linux/net/mac80211/sta_info.c
Michal Kazior fa962b9212 mac80211: implement fair queueing per txq
mac80211's software queues were designed to work
very closely with device tx queues. They are
required to make use of 802.11 packet aggregation
easily and efficiently.

Due to the way 802.11 aggregation is designed it
only makes sense to keep fair queuing as close to
hardware as possible to reduce induced latency and
inertia and provide the best flow responsiveness.

This change doesn't translate directly to
immediate and significant gains. End result
depends on driver's induced latency. Best results
can be achieved if driver keeps its own tx
queue/fifo fill level to a minimum.

Signed-off-by: Michal Kazior <michal.kazior@tieto.com>
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2016-06-09 11:34:08 +02:00

2302 lines
61 KiB
C

/*
* Copyright 2002-2005, Instant802 Networks, Inc.
* Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
* Copyright 2013-2014 Intel Mobile Communications GmbH
* Copyright (C) 2015 - 2016 Intel Deutschland GmbH
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/etherdevice.h>
#include <linux/netdevice.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/skbuff.h>
#include <linux/if_arp.h>
#include <linux/timer.h>
#include <linux/rtnetlink.h>
#include <net/mac80211.h>
#include "ieee80211_i.h"
#include "driver-ops.h"
#include "rate.h"
#include "sta_info.h"
#include "debugfs_sta.h"
#include "mesh.h"
#include "wme.h"
/**
* DOC: STA information lifetime rules
*
* STA info structures (&struct sta_info) are managed in a hash table
* for faster lookup and a list for iteration. They are managed using
* RCU, i.e. access to the list and hash table is protected by RCU.
*
* Upon allocating a STA info structure with sta_info_alloc(), the caller
* owns that structure. It must then insert it into the hash table using
* either sta_info_insert() or sta_info_insert_rcu(); only in the latter
* case (which acquires an rcu read section but must not be called from
* within one) will the pointer still be valid after the call. Note that
* the caller may not do much with the STA info before inserting it, in
* particular, it may not start any mesh peer link management or add
* encryption keys.
*
* When the insertion fails (sta_info_insert()) returns non-zero), the
* structure will have been freed by sta_info_insert()!
*
* Station entries are added by mac80211 when you establish a link with a
* peer. This means different things for the different type of interfaces
* we support. For a regular station this mean we add the AP sta when we
* receive an association response from the AP. For IBSS this occurs when
* get to know about a peer on the same IBSS. For WDS we add the sta for
* the peer immediately upon device open. When using AP mode we add stations
* for each respective station upon request from userspace through nl80211.
*
* In order to remove a STA info structure, various sta_info_destroy_*()
* calls are available.
*
* There is no concept of ownership on a STA entry, each structure is
* owned by the global hash table/list until it is removed. All users of
* the structure need to be RCU protected so that the structure won't be
* freed before they are done using it.
*/
static const struct rhashtable_params sta_rht_params = {
.nelem_hint = 3, /* start small */
.insecure_elasticity = true, /* Disable chain-length checks. */
.automatic_shrinking = true,
.head_offset = offsetof(struct sta_info, hash_node),
.key_offset = offsetof(struct sta_info, addr),
.key_len = ETH_ALEN,
.hashfn = sta_addr_hash,
.max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE,
};
/* Caller must hold local->sta_mtx */
static int sta_info_hash_del(struct ieee80211_local *local,
struct sta_info *sta)
{
return rhashtable_remove_fast(&local->sta_hash, &sta->hash_node,
sta_rht_params);
}
static void __cleanup_single_sta(struct sta_info *sta)
{
int ac, i;
struct tid_ampdu_tx *tid_tx;
struct ieee80211_sub_if_data *sdata = sta->sdata;
struct ieee80211_local *local = sdata->local;
struct fq *fq = &local->fq;
struct ps_data *ps;
if (test_sta_flag(sta, WLAN_STA_PS_STA) ||
test_sta_flag(sta, WLAN_STA_PS_DRIVER) ||
test_sta_flag(sta, WLAN_STA_PS_DELIVER)) {
if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
ps = &sdata->bss->ps;
else if (ieee80211_vif_is_mesh(&sdata->vif))
ps = &sdata->u.mesh.ps;
else
return;
clear_sta_flag(sta, WLAN_STA_PS_STA);
clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
atomic_dec(&ps->num_sta_ps);
}
if (sta->sta.txq[0]) {
for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
struct txq_info *txqi = to_txq_info(sta->sta.txq[i]);
spin_lock_bh(&fq->lock);
ieee80211_txq_purge(local, txqi);
spin_unlock_bh(&fq->lock);
}
}
for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]);
ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]);
ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]);
}
if (ieee80211_vif_is_mesh(&sdata->vif))
mesh_sta_cleanup(sta);
cancel_work_sync(&sta->drv_deliver_wk);
/*
* Destroy aggregation state here. It would be nice to wait for the
* driver to finish aggregation stop and then clean up, but for now
* drivers have to handle aggregation stop being requested, followed
* directly by station destruction.
*/
for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
kfree(sta->ampdu_mlme.tid_start_tx[i]);
tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]);
if (!tid_tx)
continue;
ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending);
kfree(tid_tx);
}
}
static void cleanup_single_sta(struct sta_info *sta)
{
struct ieee80211_sub_if_data *sdata = sta->sdata;
struct ieee80211_local *local = sdata->local;
__cleanup_single_sta(sta);
sta_info_free(local, sta);
}
/* protected by RCU */
struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata,
const u8 *addr)
{
struct ieee80211_local *local = sdata->local;
struct sta_info *sta;
struct rhash_head *tmp;
const struct bucket_table *tbl;
rcu_read_lock();
tbl = rht_dereference_rcu(local->sta_hash.tbl, &local->sta_hash);
for_each_sta_info(local, tbl, addr, sta, tmp) {
if (sta->sdata == sdata) {
rcu_read_unlock();
/* this is safe as the caller must already hold
* another rcu read section or the mutex
*/
return sta;
}
}
rcu_read_unlock();
return NULL;
}
/*
* Get sta info either from the specified interface
* or from one of its vlans
*/
struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata,
const u8 *addr)
{
struct ieee80211_local *local = sdata->local;
struct sta_info *sta;
struct rhash_head *tmp;
const struct bucket_table *tbl;
rcu_read_lock();
tbl = rht_dereference_rcu(local->sta_hash.tbl, &local->sta_hash);
for_each_sta_info(local, tbl, addr, sta, tmp) {
if (sta->sdata == sdata ||
(sta->sdata->bss && sta->sdata->bss == sdata->bss)) {
rcu_read_unlock();
/* this is safe as the caller must already hold
* another rcu read section or the mutex
*/
return sta;
}
}
rcu_read_unlock();
return NULL;
}
struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata,
int idx)
{
struct ieee80211_local *local = sdata->local;
struct sta_info *sta;
int i = 0;
list_for_each_entry_rcu(sta, &local->sta_list, list) {
if (sdata != sta->sdata)
continue;
if (i < idx) {
++i;
continue;
}
return sta;
}
return NULL;
}
/**
* sta_info_free - free STA
*
* @local: pointer to the global information
* @sta: STA info to free
*
* This function must undo everything done by sta_info_alloc()
* that may happen before sta_info_insert(). It may only be
* called when sta_info_insert() has not been attempted (and
* if that fails, the station is freed anyway.)
*/
void sta_info_free(struct ieee80211_local *local, struct sta_info *sta)
{
if (sta->rate_ctrl)
rate_control_free_sta(sta);
sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr);
if (sta->sta.txq[0])
kfree(to_txq_info(sta->sta.txq[0]));
kfree(rcu_dereference_raw(sta->sta.rates));
#ifdef CONFIG_MAC80211_MESH
kfree(sta->mesh);
#endif
free_percpu(sta->pcpu_rx_stats);
kfree(sta);
}
/* Caller must hold local->sta_mtx */
static int sta_info_hash_add(struct ieee80211_local *local,
struct sta_info *sta)
{
return rhashtable_insert_fast(&local->sta_hash, &sta->hash_node,
sta_rht_params);
}
static void sta_deliver_ps_frames(struct work_struct *wk)
{
struct sta_info *sta;
sta = container_of(wk, struct sta_info, drv_deliver_wk);
if (sta->dead)
return;
local_bh_disable();
if (!test_sta_flag(sta, WLAN_STA_PS_STA))
ieee80211_sta_ps_deliver_wakeup(sta);
else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL))
ieee80211_sta_ps_deliver_poll_response(sta);
else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD))
ieee80211_sta_ps_deliver_uapsd(sta);
local_bh_enable();
}
static int sta_prepare_rate_control(struct ieee80211_local *local,
struct sta_info *sta, gfp_t gfp)
{
if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL))
return 0;
sta->rate_ctrl = local->rate_ctrl;
sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl,
sta, gfp);
if (!sta->rate_ctrl_priv)
return -ENOMEM;
return 0;
}
struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata,
const u8 *addr, gfp_t gfp)
{
struct ieee80211_local *local = sdata->local;
struct ieee80211_hw *hw = &local->hw;
struct sta_info *sta;
int i;
sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp);
if (!sta)
return NULL;
if (ieee80211_hw_check(hw, USES_RSS)) {
sta->pcpu_rx_stats =
alloc_percpu(struct ieee80211_sta_rx_stats);
if (!sta->pcpu_rx_stats)
goto free;
}
spin_lock_init(&sta->lock);
spin_lock_init(&sta->ps_lock);
INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames);
INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work);
mutex_init(&sta->ampdu_mlme.mtx);
#ifdef CONFIG_MAC80211_MESH
if (ieee80211_vif_is_mesh(&sdata->vif)) {
sta->mesh = kzalloc(sizeof(*sta->mesh), gfp);
if (!sta->mesh)
goto free;
spin_lock_init(&sta->mesh->plink_lock);
if (ieee80211_vif_is_mesh(&sdata->vif) &&
!sdata->u.mesh.user_mpm)
init_timer(&sta->mesh->plink_timer);
sta->mesh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE;
}
#endif
memcpy(sta->addr, addr, ETH_ALEN);
memcpy(sta->sta.addr, addr, ETH_ALEN);
sta->local = local;
sta->sdata = sdata;
sta->rx_stats.last_rx = jiffies;
u64_stats_init(&sta->rx_stats.syncp);
sta->sta_state = IEEE80211_STA_NONE;
/* Mark TID as unreserved */
sta->reserved_tid = IEEE80211_TID_UNRESERVED;
sta->last_connected = ktime_get_seconds();
ewma_signal_init(&sta->rx_stats_avg.signal);
for (i = 0; i < ARRAY_SIZE(sta->rx_stats_avg.chain_signal); i++)
ewma_signal_init(&sta->rx_stats_avg.chain_signal[i]);
if (local->ops->wake_tx_queue) {
void *txq_data;
int size = sizeof(struct txq_info) +
ALIGN(hw->txq_data_size, sizeof(void *));
txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp);
if (!txq_data)
goto free;
for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
struct txq_info *txq = txq_data + i * size;
ieee80211_txq_init(sdata, sta, txq, i);
}
}
if (sta_prepare_rate_control(local, sta, gfp))
goto free_txq;
for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
/*
* timer_to_tid must be initialized with identity mapping
* to enable session_timer's data differentiation. See
* sta_rx_agg_session_timer_expired for usage.
*/
sta->timer_to_tid[i] = i;
}
for (i = 0; i < IEEE80211_NUM_ACS; i++) {
skb_queue_head_init(&sta->ps_tx_buf[i]);
skb_queue_head_init(&sta->tx_filtered[i]);
}
for (i = 0; i < IEEE80211_NUM_TIDS; i++)
sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX);
sta->sta.smps_mode = IEEE80211_SMPS_OFF;
if (sdata->vif.type == NL80211_IFTYPE_AP ||
sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
struct ieee80211_supported_band *sband =
hw->wiphy->bands[ieee80211_get_sdata_band(sdata)];
u8 smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >>
IEEE80211_HT_CAP_SM_PS_SHIFT;
/*
* Assume that hostapd advertises our caps in the beacon and
* this is the known_smps_mode for a station that just assciated
*/
switch (smps) {
case WLAN_HT_SMPS_CONTROL_DISABLED:
sta->known_smps_mode = IEEE80211_SMPS_OFF;
break;
case WLAN_HT_SMPS_CONTROL_STATIC:
sta->known_smps_mode = IEEE80211_SMPS_STATIC;
break;
case WLAN_HT_SMPS_CONTROL_DYNAMIC:
sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC;
break;
default:
WARN_ON(1);
}
}
sta->sta.max_rc_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_BA;
sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr);
return sta;
free_txq:
if (sta->sta.txq[0])
kfree(to_txq_info(sta->sta.txq[0]));
free:
#ifdef CONFIG_MAC80211_MESH
kfree(sta->mesh);
#endif
kfree(sta);
return NULL;
}
static int sta_info_insert_check(struct sta_info *sta)
{
struct ieee80211_sub_if_data *sdata = sta->sdata;
/*
* Can't be a WARN_ON because it can be triggered through a race:
* something inserts a STA (on one CPU) without holding the RTNL
* and another CPU turns off the net device.
*/
if (unlikely(!ieee80211_sdata_running(sdata)))
return -ENETDOWN;
if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) ||
is_multicast_ether_addr(sta->sta.addr)))
return -EINVAL;
/* Strictly speaking this isn't necessary as we hold the mutex, but
* the rhashtable code can't really deal with that distinction. We
* do require the mutex for correctness though.
*/
rcu_read_lock();
lockdep_assert_held(&sdata->local->sta_mtx);
if (ieee80211_hw_check(&sdata->local->hw, NEEDS_UNIQUE_STA_ADDR) &&
ieee80211_find_sta_by_ifaddr(&sdata->local->hw, sta->addr, NULL)) {
rcu_read_unlock();
return -ENOTUNIQ;
}
rcu_read_unlock();
return 0;
}
static int sta_info_insert_drv_state(struct ieee80211_local *local,
struct ieee80211_sub_if_data *sdata,
struct sta_info *sta)
{
enum ieee80211_sta_state state;
int err = 0;
for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) {
err = drv_sta_state(local, sdata, sta, state, state + 1);
if (err)
break;
}
if (!err) {
/*
* Drivers using legacy sta_add/sta_remove callbacks only
* get uploaded set to true after sta_add is called.
*/
if (!local->ops->sta_add)
sta->uploaded = true;
return 0;
}
if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
sdata_info(sdata,
"failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n",
sta->sta.addr, state + 1, err);
err = 0;
}
/* unwind on error */
for (; state > IEEE80211_STA_NOTEXIST; state--)
WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1));
return err;
}
/*
* should be called with sta_mtx locked
* this function replaces the mutex lock
* with a RCU lock
*/
static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU)
{
struct ieee80211_local *local = sta->local;
struct ieee80211_sub_if_data *sdata = sta->sdata;
struct station_info *sinfo;
int err = 0;
lockdep_assert_held(&local->sta_mtx);
sinfo = kzalloc(sizeof(struct station_info), GFP_KERNEL);
if (!sinfo) {
err = -ENOMEM;
goto out_err;
}
/* check if STA exists already */
if (sta_info_get_bss(sdata, sta->sta.addr)) {
err = -EEXIST;
goto out_err;
}
local->num_sta++;
local->sta_generation++;
smp_mb();
/* simplify things and don't accept BA sessions yet */
set_sta_flag(sta, WLAN_STA_BLOCK_BA);
/* make the station visible */
err = sta_info_hash_add(local, sta);
if (err)
goto out_drop_sta;
list_add_tail_rcu(&sta->list, &local->sta_list);
/* notify driver */
err = sta_info_insert_drv_state(local, sdata, sta);
if (err)
goto out_remove;
set_sta_flag(sta, WLAN_STA_INSERTED);
/* accept BA sessions now */
clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
ieee80211_sta_debugfs_add(sta);
rate_control_add_sta_debugfs(sta);
sinfo->generation = local->sta_generation;
cfg80211_new_sta(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
kfree(sinfo);
sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr);
/* move reference to rcu-protected */
rcu_read_lock();
mutex_unlock(&local->sta_mtx);
if (ieee80211_vif_is_mesh(&sdata->vif))
mesh_accept_plinks_update(sdata);
return 0;
out_remove:
sta_info_hash_del(local, sta);
list_del_rcu(&sta->list);
out_drop_sta:
local->num_sta--;
synchronize_net();
__cleanup_single_sta(sta);
out_err:
mutex_unlock(&local->sta_mtx);
kfree(sinfo);
rcu_read_lock();
return err;
}
int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU)
{
struct ieee80211_local *local = sta->local;
int err;
might_sleep();
mutex_lock(&local->sta_mtx);
err = sta_info_insert_check(sta);
if (err) {
mutex_unlock(&local->sta_mtx);
rcu_read_lock();
goto out_free;
}
err = sta_info_insert_finish(sta);
if (err)
goto out_free;
return 0;
out_free:
sta_info_free(local, sta);
return err;
}
int sta_info_insert(struct sta_info *sta)
{
int err = sta_info_insert_rcu(sta);
rcu_read_unlock();
return err;
}
static inline void __bss_tim_set(u8 *tim, u16 id)
{
/*
* This format has been mandated by the IEEE specifications,
* so this line may not be changed to use the __set_bit() format.
*/
tim[id / 8] |= (1 << (id % 8));
}
static inline void __bss_tim_clear(u8 *tim, u16 id)
{
/*
* This format has been mandated by the IEEE specifications,
* so this line may not be changed to use the __clear_bit() format.
*/
tim[id / 8] &= ~(1 << (id % 8));
}
static inline bool __bss_tim_get(u8 *tim, u16 id)
{
/*
* This format has been mandated by the IEEE specifications,
* so this line may not be changed to use the test_bit() format.
*/
return tim[id / 8] & (1 << (id % 8));
}
static unsigned long ieee80211_tids_for_ac(int ac)
{
/* If we ever support TIDs > 7, this obviously needs to be adjusted */
switch (ac) {
case IEEE80211_AC_VO:
return BIT(6) | BIT(7);
case IEEE80211_AC_VI:
return BIT(4) | BIT(5);
case IEEE80211_AC_BE:
return BIT(0) | BIT(3);
case IEEE80211_AC_BK:
return BIT(1) | BIT(2);
default:
WARN_ON(1);
return 0;
}
}
static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending)
{
struct ieee80211_local *local = sta->local;
struct ps_data *ps;
bool indicate_tim = false;
u8 ignore_for_tim = sta->sta.uapsd_queues;
int ac;
u16 id = sta->sta.aid;
if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
if (WARN_ON_ONCE(!sta->sdata->bss))
return;
ps = &sta->sdata->bss->ps;
#ifdef CONFIG_MAC80211_MESH
} else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) {
ps = &sta->sdata->u.mesh.ps;
#endif
} else {
return;
}
/* No need to do anything if the driver does all */
if (ieee80211_hw_check(&local->hw, AP_LINK_PS))
return;
if (sta->dead)
goto done;
/*
* If all ACs are delivery-enabled then we should build
* the TIM bit for all ACs anyway; if only some are then
* we ignore those and build the TIM bit using only the
* non-enabled ones.
*/
if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1)
ignore_for_tim = 0;
if (ignore_pending)
ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1;
for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
unsigned long tids;
if (ignore_for_tim & BIT(ac))
continue;
indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) ||
!skb_queue_empty(&sta->ps_tx_buf[ac]);
if (indicate_tim)
break;
tids = ieee80211_tids_for_ac(ac);
indicate_tim |=
sta->driver_buffered_tids & tids;
indicate_tim |=
sta->txq_buffered_tids & tids;
}
done:
spin_lock_bh(&local->tim_lock);
if (indicate_tim == __bss_tim_get(ps->tim, id))
goto out_unlock;
if (indicate_tim)
__bss_tim_set(ps->tim, id);
else
__bss_tim_clear(ps->tim, id);
if (local->ops->set_tim && !WARN_ON(sta->dead)) {
local->tim_in_locked_section = true;
drv_set_tim(local, &sta->sta, indicate_tim);
local->tim_in_locked_section = false;
}
out_unlock:
spin_unlock_bh(&local->tim_lock);
}
void sta_info_recalc_tim(struct sta_info *sta)
{
__sta_info_recalc_tim(sta, false);
}
static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb)
{
struct ieee80211_tx_info *info;
int timeout;
if (!skb)
return false;
info = IEEE80211_SKB_CB(skb);
/* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */
timeout = (sta->listen_interval *
sta->sdata->vif.bss_conf.beacon_int *
32 / 15625) * HZ;
if (timeout < STA_TX_BUFFER_EXPIRE)
timeout = STA_TX_BUFFER_EXPIRE;
return time_after(jiffies, info->control.jiffies + timeout);
}
static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local,
struct sta_info *sta, int ac)
{
unsigned long flags;
struct sk_buff *skb;
/*
* First check for frames that should expire on the filtered
* queue. Frames here were rejected by the driver and are on
* a separate queue to avoid reordering with normal PS-buffered
* frames. They also aren't accounted for right now in the
* total_ps_buffered counter.
*/
for (;;) {
spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
skb = skb_peek(&sta->tx_filtered[ac]);
if (sta_info_buffer_expired(sta, skb))
skb = __skb_dequeue(&sta->tx_filtered[ac]);
else
skb = NULL;
spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
/*
* Frames are queued in order, so if this one
* hasn't expired yet we can stop testing. If
* we actually reached the end of the queue we
* also need to stop, of course.
*/
if (!skb)
break;
ieee80211_free_txskb(&local->hw, skb);
}
/*
* Now also check the normal PS-buffered queue, this will
* only find something if the filtered queue was emptied
* since the filtered frames are all before the normal PS
* buffered frames.
*/
for (;;) {
spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
skb = skb_peek(&sta->ps_tx_buf[ac]);
if (sta_info_buffer_expired(sta, skb))
skb = __skb_dequeue(&sta->ps_tx_buf[ac]);
else
skb = NULL;
spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
/*
* frames are queued in order, so if this one
* hasn't expired yet (or we reached the end of
* the queue) we can stop testing
*/
if (!skb)
break;
local->total_ps_buffered--;
ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n",
sta->sta.addr);
ieee80211_free_txskb(&local->hw, skb);
}
/*
* Finally, recalculate the TIM bit for this station -- it might
* now be clear because the station was too slow to retrieve its
* frames.
*/
sta_info_recalc_tim(sta);
/*
* Return whether there are any frames still buffered, this is
* used to check whether the cleanup timer still needs to run,
* if there are no frames we don't need to rearm the timer.
*/
return !(skb_queue_empty(&sta->ps_tx_buf[ac]) &&
skb_queue_empty(&sta->tx_filtered[ac]));
}
static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local,
struct sta_info *sta)
{
bool have_buffered = false;
int ac;
/* This is only necessary for stations on BSS/MBSS interfaces */
if (!sta->sdata->bss &&
!ieee80211_vif_is_mesh(&sta->sdata->vif))
return false;
for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
have_buffered |=
sta_info_cleanup_expire_buffered_ac(local, sta, ac);
return have_buffered;
}
static int __must_check __sta_info_destroy_part1(struct sta_info *sta)
{
struct ieee80211_local *local;
struct ieee80211_sub_if_data *sdata;
int ret;
might_sleep();
if (!sta)
return -ENOENT;
local = sta->local;
sdata = sta->sdata;
lockdep_assert_held(&local->sta_mtx);
/*
* Before removing the station from the driver and
* rate control, it might still start new aggregation
* sessions -- block that to make sure the tear-down
* will be sufficient.
*/
set_sta_flag(sta, WLAN_STA_BLOCK_BA);
ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA);
/*
* Before removing the station from the driver there might be pending
* rx frames on RSS queues sent prior to the disassociation - wait for
* all such frames to be processed.
*/
drv_sync_rx_queues(local, sta);
ret = sta_info_hash_del(local, sta);
if (WARN_ON(ret))
return ret;
/*
* for TDLS peers, make sure to return to the base channel before
* removal.
*/
if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) {
drv_tdls_cancel_channel_switch(local, sdata, &sta->sta);
clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL);
}
list_del_rcu(&sta->list);
sta->removed = true;
drv_sta_pre_rcu_remove(local, sta->sdata, sta);
if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
rcu_access_pointer(sdata->u.vlan.sta) == sta)
RCU_INIT_POINTER(sdata->u.vlan.sta, NULL);
return 0;
}
static void __sta_info_destroy_part2(struct sta_info *sta)
{
struct ieee80211_local *local = sta->local;
struct ieee80211_sub_if_data *sdata = sta->sdata;
struct station_info *sinfo;
int ret;
/*
* NOTE: This assumes at least synchronize_net() was done
* after _part1 and before _part2!
*/
might_sleep();
lockdep_assert_held(&local->sta_mtx);
/* now keys can no longer be reached */
ieee80211_free_sta_keys(local, sta);
/* disable TIM bit - last chance to tell driver */
__sta_info_recalc_tim(sta, true);
sta->dead = true;
local->num_sta--;
local->sta_generation++;
while (sta->sta_state > IEEE80211_STA_NONE) {
ret = sta_info_move_state(sta, sta->sta_state - 1);
if (ret) {
WARN_ON_ONCE(1);
break;
}
}
if (sta->uploaded) {
ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE,
IEEE80211_STA_NOTEXIST);
WARN_ON_ONCE(ret != 0);
}
sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr);
sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL);
if (sinfo)
sta_set_sinfo(sta, sinfo);
cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
kfree(sinfo);
rate_control_remove_sta_debugfs(sta);
ieee80211_sta_debugfs_remove(sta);
cleanup_single_sta(sta);
}
int __must_check __sta_info_destroy(struct sta_info *sta)
{
int err = __sta_info_destroy_part1(sta);
if (err)
return err;
synchronize_net();
__sta_info_destroy_part2(sta);
return 0;
}
int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr)
{
struct sta_info *sta;
int ret;
mutex_lock(&sdata->local->sta_mtx);
sta = sta_info_get(sdata, addr);
ret = __sta_info_destroy(sta);
mutex_unlock(&sdata->local->sta_mtx);
return ret;
}
int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata,
const u8 *addr)
{
struct sta_info *sta;
int ret;
mutex_lock(&sdata->local->sta_mtx);
sta = sta_info_get_bss(sdata, addr);
ret = __sta_info_destroy(sta);
mutex_unlock(&sdata->local->sta_mtx);
return ret;
}
static void sta_info_cleanup(unsigned long data)
{
struct ieee80211_local *local = (struct ieee80211_local *) data;
struct sta_info *sta;
bool timer_needed = false;
rcu_read_lock();
list_for_each_entry_rcu(sta, &local->sta_list, list)
if (sta_info_cleanup_expire_buffered(local, sta))
timer_needed = true;
rcu_read_unlock();
if (local->quiescing)
return;
if (!timer_needed)
return;
mod_timer(&local->sta_cleanup,
round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL));
}
u32 sta_addr_hash(const void *key, u32 length, u32 seed)
{
return jhash(key, ETH_ALEN, seed);
}
int sta_info_init(struct ieee80211_local *local)
{
int err;
err = rhashtable_init(&local->sta_hash, &sta_rht_params);
if (err)
return err;
spin_lock_init(&local->tim_lock);
mutex_init(&local->sta_mtx);
INIT_LIST_HEAD(&local->sta_list);
setup_timer(&local->sta_cleanup, sta_info_cleanup,
(unsigned long)local);
return 0;
}
void sta_info_stop(struct ieee80211_local *local)
{
del_timer_sync(&local->sta_cleanup);
rhashtable_destroy(&local->sta_hash);
}
int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans)
{
struct ieee80211_local *local = sdata->local;
struct sta_info *sta, *tmp;
LIST_HEAD(free_list);
int ret = 0;
might_sleep();
WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP);
WARN_ON(vlans && !sdata->bss);
mutex_lock(&local->sta_mtx);
list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
if (sdata == sta->sdata ||
(vlans && sdata->bss == sta->sdata->bss)) {
if (!WARN_ON(__sta_info_destroy_part1(sta)))
list_add(&sta->free_list, &free_list);
ret++;
}
}
if (!list_empty(&free_list)) {
synchronize_net();
list_for_each_entry_safe(sta, tmp, &free_list, free_list)
__sta_info_destroy_part2(sta);
}
mutex_unlock(&local->sta_mtx);
return ret;
}
void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata,
unsigned long exp_time)
{
struct ieee80211_local *local = sdata->local;
struct sta_info *sta, *tmp;
mutex_lock(&local->sta_mtx);
list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
unsigned long last_active = ieee80211_sta_last_active(sta);
if (sdata != sta->sdata)
continue;
if (time_is_before_jiffies(last_active + exp_time)) {
sta_dbg(sta->sdata, "expiring inactive STA %pM\n",
sta->sta.addr);
if (ieee80211_vif_is_mesh(&sdata->vif) &&
test_sta_flag(sta, WLAN_STA_PS_STA))
atomic_dec(&sdata->u.mesh.ps.num_sta_ps);
WARN_ON(__sta_info_destroy(sta));
}
}
mutex_unlock(&local->sta_mtx);
}
struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw,
const u8 *addr,
const u8 *localaddr)
{
struct ieee80211_local *local = hw_to_local(hw);
struct sta_info *sta;
struct rhash_head *tmp;
const struct bucket_table *tbl;
tbl = rht_dereference_rcu(local->sta_hash.tbl, &local->sta_hash);
/*
* Just return a random station if localaddr is NULL
* ... first in list.
*/
for_each_sta_info(local, tbl, addr, sta, tmp) {
if (localaddr &&
!ether_addr_equal(sta->sdata->vif.addr, localaddr))
continue;
if (!sta->uploaded)
return NULL;
return &sta->sta;
}
return NULL;
}
EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr);
struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif,
const u8 *addr)
{
struct sta_info *sta;
if (!vif)
return NULL;
sta = sta_info_get_bss(vif_to_sdata(vif), addr);
if (!sta)
return NULL;
if (!sta->uploaded)
return NULL;
return &sta->sta;
}
EXPORT_SYMBOL(ieee80211_find_sta);
/* powersave support code */
void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta)
{
struct ieee80211_sub_if_data *sdata = sta->sdata;
struct ieee80211_local *local = sdata->local;
struct sk_buff_head pending;
int filtered = 0, buffered = 0, ac, i;
unsigned long flags;
struct ps_data *ps;
if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
u.ap);
if (sdata->vif.type == NL80211_IFTYPE_AP)
ps = &sdata->bss->ps;
else if (ieee80211_vif_is_mesh(&sdata->vif))
ps = &sdata->u.mesh.ps;
else
return;
clear_sta_flag(sta, WLAN_STA_SP);
BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1);
sta->driver_buffered_tids = 0;
sta->txq_buffered_tids = 0;
if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta);
if (sta->sta.txq[0]) {
for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
struct txq_info *txqi = to_txq_info(sta->sta.txq[i]);
if (!txqi->tin.backlog_packets)
continue;
drv_wake_tx_queue(local, txqi);
}
}
skb_queue_head_init(&pending);
/* sync with ieee80211_tx_h_unicast_ps_buf */
spin_lock(&sta->ps_lock);
/* Send all buffered frames to the station */
for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
int count = skb_queue_len(&pending), tmp;
spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending);
spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
tmp = skb_queue_len(&pending);
filtered += tmp - count;
count = tmp;
spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending);
spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
tmp = skb_queue_len(&pending);
buffered += tmp - count;
}
ieee80211_add_pending_skbs(local, &pending);
/* now we're no longer in the deliver code */
clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
/* The station might have polled and then woken up before we responded,
* so clear these flags now to avoid them sticking around.
*/
clear_sta_flag(sta, WLAN_STA_PSPOLL);
clear_sta_flag(sta, WLAN_STA_UAPSD);
spin_unlock(&sta->ps_lock);
atomic_dec(&ps->num_sta_ps);
/* This station just woke up and isn't aware of our SMPS state */
if (!ieee80211_vif_is_mesh(&sdata->vif) &&
!ieee80211_smps_is_restrictive(sta->known_smps_mode,
sdata->smps_mode) &&
sta->known_smps_mode != sdata->bss->req_smps &&
sta_info_tx_streams(sta) != 1) {
ht_dbg(sdata,
"%pM just woke up and MIMO capable - update SMPS\n",
sta->sta.addr);
ieee80211_send_smps_action(sdata, sdata->bss->req_smps,
sta->sta.addr,
sdata->vif.bss_conf.bssid);
}
local->total_ps_buffered -= buffered;
sta_info_recalc_tim(sta);
ps_dbg(sdata,
"STA %pM aid %d sending %d filtered/%d PS frames since STA not sleeping anymore\n",
sta->sta.addr, sta->sta.aid, filtered, buffered);
ieee80211_check_fast_xmit(sta);
}
static void ieee80211_send_null_response(struct sta_info *sta, int tid,
enum ieee80211_frame_release_type reason,
bool call_driver, bool more_data)
{
struct ieee80211_sub_if_data *sdata = sta->sdata;
struct ieee80211_local *local = sdata->local;
struct ieee80211_qos_hdr *nullfunc;
struct sk_buff *skb;
int size = sizeof(*nullfunc);
__le16 fc;
bool qos = sta->sta.wme;
struct ieee80211_tx_info *info;
struct ieee80211_chanctx_conf *chanctx_conf;
if (qos) {
fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
IEEE80211_STYPE_QOS_NULLFUNC |
IEEE80211_FCTL_FROMDS);
} else {
size -= 2;
fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
IEEE80211_STYPE_NULLFUNC |
IEEE80211_FCTL_FROMDS);
}
skb = dev_alloc_skb(local->hw.extra_tx_headroom + size);
if (!skb)
return;
skb_reserve(skb, local->hw.extra_tx_headroom);
nullfunc = (void *) skb_put(skb, size);
nullfunc->frame_control = fc;
nullfunc->duration_id = 0;
memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN);
memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN);
memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN);
nullfunc->seq_ctrl = 0;
skb->priority = tid;
skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]);
if (qos) {
nullfunc->qos_ctrl = cpu_to_le16(tid);
if (reason == IEEE80211_FRAME_RELEASE_UAPSD) {
nullfunc->qos_ctrl |=
cpu_to_le16(IEEE80211_QOS_CTL_EOSP);
if (more_data)
nullfunc->frame_control |=
cpu_to_le16(IEEE80211_FCTL_MOREDATA);
}
}
info = IEEE80211_SKB_CB(skb);
/*
* Tell TX path to send this frame even though the
* STA may still remain is PS mode after this frame
* exchange. Also set EOSP to indicate this packet
* ends the poll/service period.
*/
info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER |
IEEE80211_TX_STATUS_EOSP |
IEEE80211_TX_CTL_REQ_TX_STATUS;
info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
if (call_driver)
drv_allow_buffered_frames(local, sta, BIT(tid), 1,
reason, false);
skb->dev = sdata->dev;
rcu_read_lock();
chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
if (WARN_ON(!chanctx_conf)) {
rcu_read_unlock();
kfree_skb(skb);
return;
}
info->band = chanctx_conf->def.chan->band;
ieee80211_xmit(sdata, sta, skb);
rcu_read_unlock();
}
static int find_highest_prio_tid(unsigned long tids)
{
/* lower 3 TIDs aren't ordered perfectly */
if (tids & 0xF8)
return fls(tids) - 1;
/* TID 0 is BE just like TID 3 */
if (tids & BIT(0))
return 0;
return fls(tids) - 1;
}
/* Indicates if the MORE_DATA bit should be set in the last
* frame obtained by ieee80211_sta_ps_get_frames.
* Note that driver_release_tids is relevant only if
* reason = IEEE80211_FRAME_RELEASE_PSPOLL
*/
static bool
ieee80211_sta_ps_more_data(struct sta_info *sta, u8 ignored_acs,
enum ieee80211_frame_release_type reason,
unsigned long driver_release_tids)
{
int ac;
/* If the driver has data on more than one TID then
* certainly there's more data if we release just a
* single frame now (from a single TID). This will
* only happen for PS-Poll.
*/
if (reason == IEEE80211_FRAME_RELEASE_PSPOLL &&
hweight16(driver_release_tids) > 1)
return true;
for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
if (ignored_acs & BIT(ac))
continue;
if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
!skb_queue_empty(&sta->ps_tx_buf[ac]))
return true;
}
return false;
}
static void
ieee80211_sta_ps_get_frames(struct sta_info *sta, int n_frames, u8 ignored_acs,
enum ieee80211_frame_release_type reason,
struct sk_buff_head *frames,
unsigned long *driver_release_tids)
{
struct ieee80211_sub_if_data *sdata = sta->sdata;
struct ieee80211_local *local = sdata->local;
int ac;
/* Get response frame(s) and more data bit for the last one. */
for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
unsigned long tids;
if (ignored_acs & BIT(ac))
continue;
tids = ieee80211_tids_for_ac(ac);
/* if we already have frames from software, then we can't also
* release from hardware queues
*/
if (skb_queue_empty(frames)) {
*driver_release_tids |=
sta->driver_buffered_tids & tids;
*driver_release_tids |= sta->txq_buffered_tids & tids;
}
if (!*driver_release_tids) {
struct sk_buff *skb;
while (n_frames > 0) {
skb = skb_dequeue(&sta->tx_filtered[ac]);
if (!skb) {
skb = skb_dequeue(
&sta->ps_tx_buf[ac]);
if (skb)
local->total_ps_buffered--;
}
if (!skb)
break;
n_frames--;
__skb_queue_tail(frames, skb);
}
}
/* If we have more frames buffered on this AC, then abort the
* loop since we can't send more data from other ACs before
* the buffered frames from this.
*/
if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
!skb_queue_empty(&sta->ps_tx_buf[ac]))
break;
}
}
static void
ieee80211_sta_ps_deliver_response(struct sta_info *sta,
int n_frames, u8 ignored_acs,
enum ieee80211_frame_release_type reason)
{
struct ieee80211_sub_if_data *sdata = sta->sdata;
struct ieee80211_local *local = sdata->local;
unsigned long driver_release_tids = 0;
struct sk_buff_head frames;
bool more_data;
/* Service or PS-Poll period starts */
set_sta_flag(sta, WLAN_STA_SP);
__skb_queue_head_init(&frames);
ieee80211_sta_ps_get_frames(sta, n_frames, ignored_acs, reason,
&frames, &driver_release_tids);
more_data = ieee80211_sta_ps_more_data(sta, ignored_acs, reason, driver_release_tids);
if (driver_release_tids && reason == IEEE80211_FRAME_RELEASE_PSPOLL)
driver_release_tids =
BIT(find_highest_prio_tid(driver_release_tids));
if (skb_queue_empty(&frames) && !driver_release_tids) {
int tid;
/*
* For PS-Poll, this can only happen due to a race condition
* when we set the TIM bit and the station notices it, but
* before it can poll for the frame we expire it.
*
* For uAPSD, this is said in the standard (11.2.1.5 h):
* At each unscheduled SP for a non-AP STA, the AP shall
* attempt to transmit at least one MSDU or MMPDU, but no
* more than the value specified in the Max SP Length field
* in the QoS Capability element from delivery-enabled ACs,
* that are destined for the non-AP STA.
*
* Since we have no other MSDU/MMPDU, transmit a QoS null frame.
*/
/* This will evaluate to 1, 3, 5 or 7. */
tid = 7 - ((ffs(~ignored_acs) - 1) << 1);
ieee80211_send_null_response(sta, tid, reason, true, false);
} else if (!driver_release_tids) {
struct sk_buff_head pending;
struct sk_buff *skb;
int num = 0;
u16 tids = 0;
bool need_null = false;
skb_queue_head_init(&pending);
while ((skb = __skb_dequeue(&frames))) {
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ieee80211_hdr *hdr = (void *) skb->data;
u8 *qoshdr = NULL;
num++;
/*
* Tell TX path to send this frame even though the
* STA may still remain is PS mode after this frame
* exchange.
*/
info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER;
info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
/*
* Use MoreData flag to indicate whether there are
* more buffered frames for this STA
*/
if (more_data || !skb_queue_empty(&frames))
hdr->frame_control |=
cpu_to_le16(IEEE80211_FCTL_MOREDATA);
else
hdr->frame_control &=
cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
if (ieee80211_is_data_qos(hdr->frame_control) ||
ieee80211_is_qos_nullfunc(hdr->frame_control))
qoshdr = ieee80211_get_qos_ctl(hdr);
tids |= BIT(skb->priority);
__skb_queue_tail(&pending, skb);
/* end service period after last frame or add one */
if (!skb_queue_empty(&frames))
continue;
if (reason != IEEE80211_FRAME_RELEASE_UAPSD) {
/* for PS-Poll, there's only one frame */
info->flags |= IEEE80211_TX_STATUS_EOSP |
IEEE80211_TX_CTL_REQ_TX_STATUS;
break;
}
/* For uAPSD, things are a bit more complicated. If the
* last frame has a QoS header (i.e. is a QoS-data or
* QoS-nulldata frame) then just set the EOSP bit there
* and be done.
* If the frame doesn't have a QoS header (which means
* it should be a bufferable MMPDU) then we can't set
* the EOSP bit in the QoS header; add a QoS-nulldata
* frame to the list to send it after the MMPDU.
*
* Note that this code is only in the mac80211-release
* code path, we assume that the driver will not buffer
* anything but QoS-data frames, or if it does, will
* create the QoS-nulldata frame by itself if needed.
*
* Cf. 802.11-2012 10.2.1.10 (c).
*/
if (qoshdr) {
*qoshdr |= IEEE80211_QOS_CTL_EOSP;
info->flags |= IEEE80211_TX_STATUS_EOSP |
IEEE80211_TX_CTL_REQ_TX_STATUS;
} else {
/* The standard isn't completely clear on this
* as it says the more-data bit should be set
* if there are more BUs. The QoS-Null frame
* we're about to send isn't buffered yet, we
* only create it below, but let's pretend it
* was buffered just in case some clients only
* expect more-data=0 when eosp=1.
*/
hdr->frame_control |=
cpu_to_le16(IEEE80211_FCTL_MOREDATA);
need_null = true;
num++;
}
break;
}
drv_allow_buffered_frames(local, sta, tids, num,
reason, more_data);
ieee80211_add_pending_skbs(local, &pending);
if (need_null)
ieee80211_send_null_response(
sta, find_highest_prio_tid(tids),
reason, false, false);
sta_info_recalc_tim(sta);
} else {
unsigned long tids = sta->txq_buffered_tids & driver_release_tids;
int tid;
/*
* We need to release a frame that is buffered somewhere in the
* driver ... it'll have to handle that.
* Note that the driver also has to check the number of frames
* on the TIDs we're releasing from - if there are more than
* n_frames it has to set the more-data bit (if we didn't ask
* it to set it anyway due to other buffered frames); if there
* are fewer than n_frames it has to make sure to adjust that
* to allow the service period to end properly.
*/
drv_release_buffered_frames(local, sta, driver_release_tids,
n_frames, reason, more_data);
/*
* Note that we don't recalculate the TIM bit here as it would
* most likely have no effect at all unless the driver told us
* that the TID(s) became empty before returning here from the
* release function.
* Either way, however, when the driver tells us that the TID(s)
* became empty or we find that a txq became empty, we'll do the
* TIM recalculation.
*/
if (!sta->sta.txq[0])
return;
for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
struct txq_info *txqi = to_txq_info(sta->sta.txq[tid]);
if (!(tids & BIT(tid)) || txqi->tin.backlog_packets)
continue;
sta_info_recalc_tim(sta);
break;
}
}
}
void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta)
{
u8 ignore_for_response = sta->sta.uapsd_queues;
/*
* If all ACs are delivery-enabled then we should reply
* from any of them, if only some are enabled we reply
* only from the non-enabled ones.
*/
if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1)
ignore_for_response = 0;
ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response,
IEEE80211_FRAME_RELEASE_PSPOLL);
}
void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta)
{
int n_frames = sta->sta.max_sp;
u8 delivery_enabled = sta->sta.uapsd_queues;
/*
* If we ever grow support for TSPEC this might happen if
* the TSPEC update from hostapd comes in between a trigger
* frame setting WLAN_STA_UAPSD in the RX path and this
* actually getting called.
*/
if (!delivery_enabled)
return;
switch (sta->sta.max_sp) {
case 1:
n_frames = 2;
break;
case 2:
n_frames = 4;
break;
case 3:
n_frames = 6;
break;
case 0:
/* XXX: what is a good value? */
n_frames = 128;
break;
}
ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled,
IEEE80211_FRAME_RELEASE_UAPSD);
}
void ieee80211_sta_block_awake(struct ieee80211_hw *hw,
struct ieee80211_sta *pubsta, bool block)
{
struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
trace_api_sta_block_awake(sta->local, pubsta, block);
if (block) {
set_sta_flag(sta, WLAN_STA_PS_DRIVER);
ieee80211_clear_fast_xmit(sta);
return;
}
if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
return;
if (!test_sta_flag(sta, WLAN_STA_PS_STA)) {
set_sta_flag(sta, WLAN_STA_PS_DELIVER);
clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
ieee80211_queue_work(hw, &sta->drv_deliver_wk);
} else if (test_sta_flag(sta, WLAN_STA_PSPOLL) ||
test_sta_flag(sta, WLAN_STA_UAPSD)) {
/* must be asleep in this case */
clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
ieee80211_queue_work(hw, &sta->drv_deliver_wk);
} else {
clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
ieee80211_check_fast_xmit(sta);
}
}
EXPORT_SYMBOL(ieee80211_sta_block_awake);
void ieee80211_sta_eosp(struct ieee80211_sta *pubsta)
{
struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
struct ieee80211_local *local = sta->local;
trace_api_eosp(local, pubsta);
clear_sta_flag(sta, WLAN_STA_SP);
}
EXPORT_SYMBOL(ieee80211_sta_eosp);
void ieee80211_send_eosp_nullfunc(struct ieee80211_sta *pubsta, int tid)
{
struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
enum ieee80211_frame_release_type reason;
bool more_data;
trace_api_send_eosp_nullfunc(sta->local, pubsta, tid);
reason = IEEE80211_FRAME_RELEASE_UAPSD;
more_data = ieee80211_sta_ps_more_data(sta, ~sta->sta.uapsd_queues,
reason, 0);
ieee80211_send_null_response(sta, tid, reason, false, more_data);
}
EXPORT_SYMBOL(ieee80211_send_eosp_nullfunc);
void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta,
u8 tid, bool buffered)
{
struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
if (WARN_ON(tid >= IEEE80211_NUM_TIDS))
return;
trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered);
if (buffered)
set_bit(tid, &sta->driver_buffered_tids);
else
clear_bit(tid, &sta->driver_buffered_tids);
sta_info_recalc_tim(sta);
}
EXPORT_SYMBOL(ieee80211_sta_set_buffered);
static void
ieee80211_recalc_p2p_go_ps_allowed(struct ieee80211_sub_if_data *sdata)
{
struct ieee80211_local *local = sdata->local;
bool allow_p2p_go_ps = sdata->vif.p2p;
struct sta_info *sta;
rcu_read_lock();
list_for_each_entry_rcu(sta, &local->sta_list, list) {
if (sdata != sta->sdata ||
!test_sta_flag(sta, WLAN_STA_ASSOC))
continue;
if (!sta->sta.support_p2p_ps) {
allow_p2p_go_ps = false;
break;
}
}
rcu_read_unlock();
if (allow_p2p_go_ps != sdata->vif.bss_conf.allow_p2p_go_ps) {
sdata->vif.bss_conf.allow_p2p_go_ps = allow_p2p_go_ps;
ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_P2P_PS);
}
}
int sta_info_move_state(struct sta_info *sta,
enum ieee80211_sta_state new_state)
{
might_sleep();
if (sta->sta_state == new_state)
return 0;
/* check allowed transitions first */
switch (new_state) {
case IEEE80211_STA_NONE:
if (sta->sta_state != IEEE80211_STA_AUTH)
return -EINVAL;
break;
case IEEE80211_STA_AUTH:
if (sta->sta_state != IEEE80211_STA_NONE &&
sta->sta_state != IEEE80211_STA_ASSOC)
return -EINVAL;
break;
case IEEE80211_STA_ASSOC:
if (sta->sta_state != IEEE80211_STA_AUTH &&
sta->sta_state != IEEE80211_STA_AUTHORIZED)
return -EINVAL;
break;
case IEEE80211_STA_AUTHORIZED:
if (sta->sta_state != IEEE80211_STA_ASSOC)
return -EINVAL;
break;
default:
WARN(1, "invalid state %d", new_state);
return -EINVAL;
}
sta_dbg(sta->sdata, "moving STA %pM to state %d\n",
sta->sta.addr, new_state);
/*
* notify the driver before the actual changes so it can
* fail the transition
*/
if (test_sta_flag(sta, WLAN_STA_INSERTED)) {
int err = drv_sta_state(sta->local, sta->sdata, sta,
sta->sta_state, new_state);
if (err)
return err;
}
/* reflect the change in all state variables */
switch (new_state) {
case IEEE80211_STA_NONE:
if (sta->sta_state == IEEE80211_STA_AUTH)
clear_bit(WLAN_STA_AUTH, &sta->_flags);
break;
case IEEE80211_STA_AUTH:
if (sta->sta_state == IEEE80211_STA_NONE) {
set_bit(WLAN_STA_AUTH, &sta->_flags);
} else if (sta->sta_state == IEEE80211_STA_ASSOC) {
clear_bit(WLAN_STA_ASSOC, &sta->_flags);
ieee80211_recalc_min_chandef(sta->sdata);
if (!sta->sta.support_p2p_ps)
ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
}
break;
case IEEE80211_STA_ASSOC:
if (sta->sta_state == IEEE80211_STA_AUTH) {
set_bit(WLAN_STA_ASSOC, &sta->_flags);
ieee80211_recalc_min_chandef(sta->sdata);
if (!sta->sta.support_p2p_ps)
ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
} else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) {
if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
(sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
!sta->sdata->u.vlan.sta))
atomic_dec(&sta->sdata->bss->num_mcast_sta);
clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
ieee80211_clear_fast_xmit(sta);
ieee80211_clear_fast_rx(sta);
}
break;
case IEEE80211_STA_AUTHORIZED:
if (sta->sta_state == IEEE80211_STA_ASSOC) {
if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
(sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
!sta->sdata->u.vlan.sta))
atomic_inc(&sta->sdata->bss->num_mcast_sta);
set_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
ieee80211_check_fast_xmit(sta);
ieee80211_check_fast_rx(sta);
}
break;
default:
break;
}
sta->sta_state = new_state;
return 0;
}
u8 sta_info_tx_streams(struct sta_info *sta)
{
struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap;
u8 rx_streams;
if (!sta->sta.ht_cap.ht_supported)
return 1;
if (sta->sta.vht_cap.vht_supported) {
int i;
u16 tx_mcs_map =
le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map);
for (i = 7; i >= 0; i--)
if ((tx_mcs_map & (0x3 << (i * 2))) !=
IEEE80211_VHT_MCS_NOT_SUPPORTED)
return i + 1;
}
if (ht_cap->mcs.rx_mask[3])
rx_streams = 4;
else if (ht_cap->mcs.rx_mask[2])
rx_streams = 3;
else if (ht_cap->mcs.rx_mask[1])
rx_streams = 2;
else
rx_streams = 1;
if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF))
return rx_streams;
return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK)
>> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1;
}
static struct ieee80211_sta_rx_stats *
sta_get_last_rx_stats(struct sta_info *sta)
{
struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
struct ieee80211_local *local = sta->local;
int cpu;
if (!ieee80211_hw_check(&local->hw, USES_RSS))
return stats;
for_each_possible_cpu(cpu) {
struct ieee80211_sta_rx_stats *cpustats;
cpustats = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
if (time_after(cpustats->last_rx, stats->last_rx))
stats = cpustats;
}
return stats;
}
static void sta_stats_decode_rate(struct ieee80211_local *local, u16 rate,
struct rate_info *rinfo)
{
rinfo->bw = (rate & STA_STATS_RATE_BW_MASK) >>
STA_STATS_RATE_BW_SHIFT;
if (rate & STA_STATS_RATE_VHT) {
rinfo->flags = RATE_INFO_FLAGS_VHT_MCS;
rinfo->mcs = rate & 0xf;
rinfo->nss = (rate & 0xf0) >> 4;
} else if (rate & STA_STATS_RATE_HT) {
rinfo->flags = RATE_INFO_FLAGS_MCS;
rinfo->mcs = rate & 0xff;
} else if (rate & STA_STATS_RATE_LEGACY) {
struct ieee80211_supported_band *sband;
u16 brate;
unsigned int shift;
sband = local->hw.wiphy->bands[(rate >> 4) & 0xf];
brate = sband->bitrates[rate & 0xf].bitrate;
if (rinfo->bw == RATE_INFO_BW_5)
shift = 2;
else if (rinfo->bw == RATE_INFO_BW_10)
shift = 1;
else
shift = 0;
rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift);
}
if (rate & STA_STATS_RATE_SGI)
rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
}
static void sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo)
{
u16 rate = ACCESS_ONCE(sta_get_last_rx_stats(sta)->last_rate);
if (rate == STA_STATS_RATE_INVALID)
rinfo->flags = 0;
else
sta_stats_decode_rate(sta->local, rate, rinfo);
}
static void sta_set_tidstats(struct sta_info *sta,
struct cfg80211_tid_stats *tidstats,
int tid)
{
struct ieee80211_local *local = sta->local;
if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) {
unsigned int start;
do {
start = u64_stats_fetch_begin(&sta->rx_stats.syncp);
tidstats->rx_msdu = sta->rx_stats.msdu[tid];
} while (u64_stats_fetch_retry(&sta->rx_stats.syncp, start));
tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU);
}
if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) {
tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU);
tidstats->tx_msdu = sta->tx_stats.msdu[tid];
}
if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) &&
ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_RETRIES);
tidstats->tx_msdu_retries = sta->status_stats.msdu_retries[tid];
}
if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) &&
ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_FAILED);
tidstats->tx_msdu_failed = sta->status_stats.msdu_failed[tid];
}
}
static inline u64 sta_get_stats_bytes(struct ieee80211_sta_rx_stats *rxstats)
{
unsigned int start;
u64 value;
do {
start = u64_stats_fetch_begin(&rxstats->syncp);
value = rxstats->bytes;
} while (u64_stats_fetch_retry(&rxstats->syncp, start));
return value;
}
void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo)
{
struct ieee80211_sub_if_data *sdata = sta->sdata;
struct ieee80211_local *local = sdata->local;
struct rate_control_ref *ref = NULL;
u32 thr = 0;
int i, ac, cpu;
struct ieee80211_sta_rx_stats *last_rxstats;
last_rxstats = sta_get_last_rx_stats(sta);
if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL))
ref = local->rate_ctrl;
sinfo->generation = sdata->local->sta_generation;
/* do before driver, so beacon filtering drivers have a
* chance to e.g. just add the number of filtered beacons
* (or just modify the value entirely, of course)
*/
if (sdata->vif.type == NL80211_IFTYPE_STATION)
sinfo->rx_beacon = sdata->u.mgd.count_beacon_signal;
drv_sta_statistics(local, sdata, &sta->sta, sinfo);
sinfo->filled |= BIT(NL80211_STA_INFO_INACTIVE_TIME) |
BIT(NL80211_STA_INFO_STA_FLAGS) |
BIT(NL80211_STA_INFO_BSS_PARAM) |
BIT(NL80211_STA_INFO_CONNECTED_TIME) |
BIT(NL80211_STA_INFO_RX_DROP_MISC);
if (sdata->vif.type == NL80211_IFTYPE_STATION) {
sinfo->beacon_loss_count = sdata->u.mgd.beacon_loss_count;
sinfo->filled |= BIT(NL80211_STA_INFO_BEACON_LOSS);
}
sinfo->connected_time = ktime_get_seconds() - sta->last_connected;
sinfo->inactive_time =
jiffies_to_msecs(jiffies - ieee80211_sta_last_active(sta));
if (!(sinfo->filled & (BIT(NL80211_STA_INFO_TX_BYTES64) |
BIT(NL80211_STA_INFO_TX_BYTES)))) {
sinfo->tx_bytes = 0;
for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
sinfo->tx_bytes += sta->tx_stats.bytes[ac];
sinfo->filled |= BIT(NL80211_STA_INFO_TX_BYTES64);
}
if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_PACKETS))) {
sinfo->tx_packets = 0;
for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
sinfo->tx_packets += sta->tx_stats.packets[ac];
sinfo->filled |= BIT(NL80211_STA_INFO_TX_PACKETS);
}
if (!(sinfo->filled & (BIT(NL80211_STA_INFO_RX_BYTES64) |
BIT(NL80211_STA_INFO_RX_BYTES)))) {
sinfo->rx_bytes += sta_get_stats_bytes(&sta->rx_stats);
if (sta->pcpu_rx_stats) {
for_each_possible_cpu(cpu) {
struct ieee80211_sta_rx_stats *cpurxs;
cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
sinfo->rx_bytes += sta_get_stats_bytes(cpurxs);
}
}
sinfo->filled |= BIT(NL80211_STA_INFO_RX_BYTES64);
}
if (!(sinfo->filled & BIT(NL80211_STA_INFO_RX_PACKETS))) {
sinfo->rx_packets = sta->rx_stats.packets;
if (sta->pcpu_rx_stats) {
for_each_possible_cpu(cpu) {
struct ieee80211_sta_rx_stats *cpurxs;
cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
sinfo->rx_packets += cpurxs->packets;
}
}
sinfo->filled |= BIT(NL80211_STA_INFO_RX_PACKETS);
}
if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_RETRIES))) {
sinfo->tx_retries = sta->status_stats.retry_count;
sinfo->filled |= BIT(NL80211_STA_INFO_TX_RETRIES);
}
if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_FAILED))) {
sinfo->tx_failed = sta->status_stats.retry_failed;
sinfo->filled |= BIT(NL80211_STA_INFO_TX_FAILED);
}
sinfo->rx_dropped_misc = sta->rx_stats.dropped;
if (sta->pcpu_rx_stats) {
for_each_possible_cpu(cpu) {
struct ieee80211_sta_rx_stats *cpurxs;
cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
sinfo->rx_packets += cpurxs->dropped;
}
}
if (sdata->vif.type == NL80211_IFTYPE_STATION &&
!(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) {
sinfo->filled |= BIT(NL80211_STA_INFO_BEACON_RX) |
BIT(NL80211_STA_INFO_BEACON_SIGNAL_AVG);
sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif);
}
if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) ||
ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) {
if (!(sinfo->filled & BIT(NL80211_STA_INFO_SIGNAL))) {
sinfo->signal = (s8)last_rxstats->last_signal;
sinfo->filled |= BIT(NL80211_STA_INFO_SIGNAL);
}
if (!sta->pcpu_rx_stats &&
!(sinfo->filled & BIT(NL80211_STA_INFO_SIGNAL_AVG))) {
sinfo->signal_avg =
-ewma_signal_read(&sta->rx_stats_avg.signal);
sinfo->filled |= BIT(NL80211_STA_INFO_SIGNAL_AVG);
}
}
/* for the average - if pcpu_rx_stats isn't set - rxstats must point to
* the sta->rx_stats struct, so the check here is fine with and without
* pcpu statistics
*/
if (last_rxstats->chains &&
!(sinfo->filled & (BIT(NL80211_STA_INFO_CHAIN_SIGNAL) |
BIT(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) {
sinfo->filled |= BIT(NL80211_STA_INFO_CHAIN_SIGNAL);
if (!sta->pcpu_rx_stats)
sinfo->filled |= BIT(NL80211_STA_INFO_CHAIN_SIGNAL_AVG);
sinfo->chains = last_rxstats->chains;
for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) {
sinfo->chain_signal[i] =
last_rxstats->chain_signal_last[i];
sinfo->chain_signal_avg[i] =
-ewma_signal_read(&sta->rx_stats_avg.chain_signal[i]);
}
}
if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_BITRATE))) {
sta_set_rate_info_tx(sta, &sta->tx_stats.last_rate,
&sinfo->txrate);
sinfo->filled |= BIT(NL80211_STA_INFO_TX_BITRATE);
}
if (!(sinfo->filled & BIT(NL80211_STA_INFO_RX_BITRATE))) {
sta_set_rate_info_rx(sta, &sinfo->rxrate);
sinfo->filled |= BIT(NL80211_STA_INFO_RX_BITRATE);
}
sinfo->filled |= BIT(NL80211_STA_INFO_TID_STATS);
for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) {
struct cfg80211_tid_stats *tidstats = &sinfo->pertid[i];
sta_set_tidstats(sta, tidstats, i);
}
if (ieee80211_vif_is_mesh(&sdata->vif)) {
#ifdef CONFIG_MAC80211_MESH
sinfo->filled |= BIT(NL80211_STA_INFO_LLID) |
BIT(NL80211_STA_INFO_PLID) |
BIT(NL80211_STA_INFO_PLINK_STATE) |
BIT(NL80211_STA_INFO_LOCAL_PM) |
BIT(NL80211_STA_INFO_PEER_PM) |
BIT(NL80211_STA_INFO_NONPEER_PM);
sinfo->llid = sta->mesh->llid;
sinfo->plid = sta->mesh->plid;
sinfo->plink_state = sta->mesh->plink_state;
if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) {
sinfo->filled |= BIT(NL80211_STA_INFO_T_OFFSET);
sinfo->t_offset = sta->mesh->t_offset;
}
sinfo->local_pm = sta->mesh->local_pm;
sinfo->peer_pm = sta->mesh->peer_pm;
sinfo->nonpeer_pm = sta->mesh->nonpeer_pm;
#endif
}
sinfo->bss_param.flags = 0;
if (sdata->vif.bss_conf.use_cts_prot)
sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT;
if (sdata->vif.bss_conf.use_short_preamble)
sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE;
if (sdata->vif.bss_conf.use_short_slot)
sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME;
sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period;
sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int;
sinfo->sta_flags.set = 0;
sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) |
BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) |
BIT(NL80211_STA_FLAG_WME) |
BIT(NL80211_STA_FLAG_MFP) |
BIT(NL80211_STA_FLAG_AUTHENTICATED) |
BIT(NL80211_STA_FLAG_ASSOCIATED) |
BIT(NL80211_STA_FLAG_TDLS_PEER);
if (test_sta_flag(sta, WLAN_STA_AUTHORIZED))
sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED);
if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE))
sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE);
if (sta->sta.wme)
sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME);
if (test_sta_flag(sta, WLAN_STA_MFP))
sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP);
if (test_sta_flag(sta, WLAN_STA_AUTH))
sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED);
if (test_sta_flag(sta, WLAN_STA_ASSOC))
sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED);
if (test_sta_flag(sta, WLAN_STA_TDLS_PEER))
sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER);
/* check if the driver has a SW RC implementation */
if (ref && ref->ops->get_expected_throughput)
thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv);
else
thr = drv_get_expected_throughput(local, &sta->sta);
if (thr != 0) {
sinfo->filled |= BIT(NL80211_STA_INFO_EXPECTED_THROUGHPUT);
sinfo->expected_throughput = thr;
}
}
unsigned long ieee80211_sta_last_active(struct sta_info *sta)
{
struct ieee80211_sta_rx_stats *stats = sta_get_last_rx_stats(sta);
if (time_after(stats->last_rx, sta->status_stats.last_ack))
return stats->last_rx;
return sta->status_stats.last_ack;
}