinkage long sys_sysinfo(struct sysinfo __user *info)
|
|
{
|
|
struct sysinfo val;
|
|
|
|
do_sysinfo(&val);
|
|
|
|
if (copy_to_user(info, &val, sizeof(struct sysinfo)))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* lockdep: we want to track each per-CPU base as a separate lock-class,
|
|
* but timer-bases are kmalloc()-ed, so we need to attach separate
|
|
* keys to them:
|
|
*/
|
|
static struct lock_class_key base_lock_keys[NR_CPUS];
|
|
|
|
static int __devinit init_timers_cpu(int cpu)
|
|
{
|
|
int j;
|
|
tvec_base_t *base;
|
|
static char __devinitdata tvec_base_done[NR_CPUS];
|
|
|
|
if (!tvec_base_done[cpu]) {
|
|
static char boot_done;
|
|
|
|
if (boot_done) {
|
|
/*
|
|
* The APs use this path later in boot
|
|
*/
|
|
base = kmalloc_node(sizeof(*base), GFP_KERNEL,
|
|
cpu_to_node(cpu));
|
|
if (!base)
|
|
return -ENOMEM;
|
|
memset(base, 0, sizeof(*base));
|
|
per_cpu(tvec_bases, cpu) = base;
|
|
} else {
|
|
/*
|
|
* This is for the boot CPU - we use compile-time
|
|
* static initialisation because per-cpu memory isn't
|
|
* ready yet and because the memory allocators are not
|
|
* initialised either.
|
|
*/
|
|
boot_done = 1;
|
|
base = &boot_tvec_bases;
|
|
}
|
|
tvec_base_done[cpu] = 1;
|
|
} else {
|
|
base = per_cpu(tvec_bases, cpu);
|
|
}
|
|
|
|
spin_lock_init(&base->lock);
|
|
lockdep_set_class(&base->lock, base_lock_keys + cpu);
|
|
|
|
for (j = 0; j < TVN_SIZE; j++) {
|
|
INIT_LIST_HEAD(base->tv5.vec + j);
|
|
INIT_LIST_HEAD(base->tv4.vec + j);
|
|
INIT_LIST_HEAD(base->tv3.vec + j);
|
|
INIT_LIST_HEAD(base->tv2.vec + j);
|
|
}
|
|
for (j = 0; j < TVR_SIZE; j++)
|
|
INIT_LIST_HEAD(base->tv1.vec + j);
|
|
|
|
base->timer_jiffies = jiffies;
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
static void migrate_timer_list(tvec_base_t *new_base, struct list_head *head)
|
|
{
|
|
struct timer_list *timer;
|
|
|
|
while (!list_empty(head)) {
|
|
timer = list_entry(head->next, struct timer_list, entry);
|
|
detach_timer(timer, 0);
|
|
timer->base = new_base;
|
|
internal_add_timer(new_base, timer);
|
|
}
|
|
}
|
|
|
|
static void __devinit migrate_timers(int cpu)
|
|
{
|
|
tvec_base_t *old_base;
|
|
tvec_base_t *new_base;
|
|
int i;
|
|
|
|
BUG_ON(cpu_online(cpu));
|
|
old_base = per_cpu(tvec_bases, cpu);
|
|
new_base = get_cpu_var(tvec_bases);
|
|
|
|
local_irq_disable();
|
|
spin_lock(&new_base->lock);
|
|
spin_lock(&old_base->lock);
|
|
|
|
BUG_ON(old_base->running_timer);
|
|
|
|
for (i = 0; i < TVR_SIZE; i++)
|
|
migrate_timer_list(new_base, old_base->tv1.vec + i);
|
|
for (i = 0; i < TVN_SIZE; i++) {
|
|
migrate_timer_list(new_base, old_base->tv2.vec + i);
|
|
migrate_timer_list(new_base, old_base->tv3.vec + i);
|
|
migrate_timer_list(new_base, old_base->tv4.vec + i);
|
|
migrate_timer_list(new_base, old_base->tv5.vec + i);
|
|
}
|
|
|
|
spin_unlock(&old_base->lock);
|
|
spin_unlock(&new_base->lock);
|
|
local_irq_enable();
|
|
put_cpu_var(tvec_bases);
|
|
}
|
|
#endif /* CONFIG_HOTPLUG_CPU */
|
|
|
|
static int __cpuinit timer_cpu_notify(struct notifier_block *self,
|
|
unsigned long action, void *hcpu)
|
|
{
|
|
long cpu = (long)hcpu;
|
|
switch(action) {
|
|
case CPU_UP_PREPARE:
|
|
if (init_timers_cpu(cpu) < 0)
|
|
return NOTIFY_BAD;
|
|
break;
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
case CPU_DEAD:
|
|
migrate_timers(cpu);
|
|
break;
|
|
#endif
|
|
default:
|
|
break;
|
|
}
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block __cpuinitdata timers_nb = {
|
|
.notifier_call = timer_cpu_notify,
|
|
};
|
|
|
|
|
|
void __init init_timers(void)
|
|
{
|
|
int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
|
|
(void *)(long)smp_processor_id());
|
|
|
|
BUG_ON(err == NOTIFY_BAD);
|
|
register_cpu_notifier(&timers_nb);
|
|
open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL);
|
|
}
|
|
|
|
#ifdef CONFIG_TIME_INTERPOLATION
|
|
|
|
struct time_interpolator *time_interpolator __read_mostly;
|
|
static struct time_interpolator *time_interpolator_list __read_mostly;
|
|
static DEFINE_SPINLOCK(time_interpolator_lock);
|
|
|
|
static inline cycles_t time_interpolator_get_cycles(unsigned int src)
|
|
{
|
|
unsigned long (*x)(void);
|
|
|
|
switch (src)
|
|
{
|
|
case TIME_SOURCE_FUNCTION:
|
|
x = time_interpolator->addr;
|
|
return x();
|
|
|
|
case TIME_SOURCE_MMIO64 :
|
|
return readq_relaxed((void __iomem *)time_interpolator->addr);
|
|
|
|
case TIME_SOURCE_MMIO32 :
|
|
return readl_relaxed((void __iomem *)time_interpolator->addr);
|
|
|
|
default: return get_cycles();
|
|
}
|
|
}
|
|
|
|
static inline u64 time_interpolator_get_counter(int writelock)
|
|
{
|
|
unsigned int src = time_interpolator->source;
|
|
|
|
if (time_interpolator->jitter)
|
|
{
|
|
cycles_t lcycle;
|
|
cycles_t now;
|
|
|
|
do {
|
|
lcycle = time_interpolator->last_cycle;
|
|
now = time_interpolator_get_cycles(src);
|
|
if (lcycle && time_after(lcycle, now))
|
|
return lcycle;
|
|
|
|
/* When holding the xtime write lock, there's no need
|
|
* to add the overhead of the cmpxchg. Readers are
|
|
* force to retry until the write lock is released.
|
|
*/
|
|
if (writelock) {
|
|
time_interpolator->last_cycle = now;
|
|
return now;
|
|
}
|
|
/* Keep track of the last timer value returned. The use of cmpxchg here
|
|
* will cause contention in an SMP environment.
|
|
*/
|
|
} while (unlikely(cmpxchg(&time_interpolator->last_cycle, lcycle, now) != lcycle));
|
|
return now;
|
|
}
|
|
else
|
|
return time_interpolator_get_cycles(src);
|
|
}
|
|
|
|
void time_interpolator_reset(void)
|
|
{
|
|
time_interpolator->offset = 0;
|
|
time_interpolator->last_counter = time_interpolator_get_counter(1);
|
|
}
|
|
|
|
#define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * (i)->nsec_per_cyc) >> (i)->shift)
|
|
|
|
unsigned long time_interpolator_get_offset(void)
|
|
{
|
|
/* If we do not have a time interpolator set up then just return zero */
|
|
if (!time_interpolator)
|
|
return 0;
|
|
|
|
return time_interpolator->offset +
|
|
GET_TI_NSECS(time_interpolator_get_counter(0), time_interpolator);
|
|
}
|
|
|
|
#define INTERPOLATOR_ADJUST 65536
|
|
#define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST
|
|
|
|
void time_interpolator_update(long delta_nsec)
|
|
{
|
|
u64 counter;
|
|
unsigned long offset;
|
|
|
|
/* If there is no time interpolator set up then do nothing */
|
|
if (!time_interpolator)
|
|
return;
|
|
|
|
/*
|
|
* The interpolator compensates for late ticks by accumulating the late
|
|
* time in time_interpolator->offset. A tick earlier than expected will
|
|
* lead to a reset of the offset and a corresponding jump of the clock
|
|
* forward. Again this only works if the interpolator clock is running
|
|
* slightly slower than the regular clock and the tuning logic insures
|
|
* that.
|
|
*/
|
|
|
|
counter = time_interpolator_get_counter(1);
|
|
offset = time_interpolator->offset +
|
|
GET_TI_NSECS(counter, time_interpolator);
|
|
|
|
if (delta_nsec < 0 || (unsigned long) delta_nsec < offset)
|
|
time_interpolator->offset = offset - delta_nsec;
|
|
else {
|
|
time_interpolator->skips++;
|
|
time_interpolator->ns_skipped += delta_nsec - offset;
|
|
time_interpolator->offset = 0;
|
|
}
|
|
time_interpolator->last_counter = counter;
|
|
|
|
/* Tuning logic for time interpolator invoked every minute or so.
|
|
* Decrease interpolator clock speed if no skips occurred and an offset is carried.
|
|
* Increase interpolator clock speed if we skip too much time.
|
|
*/
|
|
if (jiffies % INTERPOLATOR_ADJUST == 0)
|
|
{
|
|
if (time_interpolator->skips == 0 && time_interpolator->offset > tick_nsec)
|
|
time_interpolator->nsec_per_cyc--;
|
|
if (time_interpolator->ns_skipped > INTERPOLATOR_MAX_SKIP && time_interpolator->offset == 0)
|
|
time_interpolator->nsec_per_cyc++;
|
|
time_interpolator->skips = 0;
|
|
time_interpolator->ns_skipped = 0;
|
|
}
|
|
}
|
|
|
|
static inline int
|
|
is_better_time_interpolator(struct time_interpolator *new)
|
|
{
|
|
if (!time_interpolator)
|
|
return 1;
|
|
return new->frequency > 2*time_interpolator->frequency ||
|
|
(unsigned long)new->drift < (unsigned long)time_interpolator->drift;
|
|
}
|
|
|
|
void
|
|
register_time_interpolator(struct time_interpolator *ti)
|
|
{
|
|
unsigned long flags;
|
|
|
|
/* Sanity check */
|
|
BUG_ON(ti->frequency == 0 || ti->mask == 0);
|
|
|
|
ti->nsec_per_cyc = ((u64)NSEC_PER_SEC << ti->shift) / ti->frequency;
|
|
spin_lock(&time_interpolator_lock);
|
|
write_seqlock_irqsave(&xtime_lock, flags);
|
|
if (is_better_time_interpolator(ti)) {
|
|
time_interpolator = ti;
|
|
time_interpolator_reset();
|
|
}
|
|
write_sequnlock_irqrestore(&xtime_lock, flags);
|
|
|
|
ti->next = time_interpolator_list;
|
|
time_interpolator_list = ti;
|
|
spin_unlock(&time_interpolator_lock);
|
|
}
|
|
|
|
void
|
|
unregister_time_interpolator(struct time_interpolator *ti)
|
|
{
|
|
struct time_interpolator *curr, **prev;
|
|
unsigned long flags;
|
|
|
|
spin_lock(&time_interpolator_lock);
|
|
prev = &time_interpolator_list;
|
|
for (curr = *prev; curr; curr = curr->next) {
|
|
if (curr == ti) {
|
|
*prev = curr->next;
|
|
break;
|
|
}
|
|
prev = &curr->next;
|
|
}
|
|
|
|
write_seqlock_irqsave(&xtime_lock, flags);
|
|
if (ti == time_interpolator) {
|
|
/* we lost the best time-interpolator: */
|
|
time_interpolator = NULL;
|
|
/* find the next-best interpolator */
|
|
for (curr = time_interpolator_list; curr; curr = curr->next)
|
|
if (is_better_time_interpolator(curr))
|
|
time_interpolator = curr;
|
|
time_interpolator_reset();
|
|
}
|
|
write_sequnlock_irqrestore(&xtime_lock, flags);
|
|
spin_unlock(&time_interpolator_lock);
|
|
}
|
|
#endif /* CONFIG_TIME_INTERPOLATION */
|
|
|
|
/**
|
|
* msleep - sleep safely even with waitqueue interruptions
|
|
* @msecs: Time in milliseconds to sleep for
|
|
*/
|
|
void msleep(unsigned int msecs)
|
|
{
|
|
unsigned long timeout = msecs_to_jiffies(msecs) + 1;
|
|
|
|
while (timeout)
|
|
timeout = schedule_timeout_uninterruptible(timeout);
|
|
}
|
|
|
|
EXPORT_SYMBOL(msleep);
|
|
|
|
/**
|
|
* msleep_interruptible - sleep waiting for signals
|
|
* @msecs: Time in milliseconds to sleep for
|
|
*/
|
|
unsigned long msleep_interruptible(unsigned int msecs)
|
|
{
|
|
unsigned long timeout = msecs_to_jiffies(msecs) + 1;
|
|
|
|
while (timeout && !signal_pending(current))
|
|
timeout = schedule_timeout_interruptible(timeout);
|
|
return jiffies_to_msecs(timeout);
|
|
}
|
|
|
|
EXPORT_SYMBOL(msleep_interruptible);
|